DEPARTMENT OF PLANNING, LANDS AND HERITAGE					
DATE	FILE				
23-Mar-2021	SDAU-025-20				

LOCAL GEOTECHNICS

17 March 2020

Report on

Geotechnical Investigation

469 & 471 Canning Highway, Como, WA

Project: LG0502020GI REV_0

Client: Dem

PO Box 5050, Canning Vale South, WA 6155

ABN 61 737 984 867

localgeotechnics.com.au

ELOCAL GEOTECHNICS

17 March 2020

To **Dem** Suite 202, Level 2, Tower B, The Zenith (Railway St entry) 821 Pacific Highway, Chatswood NSW 2067

Dear Sir/Madam,

RE: Geotechnical Investigation for 469 & 471 Canning Highway, Como, WA.

This letter presents our report on a Geotechnical Investigation carried out at 469 & 471 Canning Highway, Como WA. The report must be thoroughly read and implemented in full. No partial implementation of this report is allowed.

If you have any questions in regards to the geotechnical site investigation or we can be of further assistance, please do not hesitate to contact Local Geotechnics.

Sincerely yours

Dr. Harun Meer Ph.D.(Geotech), M. Eng. (Geotech), B. Eng. (Civil), MIE Aust Director Local Geotechnics

Unit 12, 8 Production Road, Canning Vale WA 6155 PO Box 5050, Canning Vale South, WA 6155 08 9457 3517 (0), 0425 545 508 (M) ABN 61 737 984 867 admin@localgeotechnics.com.au localgeotechnics.com.au

PROJECT INFORMATION

Project	LG0502020GI Geotechnical Investigation					
Site Location	469 & 471 Canning Highway, Como, WA					
Rev	Description	Date	Prepared by	Approved by		
0	Issued to client	17 March 2020	R Khan	H Meer		

TABLE OF CONTENTS

EXEC	JTIVE SUMMARY	6
1.0	INTRODUCTION	
2.0	PROPOSED DEVELOPMENT	7
3.0	SCOPE AND OBJECTIVES	8
4.0	SITE CONDITIONS	9
4.1	Surface Condition	9
4.2	Site Geology	9
4.3	Groundwater Information	
4.4	Acid Sulfate Soils (ASS) Review	10
5.0	FIELD INVESTIGATION	
5.1	General	11
5.2	Test Hole Drilling	12
5.3	Perth Sand Penetrometer Test	12
5.4	Electric Friction Cone Penetrometer Test	13
5.5	Standpipe Piezometer Installation	13
5.6	Permeability Test	13
6.0	LABORATORY TESTING	14
6.1	General	14
6.2	Geotechnical Laboratory Test Results	14
6.3	Acid Sulfate Soils (ASS) Test Results	14
6.3.1	Concluding Remarks on ASS Status	16
6.4	Soil Aggressivity Test Results	16
7.0	ENGINEERING CONSIDERATIONS AND RECOMMENDATIONS	16
7.1	Inferred Subsurface Conditions	16
7.2	Groundwater and Dewatering	17
7.3	Geotechnical Design Parameters	17
7.4	Geotechnical Design Parameters for Retaining Structures	18
7.5	Site Classification	
7.6	Earthquake Design Factor	18
7.7	Earthworks	19
7.7.1	Suitability of Excavated Materials for use as Fill	19
7.7.2	2 Structural Fill	19
7.7.3	3 Site Preparation	19
7.8	Bearing Capacity	20
7.8.1	Strip and Pad Foundation	20
7.8.2		
7.9	California Bearing Ratio (CBR) for Roads & Carpark's Subgrade	21
7.10	Excavatability	21
7.11	Cut and Fill Batters	21
7.12	Stormwater Drainage	21
7.13		
8.0	LIMITATION OF USE	22
9.0	REFERENCES	23

LIST OF FIGURES

Figure 1. Site Location Map (source: Google Maps)

- Figure 2. Extracted Geological Map (Ref. 1:50,000 Geology Series Fremantle sheet)
- Figure 3. Water Table Information (Source: Perth Groundwater Atlas)
- Figure 4. Acid Sulfate Soils (ASS) Maps

LIST OF TABLES

- Table 1. Summary of Field Tests
- Table 2.
 Summary of PSP test data
- Table 3. Summary of Permeability Test Results
- **Table 4.** Summary of Geotechnical Laboratory Test Results
- Table 5. Summary of Preliminary ASS Laboratory Test Results
- Table 6. Soil Aggressivity Assessment for the Soil Materials
- Table 7. Summary of Groundwater Depth
- Table 8. Inferred Geotechnical Design Parameters for the Current Site Conditions
- **Table 9.** Geotechnical Design Parameters for Retaining Structures
- Table 10.
 Earthquake Design Factors
- Table 11. Allowable Bearing Pressures for Basement Level Spread & Strip Footings
- Table 12. Ultimate Bearing Capacities for Piles

APPENDICES

- Appendix A: Site Sketch & Test Locations
- Appendix B: Test Hole Logs, PSP and Infiltration Test Certificates
- Appendix C: CPT Traces & Interpretation
- Appendix D: Site Photos
- Appendix E: Laboratory Test Certificates

EXECUTIVE SUMMARY

A geotechnical site investigation was undertaken on 28 February and 5 March 2020 to assess the prevailing subsurface conditions at 469 & 471 Canning Highway, Como WA (site). Subsurface conditions inferred from the site investigation can be described as follows:

- Topsoil, SAND (SP) fine to medium grained, brown, grey, dark grey-brown, loose, with grass, trace organics, extended from surface to a depth of around 0.2 m, overlying,
- SAND (SP) fine to medium grained, grey, light grey (white), brown, yellow and light yellow, dry to slightly moist, extended to the maximum investigated depth 25.48 m. In this unit, following generalised densities were assessed.
 - 0.2 1 m: loose,
 - \circ 1 4.7 m: medium dense,
 - \circ 4.7 25.5 m: dense to very dense.

GROUNDWATER & DEWATERING – groundwater was encountered at depths varying between 7.7 m and 7.8 m below ground level (approximately 1.4 m AHD). Historical highest groundwater table was at 2.4 m AHD as per the Perth Groundwater Atlas. That indicates that estimated highest groundwater depth varies between 6.6 m and 7.9 m below the ground surface. Lower basement floor level of the proposed building was unknown during preparation of this report. If the basement Bulk Excavation Level (BEL) leaves a sand cover of less than 1m above the GWT, dewatering will be required to facilitate clean excavation, compaction for foundation bases and subsequent construction.

<u>Site class (AS2870-2011)</u> – the site was classified as 'Class P'. However, if the backfilling, earthworks and compaction are undertaken as per the recommendations presented in Section 7.7.3, the site can be reclassified to 'Class A'.

Earthquake sub-soil class (AS1170.4-2007) - "Class Ce - Shallow Soil".

Geotechnical strength and stiffness parameters, bearing capacity parameters for shallow and pile foundations are presented in Section 7.3, 7.8.1 & 7.8.2, respectively.

Based on the sandy material, a design CBR value of 12% can be considered.

Based on the measured pH, chloride, sulphate and resistivity values, the soil exposure classification for both concrete and steel is 'non-aggressive'.

The ASS field screening tests indicate that the presence of AASS and PASS at the tested locations of the site is less likely.

Temporary excavation up to 1 m depth can be conducted with a maximum dry slope angle of 1V: 2H. Cut and fill batters above groundwater table will be generally stable at 1V: 2H. Intermediate benches have to be created if excavation is deeper than 1m.

The recommended measure for the disposal of stormwater is onsite through soakwells or through to the basement stormwater management network. The volume of expected stormwater is to be estimated by a suitably qualified Civil Engineering professional.

We recommend undertaking an additional site investigation that may comprise a series of borehole drilling which will assist detail design of soldier pile retention wall for basements.

1.0 INTRODUCTION

Dem (the client) engaged Local Geotechnics (LG) to undertake a geotechnical site investigation for a proposed multistorey building development at 469 & 471 Canning Highway, Como, WA.

It is anticipated that the site investigation work will assist developing a concept design of a 2 level basement carparks over which two 10-12 storey residential tower apartments will be constructed. Further geotechnical (detail) investigation for detailed design stage might be taken place prior to the construction.

The site location map is shown in Figure 1.

Figure 1. Site location map (source: Landgate Maps)

A geotechnical site investigation, that comprises onsite underground services check, hand auger test holes drilling, Perth Sand Penetrometer tests and electric friction cone penetrometer tests, was undertaken on 28 February 2020 and 5 March 2020 to assess the prevailing subsurface conditions for the proposed development.

This report presents the factual data obtained during the field investigation and recommendations and discussions on site classification, subsurface conditions, bearing pressure, foundation type, backfill and estimated settlements.

2.0 PROPOSED DEVELOPMENT

The proposed development comprises multistorey building. The building may include a 2 level basement below ground and 10 to12 storey residential tower apartments above ground.

The below ground basements may be constructed using soldier pile retention system. The building is understood to be supported on pad and strip footings at lower level basement.

3.0 SCOPE AND OBJECTIVES

Following is the scope of work LG has undertaken to achieve the project objectives:

- Desktop review of geological survey maps, groundwater atlas and other publicly available information for the site.
- Identifying any underground services crossing the proposed field investigation locations by conducting "Dial-Before-You-Dig" search and engaging a service locating contractor.
- Preparation of a Job Safety and Environmental Analysis (JSEA) document for the geotechnical investigation and implementation of the JSEA during the fieldworks.
- Undertaking 3 Electric Friction Cone Penetrometer Tests (CPTs) to a target depth of 25 m. Two tests were undertaken with a piezocone to assess the pore pressure profile and depth to the groundwater table.
- Installation of one 25mm diameter standpipe piezometers at one CPT location. The piezometer was constructed to monitor the groundwater level until the construction.
- Drilling of 4 hand auger Test Holes (THs) across the proposed development site to a target depth of 3 m, refusal or hole collapse, whichever was encountered first.
- Conducting 4 Perth Sand Penetrometer (PSP) tests at the locations of THs, to a depth of 1.95 m from the ground surface.
- Conducting 1 Field Permeability Tests (FPT) across the proposed development site at a depth of 0.5 m below surface level.
- Undertaking laboratory testing of soil.
- Preparation of this geotechnical investigation report to include the following information relevant to the design development.
 - Factual data from the field testing.
 - Site classification (AS2870-2011) and remedial measures to improve this classification if required.
 - Sub-soil class (AS1170.4-2007), earthquake parameter.
 - Subsurface conditions in the significant foundation zone.
 - Recommendations on ground improvement.
 - Description of groundwater conditions.
 - Geotechnical design/strength parameters.
 - Site preparation recommendations (AS 3798-2007).

4.0 SITE CONDITIONS

4.1 Surface Condition

The site is located in a residential suburb of Como, WA and is approximately 6 km south of the Perth CBD.

The topography of the site was observed to be generally flat. Site elevation varies between 9.0 m AHD and 10.3 m AHD (near the intersection of Robert Street and Canning Highway). LG was advised that a heritage tree was located at the south-west corner of the site. A number of grown up trees were observed around the boundary of the site.

The site was vacant, covered with sand, grass and was accessible by 4WD vehicle and CPT rig.

The site photos taken during the field investigation are shown in Appendix D.

4.2 Site Geology

The 1:50,000 Geology Series Map, Fremantle Sheet, No. 2033 I and IV, issued by the Geological Survey of Western Australia, indicates that the site is underlain by Quaternary age Sand Deposit (S7) that is derived from Tamala Limestone.

The sand was described to be pale yellowish brown, medium to coarse grained, subangular, quartz, trace of feldspar, moderately sorted, of residual origin.

The Environmental Geological map also revealed that the site soil has high permeability, low corrosion potential, low to medium slope stability, low to medium bearing capacity.

An extracted site geological map is shown in Figure 2.

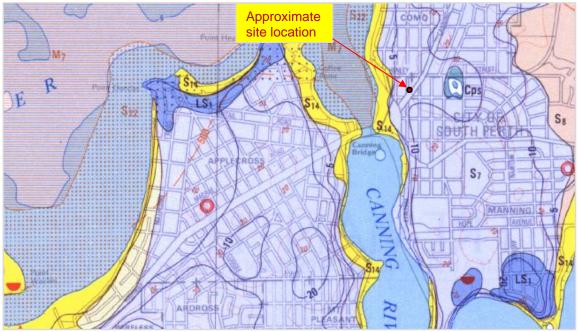
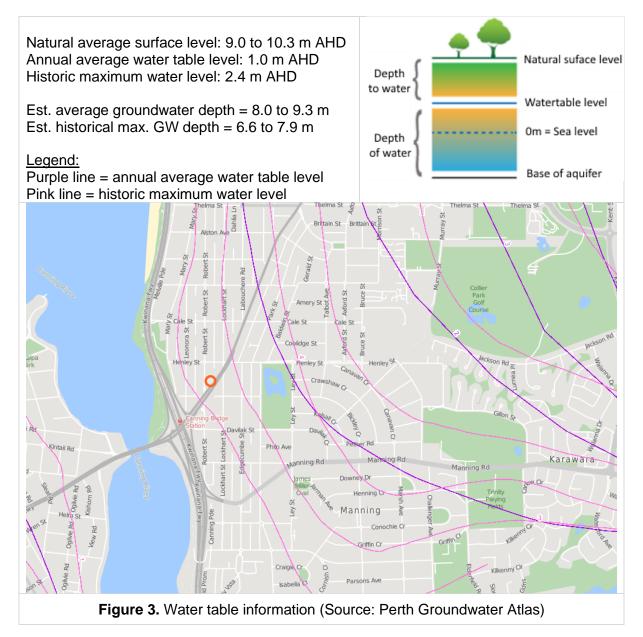
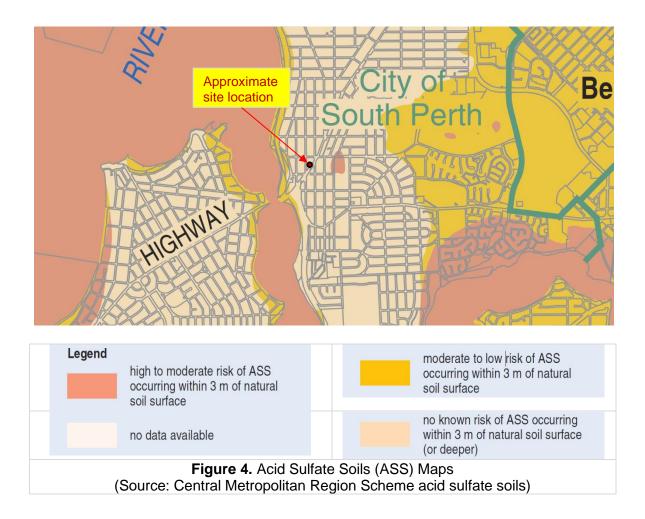



Figure 2. Extracted Geological Map (Ref. 1:50,000 Geology Series Fremantle sheet)

4.3 Groundwater Information


A review of the 'Perth Ground Water Atlas' of the Department of Water was carried out for this site. 'Perth Ground Water Atlas' indicated that the site natural ground surface elevation varied between 9.0 and 10.3 m AHD, annual average water table of 1 m AHD and historical maximum water table of 2.4 m AHD as per May 2003 data.

4.4 Acid Sulfate Soils (ASS) Review

Acid sulfate soils (ASS) maps 1:50 000 "Central Metropolitan Region Scheme acid sulfate soils" of Department of Environment and Conservation, WA revealed that site is in "no known risk of ASS occurring within 3 m of natural surface level (or deeper)".

5.0 FIELD INVESTIGATION

5.1 General

The geotechnical site investigation was undertaken on 28 February and 5 March 2020 in the full-time presence of a geotechnical engineer from LG. The geotechnical site investigation comprised 3 CPT tests (CPTu1, CPT2, and CPTu3), 4 Hand Auger Test Holes (TH1 to TH4), 4 Perth Sand Penetrometer tests (PSP1 to PSP4) and 1 Field Permeability Test (FPT1).

Summary of the tests undertaken onsite is shown in Table 1 and test location plan is shown in Appendix A.

Table 1. Summary of Field Tests

Test ID	Test Type	Northing (m, GDA94)	Easting (m, GDA94)	RL * (m, AHD)	Groundwater Depth (m)	Termination Depth (m)
CPTu1	Cone	6 458 241	392 176	9.02	7.70	18.28 (refusal)
CPT2	Penetrometer Test	6 458 226	392 151	9.55	-	25.46
CPTu3	1000	6 458 204	392 143	9.19	7.80	25.48
TH1 & PSP1		6 458 247	392 175	-	NE	3.0
TH2 & PSP2	Hand Auger	6 458 236	392 151	-	NE	3.0
TH3 & PSP3	Hole & PSP Test	6 458 226	392 154	-	NE	3.0
TH4 & PSP4		6 458 204	392 144	-	NE	3.0
FPT1	Field Permeability Tests	6 458 236	392 151	-	NE	0.3

Note: NE = Not Encountered. * RL of the test locations were not surveyed, however, CPT test location RLs were recorded from the rig's DGPS.

5.2 Test Hole Drilling

Four Test Holes (TH1 – TH4) were drilled across the site by using a hand auger. During test hole drilling, the spoil was stockpiled adjacent to the test location. The subsurface profiles exposed in the test holes were logged in accordance with AS1726 and were photographed to provide a visual record of subsurface conditions encountered. Following these activities, each test location was progressively backfilled in the reverse order of drilling works. During backfilling, test hole was compacted by a tamping rod.

Summary of the THs is shown in Table 1. Logs and photographs of the THs are presented in Appendix B and Appendix D, respectively.

5.3 Perth Sand Penetrometer Test

Four Perth Sand Penetrometer tests (PSP1 – PSP4) were conducted adjacent to each TH in accordance with AS 1289.6.3.3-1997. PSP test data were used to estimate the field density on the basis of correlations presented in Standard Australia HB 160-2006. All PSPs were terminated at 1.95 m below ground level. PSP test data are presented in Appendix B together with the TH logs.

It is observed from the PSP tests data (Table 2) that the site was in loose to very dense condition.

PSP Location	PSP 1	PSP 2	PSP 3	PSP 4
Depth (mm)	Numb	per of Blows/300mm	n (Density Classifica	ation)
0 – 150	Seating	Seating	Seating	Seating
150 – 450	4 (L)	7 (MD)	4 (L)	4 (L)
450 – 750	6 (MD)	11 (D)	10 (D)	4 (L)
750 – 1050	9 (D)	12 (D)	11 (D)	8 (D)

Table 2. Summary of PSP test data

Project: LG0502020GI_Rev0 Geotechnical Investigation Site: 469 & 471 Canning Highway, Como, WA Client: Dem

PSP Location	PSP 1	PSP 2	PSP 3	PSP 4
Depth (mm)	Num	ber of Blows/300mm	n (Density Classifie	cation)
1050 - 1350	8 (D)	8 (D)	10 (D)	8 (D)
1350 – 1650	8 (D)	11 (D)	14 (D)	12 (D)
1650 – 1950	12 (D)	16 (VD)	18 (VD)	16 (VD)
Very Loose (VL) ≤ 2 ; Loose (L) 2 – 6; Medium Dense (MD) 6 – 8; Dense (D) 8 – 15; Very Dense (VD) > 15; R = Refusal				

5.4 Electric Friction Cone Penetrometer Test

The Electric Friction Cone Penetrometer Test (CPT) was undertaken by CPT West using a 22 tonne truck rig. The investigation was carried out in accordance with AS 1289.6.5.1-1999.

The CPT test generally interprets profile of soil, type, subsurface strength and stiffness parameters along the probing depth in accordance with Robertson et. al. (1986).

The results of the test are presented in Appendix C as plots of Cone Tip Resistance (qc), Sleeve Friction (fs), Friction Ratio (Rf = $fs/qc \times 100\%$) versus depth.

CPTu1 was met refusal at depth 18.28 m due to high tip resistance (over 90 MPa). The remaining 2 CPTs reached target depth of 25m (CPT2 to 25.46 m and CPTU3 to 25.48 m). After each probing, the probe hole was dipped by a weighted measuring tape with the intention to directly measure the depth to the groundwater table. Groundwater depth was recorded at between 7.7 m and 7.8 m.

5.5 Standpipe Piezometer Installation

One CPT probe, CPTu1, was converted into a standpipe piezometer by installing a 25 mm diameter perforated PVC pipe to a depth of 11.3 m from the existing ground level. Water depth measured post installation was 8.6 m.

5.6 *Permeability Test*

One field permeability test was conducted as per ASTM D5126 – 90 by using a Guelph Permeameter.

Guelph Permeameter is a constant head device that operates on the Mariotte siphon principle. The method involves measuring the steady-state rate of water recharge into unsaturated soil from a cylindrical well hole, in which a constant head of water is maintained.

Approximate test location (FPT1) is shown in Appendix A.

The results and the interpretation of the testing are presented in Appendix B and summarised in Table 3.

Table 3. Summai	y of Permeability	Test Results
-----------------	-------------------	--------------

Test ID	Soil Description	Depth bgl* (m)	Estimated Permeability, k (m/day)
FPT 1	Sand (SP)	0.50	5.8

* bgl = Below Ground Level

The summary of permeability tests is:

- Permeability tests were undertaken within the top 500 mm depth.
- The soil profile encountered onsite and in test holes was generally sand.
- According to AS/NZS 1547-2012, sand material is described to have 'Soil Category 1' with an indicative permeability greater than 3 m/day.
- Coefficient of permeability is 5.8 m/day (or 6.7 x 10⁻⁵ m/s); Ref. Test Certificate at Appendix B.

6.0 LABORATORY TESTING

6.1 General

Laboratory testing was undertaken by a NATA accredited laboratory. The test standard applicable to each test is recorded on the laboratory testing certificates/reports. The scheduled laboratory testing included:

- 1 x Particle Size Distribution test (PSD, from 75 mm to 75 micron, AS1289.3.6.1)
- 20 x pH and PH_{FOX}, Acid Sulfate Soils (ASS) screening test
- 2 x Soil Aggressivity Test (pH, EC, SO₄, Cl).

As clayey soils were not encountered during the site investigation, no Atterberg Limits test was undertaken.

6.2 Geotechnical Laboratory Test Results

The geotechnical laboratory test results are summarised in Table 4. The laboratory test certificates/reports are included in Appendix E.

Table 4. Summary of Geotechnical Laboratory Test Results

Test Parameters	Sample ID: TH1 (1.5 – 3.0 m)
	Particle Size Distribution
Gravel (%)	0
Sand (%)	98
Fines < 75µm (%)	2

Particle Size Distribution testing was undertaken in accordance with Australian Standard, AS 1289.3.6.1. The soil matrix tested comprises approximately 0% gravel, 98% sand and 2% fines. According to AS1726-1993, the samples tested can be classified as Poorly Graded SAND (SP).

6.3 Acid Sulfate Soils (ASS) Test Results

The laboratory ASS test results are summarised in Table 5. The laboratory test certificates/reports are included in Appendix E.

Sample ID	рН _F	рН _{FOX}	ΔрΗ	Reaction rate	SPOCAS %S	NAAS/AASS/ PASS
TH1_0.25 m	6.1	4.5	1.6	L	-	NASS
TH1_0.75 m	6.3	4.7	1.6	L	-	NASS
TH1_1.25 m	6.6	5.0	1.6	L	-	NASS
TH1_2.0 m	6.8	5.2	1.6	L	-	NASS
TH1_3.0 m	7.0	5.0	2.0	L	-	NASS
TH2_0.0 m	7.9	5.6	2.3	М	-	NASS
TH2_0.5 m	7.5	5.6	1.9	М	-	NASS
TH2_1.0 m	8.3	5.7	2.6	М	-	NASS
TH2_1.75 m	7.6	5.5	2.1	М	-	NASS
TH2_2.5 m	6.8	5.3	1.5	L	-	NASS
TH3_0.25 m	7.1	4.5	2.6	М	-	NASS
TH3_0.75 m	7.2	5.1	2.1	М	-	NASS
TH3_1.5 m	7.1	4.8	2.3	М	-	NASS
TH3_2.0 m	7.0	5.0	2.0	L	-	NASS
TH3_3.0 m	6.9	5.0	1.9	L	-	NASS
TH4_0.0 m	7.0	4.8	2.2	L	-	NASS
TH4_0.50 m	7.1	5.1	2.0	L	-	NASS
TH4_1.25 m	7.2	5.2	2.0	L	-	NASS
TH4_1.75 m	7.2	5.1	2.1	L	-	NASS
TH4_2.50 m	7.2	5.2	2.0	L	-	NASS

Table 5. Summary of Preliminary ASS Laboratory Test Results

Note: M = Moderate, L= Slight, NASS = Non-Acid Sulfate soils, AASS = Actual Acid Sulfate soils, PASS = Potential Acid Sulfate soils. S = Net Acidity excluding ANC (Sulfur units).

A total of 20 samples collected from the 4 THs were submitted to the laboratory for field pH_{F} and pH_{FOX} screening test. Interpretation of results are presented below:

- pH_F results ranged between 6.1 and 8.3.
- pH_{FOX} results ranged between 4.5 and 5.7.
- None of the samples were assessed to have both pH_F and pH_{FOX} < 4.0, which suggest the samples tested are non-AASS.
- All samples were assessed to have both pH_F and pH_{FOX} > 4.0, which suggest non-ASS (=NASS).
- None of the samples have $pH_F > 4.0$ and $pH_{FOX} < 4.0$, which suggest the sample tested is non-PASS.
- The difference between the two measurements, ΔpH (= pH_F pH_{FOX}), varies between 1.5 and 2.6. pH_{FOX} value at least one unit below pH_F may indicate PASS but depends on the initial and resultant pH. However, one unit change from higher end pH, e.g., 6.1 to 8.3 will not indicate PASS.
- pH_{FOX} value >5 indicates little net acidifying ability and neutral to alkaline pH.
- Slight (L) to Moderate (M) reaction of soil with peroxide is a less likely indication. Moderate (M) reaction may be caused due to the presence of organic matter and other clayey soil constituents.

6.3.1 Concluding Remarks on ASS Status

The foregoing discussions on the ASS field screening tests indicate that the presence of AASS and PASS at the tested locations of the site is less likely.

6.4 Soil Aggressivity Test Results

The aggressivity (chemical) test results are summarised in Table 6. The laboratory test certificates are included in Appendix E.

Chemical tests were undertaken to establish the corrosivity and aggressiveness of the soil at the site.

Exposure classification stated in Tables 6.4.2 (C) and 6.5.2 (C) of AS 2159-2009 'Piling - design and installation' for soils above and below groundwater table were used to assess the soils' aggressivity. These exposure classifications are applicable to all buried concrete and steel structures.

Table 6. Soil Aggressivity Assessment for the Soil Materials

Sample ID	pН	Sulphate in Soil (ppm)	Chloride in Soil (ppm)		Resistivity, ohm.cm	· ·	ssification for il Conditions B*]
				Unini.cm	Concrete	Steel	
TH1 (0.75m)	6.4	<100	<10	166,600	Non-aggressive	Non-aggressive	
TH4 (2.5m)	7.0	<100	<10	333,300	Non-aggressive	Non-aggressive	

**Soil conditions B = low permeability soils or all soils above groundwater

Based on the measured pH, chloride, sulphate and resistivity values, the soil exposure classification for both concrete and steel is '**non-aggressive**'.

7.0 ENGINEERING CONSIDERATIONS AND RECOMMENDATIONS

7.1 Inferred Subsurface Conditions

Subsurface conditions inferred from the site investigation can be described as follows:

- **Topsoil, SAND (SP)** fine to medium grained, brown, grey, dark grey-brown, dry to slightly moist, loose, with grass, trace organics, extended from surface to a depth of around 0.2 m, overlying,
- **SAND (SP)** fine to medium grained, grey, light grey (white), brown, yellow and light yellow, dry to slightly moist, extended to the maximum investigated depth 25.48 m. In this unit, following generalised densities were assessed:
 - 0.2 1 m: loose,
 - \circ 1 4.7 m: medium dense,
 - \circ 4.7 25.5 m: dense to very dense.

7.2 Groundwater and Dewatering

Groundwater depth recorded on 5 March 2020 during CPT testing is shown in Table 7.

Test Location	Depth (m bgl)	RL (m AHD)
	Date: 5/03/20	(approx.)
CPTu1	7.70	1.32
CPTu3	7.80	1.39

 Table 7. Summary of Groundwater Depth

Based on the recorded data, average groundwater depth can be considered as 1.4 m RL.

Ground surface elevation of the site varies between 9.0 m AHD and 10.3 m AHD and historical highest groundwater table was at 2.4 m AHD as per the Perth Groundwater Atlas. That indicates that estimated highest groundwater depth varies between 6.6 m and 7.9 m below the ground surface.

Lower basement floor level of the proposed building was unknown during preparation of this report. We recommend that a sand cover of 1 m above the Ground Water Table (GWT) should be left in the design process to facilitate a clean construction environment, a stable raft and pad foundation construction.

If the basement Bulk Excavation Level (BEL) leaves a sand cover of less than 1m above the GWT, dewatering will be required to facilitate clean excavation, compaction for foundation bases and subsequent construction.

7.3 Geotechnical Design Parameters

Geotechnical design parameters for the site were inferred on the basis of the site investigation data and are presented in Table 8 below.

Dopth	Lover		Soil	k	k (m/s)			
Depth (m, bgl)	Layer Description	Description $d!$ Cu d'		ν'			k₅ (MN/m³)	
0 – 1	Sand (SP) Loose	28	-	18	-	0.3	-	6.7 x 10 ⁻⁵
1 – 4.7	Sand (SP) Medium dense	34	-	20	25	0.3	5	6.7 x 10 ⁻⁵
4.7 – 25.5	Sand (SP) Dense to very dense	38	-	20	90	0.3	20	6.7 x 10 ⁻⁵

Table 8. Inferred Geotechnical Design Parameters for the Current Site Conditions

Notes: φ' = Effective friction angle, c_u = Undrained shear strength, γ = Bulk density, E' = Drained Elastic Modulus, v' = Poisson's Ratio, k_s = Modulus of vertical subgrade reaction, k = Coefficient of Permeability.

7.4 Geotechnical Design Parameters for Retaining Structures

Earth pressure parameters for the design of retaining structures are presented in Table 9. These parameters should be considered as preliminary.

Material type	γ	φ'	K₀	Wall friction, $\delta = 0^{\circ}$			
Material type	(kN/m³)	(degrees),		Ka	Kp		
Loose to medium dense in situ sand	17	30	0.50	0.33	3.00		
Dense Sand or Compacted Sand Fill	18	34	0.44	0.28	3.54		

Table 9. Geotechnical Design Parameters for Retaining Structures

Notes: γ = Bulk unit weight, ϕ '= Effective friction angle, K₀ = Coefficient of earth pressure at rest, K_a = Coefficient of drained active earth pressure, K_p = Coefficient of drained passive earth pressure.

7.5 Site Classification

Based on the subsurface and surrounding site conditions observed during the field investigation, the site was classified as "**Class P**" in accordance with AS 2870-2011 "Residential Slabs and Footings".

The site classification 'Class P' was based on the following basis:

- 'Loose sand' of the site within the surficial 1 m depth is considered to be an unstable foundation ground.
- Excessive foundation settlement may occur due to loading on the loose and compressible foundation ground.
- Presence of potential demolition debris from the existing structures and the land uses.

Site Classification Upgrade

Provided the earthworks and compaction are completed as per the recommendations presented in Section 7.7.3, the site can be reclassified to "**Class A**" in accordance with the definitions provided in the Australian Standard AS 2870 -2011 "Residential Slabs and Footings - Construction".

Class "A" sites will experience slight or no ground surface movement due to soil wetting and drying cycles associated with seasonal changes in available moisture.

7.6 Earthquake Design Factor

Australian Standard AS1170.4-2007 Structural design actions Part 4 "Earthquake actions in Australia" is recommended for earthquake consideration. AS1170.4-2007 outlines the design criteria required for a structure in consideration of the risk of being subjected to earthquake loads. Earthquake design factors are summarised in Table 10.

Table 10. Earthquake Design Factors

Factor/Class	Value/Name	Ref. AS1170.4- 2007
Hazard Factor (z) (Peak Ground Acceleration, g for 500 years return period)	0.09	Figure3.2 (D)
Site sub-soil class	Class C _e – Shallow Soil	Section 4 Clause 4.1

7.7 Earthworks

7.7.1 Suitability of Excavated Materials for use as Fill

In situ sands are considered to be suitable for reuse as structural fill material.

7.7.2 Structural Fill

Suitable materials for structural fill shall be a clean sand fill. The fill material at compaction should comprise sand that is free from oversized material (i.e. material > 75 mm in any dimension), contains less than 5% fines (material passing 0.075 mm sieve), and free from foreign material, organic material or other deleterious material. It should also be free from industrial waste, solid waste, or construction and demolition debris.

7.7.3 Site Preparation

Earthworks should be carried out in general accordance with the Australian Standard AS 3798-2007 "Guidelines on Earthworks for Commercial and Residential Developments". The following are general guidelines to be followed during preparation of the site areas within the proposed development footprints:

- Remove and grub all root masses and tree stumps, if any.
- Strip top soil, approximately 200 mm, and any uncontrolled fill, cobbles and boulders, paved materials, demolition debris, green waste, weeds/grass, organic matter or other deleterious material, if any and stockpile them separately.

Considering Basement Construction:

- Specialist D&C piling contractor will construct the piled retention system, surrounding the building area.
- Undertake staged excavation, each stage approximately 1.5 m deep depending on site subsurface and surrounding conditions, and then construct infill shotcrete wall. Advice from a geotechnical engineer should be sought to determine the lift depth.
- Excavate up to the Bulk Excavation Level (BEL) and construct shotcrete wall up to the lower basement floor level.
- Excavate locally up to the required depths, for strip and pad/raft foundations, at BEL, allowing a maximum dry slope angle of 1V: 1H for less than 1m deep cut. Allow 1V:1.5H for up to 2 m deep cut.
- Compact the exposed strip and pad foundations' bases, with required number of passes of a suitable hand-held compactor to a dense state, i.e., to 95% of MMDD in accordance with AS1289.5.2.1. Add moisture as needed during the compaction. Compaction must not be attempted if the exposed ground is saturated or groundwater is at excavation level.

- Care will need to be taken when compacting in the vicinity of existing structures to avoid damage from excessive vibrations.
- A dilapidation survey monitoring plan is recommended to prepare if neighbourhood properties (building, garage, road, electrical poles etc) are located within 2.5 m from the basement retention wall.

It is recommended that a geotechnical engineer supervises the site activities to ensure that all demolition debris have been adequately removed from the area and that site is safely excavated and adequately backfilled and compacted as per the procedures described above.

7.8 Bearing Capacity

7.8.1 Strip and Pad Foundation

The proposed building structure is proposed to be supported on conventional pad, strip and raft footings founded at the Bulk Excavation Level (BEL) of the basement floor. As discussed in Section 7.7.3, all footing bases must be compacted to dense state, to a minimum depth of 1 m below the footing excavation level.

It should be ensured that footings are founded on compacted sand layer. In such conditions, footings may be designed on the basis of the allowable bearing pressures as given in Table 11.

Founding Layer Description	Footing Type	Allowable Bearing Pressure (kPa)	Approximate Settlement (mm)
Dense Sand	Pad and Raft	450	20
(SP/SM)	Strip	300	15

Table 11. Allowable Bearing Pressures for Basement Level Spread & Strip Footings

Considering the proposed depth of BEL, the stress relief will be partially balanced by the total load applied by the proposed structure. Long term settlements are therefore anticipated to be negligible. Localised settlements will take place directly beneath individual footing as a result of recompression of the founding stratum during the construction of the proposed building structure. It is anticipated that the majority of the settlements will take place relatively quickly upon the application of the structural load.

Total settlements were estimated to be approximately 0.5% of the footing width for pad footings and approximately 1.0% of the footing width for strip footings. Differential settlements between adjacent isolated footings subjected to similar loadings are anticipated to be approximately half of the total settlement value. It should be noted that where isolated footings are subject to significantly different loadings, differential settlement between these footings may exceed acceptable limits. Settlements should be checked in detail where such instances arise.

We recommend a qualified engineer be on site to inspect the footing excavations and base ground preparation prior to the placement of concrete to ensure that the founding conditions are consistent with the design recommendations. If the design recommendations are not met it may be necessary to either increase the founding depth of the footings or alternatively increase the plan area of the footings.

7.8.2 Pile Foundation

The geotechnical strength reduction factor, ϕ_g , can be considered as 0.50 in accordance with AS2159. Geotechnical parameters for pile foundation design are preliminary estimated for the encountered subsoil materials and presented in Table 12 below.

Foundation Material	End Bearing Capacity, f _{bu} (kPa)	Skin Friction, f _{su} (kPa)		
Sand (SP) loose to medium dense	1,000	25		
Sand (SP) Dense to very dense	5,000	90		

7.9 California Bearing Ratio (CBR) for Roads & Carpark's Subgrade

The subgrade of the proposed carpark, internal roads, hardstand and driveway areas shall be prepared as per the general guidelines set out in Section 7.7.3 and compacted to a density ratio of 98% MMDD.

Based on the sandy material, a design CBR value of 12% can be considered for this project.

7.10 Excavatability

The loose to dense state of the in-situ sandy soils suggests that the materials should be excavatable with a standard earthmoving equipment (e.g., 20 to 30 tonne excavator).

7.11 Cut and Fill Batters

Temporary excavation up to 1 m depth can be conducted with a maximum dry slope angle of 1V: 2H. Cut and fill batters above groundwater table will generally be stable at 1V: 2H. Intermediate benches have to be created if excavation is deeper than 1m. However, batters constructed at 1V: 3H will enable re-establishment of vegetation and be less prone to damage from wetting, drying and erosion.

7.12 Stormwater Drainage

The site is underlain by the Sand. According to AS/NZS 1547-2012, sandy material is described to have 'Soil Category 1'. Groundwater table was at around 1.4 m AHD. Coefficient of permeability was estimated to be 5.8 m/day. Institute of Municipal Engineering Australia WA Division (1998) recommended that finished site levels be maintained at least 1.2 m above the annual average maximum groundwater level.

The recommended measure for the disposal of stormwater is onsite through soakwells or through to the basement stormwater management network. The volume of expected stormwater (worst case scenario) is to be estimated and designed by a suitably qualified Civil Engineering professional considering the above-mentioned soil category and infiltration rate.

7.13 Additional Site Investigation Recommendation

We recommend undertaking an additional site investigation which may comprise a series of borehole drilling that will assist detail design of soldier pile retention wall for the basements.

8.0 LIMITATION OF USE

The ground is a product of continuing natural and man-made processes and therefore exhibits characteristics and properties which vary from place to place and can change with time. Geotechnical site investigation involves gathering and assimilating limited facts about these characteristics and properties in order to better understand or predict the behaviour of the ground at a particular site under certain conditions.

This site investigation has been carried out by inspection, using a limited amount of CPT, pit excavation, sampling, testing or other means of investigation. Achieving a full coverage of the site to ensure all variations is not practical and is seldom done due to cost constraints as well as the impracticality.

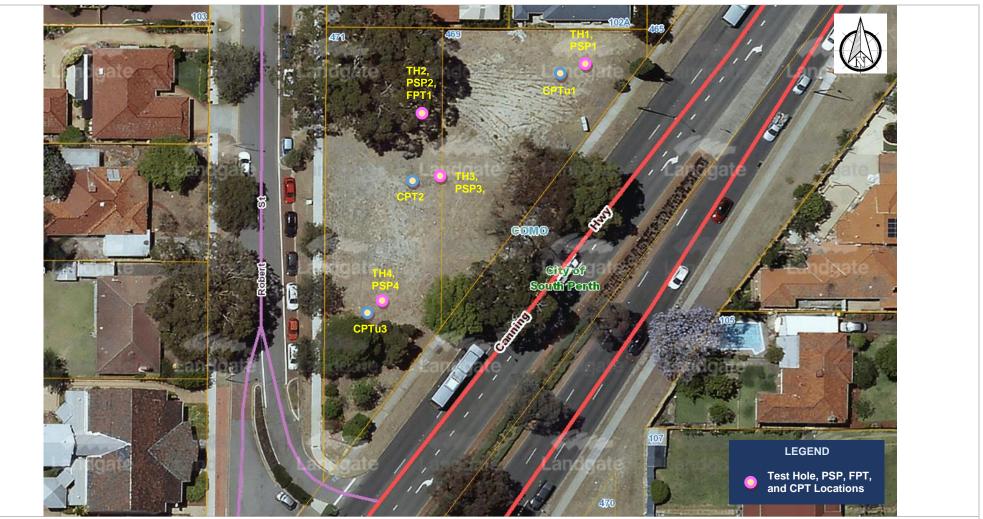
It should be noted that the subsurface conditions encountered by the limited number of field tests as part of this geotechnical site investigation represents the ground conditions at the locations where the samples were taken and where tests have been undertaken and as such are an extremely small proportion of the site to be developed.

The facts reported in this document are directly relevant only to the ground at the place where, and time when, the investigation was carried out and are believed to be reported accurately. Given the limited number of field and laboratory testing carried out with respect to the overall site area, variations between investigation locations are likely and ground conditions different to those presented in this report may be present within the subject site area. The risk associated with this variability and the impact it will have on the proposed development should be carefully considered.

The level of geotechnical investigation that has been completed to date is considered appropriate for the project objectives. If the above mentioned client, its subcontractors, agents or employees use this factual information for any other purpose for which it was not intended, then the client, its subcontractors, agents or employees does so at their own risk and Local Geotechnics will not and cannot accept liability in respect of the advice, whether under law of contract, tort or otherwise.

Any interpretation or recommendation given in this report is based on judgement and experience and not on greater knowledge of the facts reported. Local Geotechnics does not represent that the information or interpretation contained in this report addresses completely the existing features, subsurface conditions or ground behaviour at the subject site.

9.0 **REFERENCES**


- Australian Standard AS1170.4-2007, "Earthquake Actions in Australia".
- Australian/New Zealand Standard AS/NZS 1547-2012, "On-site Domestic Wastewater Management".
- Australian Standard AS 1726-1993 "Geotechnical Site Investigations".
- Australian Standard AS 2870-2011, "Residential Slabs and Footings".
- Australian Standard AS 3798-2007, "Guidelines on Earthworks for Commercial and Residential Developments".
- Bowles JE (2013), Foundation Analysis and Design, 5th edition, McGraw Hill London
- CSIRO publication 2003 "Guide to Home Owners on Foundation Maintenance and Footing Performance" in Building Technology File Number 18.
- Geological Survey of Western Australia (1986). 1:50,000 Environmental Geology Series Map, Fremantle Sheet No 2033 I and IV.
- Institute of Municipal Engineering Australia, WA Division Inc (1998), Local Government Guidelines for Subdivisional Development
- Perth Groundwater Atlas online version, https://maps.water.wa.gov.au/#/webmap/gwm, Department of Environment, WA (browsed 5 March 2020).
- Robertson. P.K., Campanella, R.G., Gillespie, D., and Greig, J., (1986), "Use of Piezometer Cone data", In-Situ'86 Use of In-situ testing in Geotechnical Engineering, GSP 6, ASCE, Reston, VA, Specialty Publication, pp 1263-1280.
- Standards Australia, Hand Book HB 160-2006 "Soil Testing".

SITE SKETCH

SIDCAL GEOTECHNICS

Site Sketch : Test Hole, PSP, FPT, and CPT Locations

Reference	LG0502020GI	EUCAL GEOTECHNICS
Client	Dem	
Project	Geotechnical Investigation Location: 469 & 471 Canning Highway, Como WA	Unit 12, 8 Production Road Canning Vale WA 6155 PO Box 5050, Canning Vale South WA 6155 Phone: 08 9457 3517 E-mail: admin@localgeotechnics.com.au Web: www.localgeotechnics.com.au

APPENDIX B

TEST HOLE LOGS PERMEABILITY & PSP TEST CERTIFICATE

S LOCAL GEOTECHNICS

ABN:61 737 984 867 12/8 Production Road, Canning Vale WA 6155 PO Box 5050 Canning Vale South WA 6155 admin@localgeotechnics.com.au

									admin@localgeotechnics.co				
Refere					5020)20G	I	Test Pit/BH No .:	01				
Client				: Dem				Date Excavated:	28-Feb-2020				
Projec							I Investigation	Date completed:	28-Feb-2020				
.ocati							nning Highway, Como WA	Equipment Type:	Hand Auger				
GPS 2	Zone	50	:	Nort	hing:	6 458	3 247 Easting: 392 175	Water Table:	Not Encountered				
			sistance			Symbol							
Depth (m)	RL (m)	Method	Penetration resistance	Sampling Type	Graphic Log	Classification Symbol	Description of Soil Strata	Additional observations	Perth Sand Penetrometer To (Blows/300mm) 0 5 10 15 20 25				
0.0		~	-			SP	TOPSOIL, SAND- fine to medium grained, brown,						
0.2							slightly moist, loose, with grass, organics SAND- fine to medium grained, light brown, slightly moist, loose						
1.0						SP	SAND- fine to medium grained, light yellow, slightly moist, dense		1-				
1.5							colour change to yellow at 1.5 m						
2.0									2				
3.0									3				
							Terminated at the target depth of 3.0 m						
4.0									4				
5.0													

Notes: Sampling Type: Method: Moisture: B - Bulk/Disturbed Sample, D - Dry HA - Hand Auger Logged : AB UD - Undisturbed Sample E - Excavator M - Moist Checked: AR BH - Backhoe Bucket W - Wet

ABN:61 737 984 867 12/8 Production Road, Canning Vale WA 6155 PO Box 5050 Canning Vale South WA 6155 admin@localgeotechnics.com.au

									admin@localgeotechnics.com.a
Refere Client				LG0 Den	5020 -	20G		Test Pit/BH No.: Date Excavated:	02 28-Feb-2020
Projec						nical	Investigation	Date completed:	28-Feb-2020
_ocati							nning Highway, Como WA	Equipment Type:	Hand Auger
GPS 2		50			hing:			Water Table:	Not Encountered
Depth (m)	RL (m)	Method	Penetration resistance	Sampling Type	Graphic Log	Classification Symbol	Description of Soil Strata	Additional observations	Perth Sand Penetrometer Test (Blows/300mm)
0.0 0.2						SP	TOPSOIL , SAND- fine to medium grained, brown-grey, slightly moist, loose, with grass,		
• • •						ert	organics		
0.8							SAND- fine to medium grained, light grey-brown, slightly moist, medium dense to dense		
1.0						SP	SAND- fine to medium grained, light yellow, slightly moist, dense		
1.5									
2.0							colour change to yellow at 1.5 m		
3.0									2
0.0							Terminated at the target depth of 3.0 m		3
4.0			1						
5.0									
otes: Sampli	ng Type	ə:					Method: Moisture:		
B - B	ulk/Dist	e: urbed San oed Samp					Memoral: Moisture: HA - Hand Auger D - Dry E - Excavator M - Moist		Logged : AB Checked: AR

BH - Backhoe Bucket

W - Wet

ABN:61 737 984 867 12/8 Production Road, Canning Vale WA 6155 PO Box 5050 Canning Vale South WA 6155 admin@localgeotechnics.com.au

eference	: LG05	02020G	l	Test Pit/BH No.:	03	
lient	: Dem			Date Excavated:	28-Feb-2020	
roject	: Geote	echnica	Investigation	Date completed:	28-Feb-2020	
ocation	: 469 &	471 Ca	nning Highway, Como WA	Equipment Type:	Hand Auger	
PS Zone 50	: Northi	ng: 6 458	226 Easting: 392 154	Water Table:	Not Encountered	
	e	ō				
	resistar pe	n Symb		Additional	Perth Sand Penetrometer	Tes
Depth (m) RL (m) Method	Penetration resistance Sampling Type	Graphic Log Classification Symbol	Description of Soil Strata	observations	(Blows/300mm)	
0.0 Depth (m)	San Pen	Clas Clas	TOPSOIL, SAND- fine to medium grained, dark			25
0.2			grey-brown, dry, loose, with grass, organics			
0.4		SP	SAND- fine to medium grained, grey, slightly moist, loose, with organics			
		SP	SAND- fine to medium grained, light grey, slightly	1		
			moist, dense			
0.8			colour change to light yellow at 0.8 m			
1.0						
2.0						
3.0					3	
			Terminated at the target depth of 3.0 m			
4.0					4	
5.0						
otes: Sampling Type:	· · ·	•	Method: Moisture:			
	nple,		HA - Hand Auger D - Dry		Logged : AB	

BH - Backhoe Bucket

W - Wet

ABN:61 737 984 867 12/8 Production Road, Canning Vale WA 6155 PO Box 5050 Canning Vale South WA 6155 admin@localgeotechnics.com.au

Reference: LG0502020GIClient: DemProject: Geotechnical InvestigationLocation: 469 & 471 Canning Highway, Como WAGPS Zone 50: Northing: 6 458 204Easting: 392 144				Test Pit/BH No.: Date Excavated: Date completed: Equipment Type: Water Table:	04 28-Feb-2020 28-Feb-2020 Hand Auger Not Encountered							
Depth (m) RL (m)	Method	Penetration resistance	Sampling Type	Graphic Log	Classification Symbol	Description of Soil Strata	Additional observations		ows/300mi	Penetrometer Test vs/300mm)		
						TOPSOIL, SAND- fine to medium grained, brown, slightly moist, loose, with grass, with organics SAND- fine to medium grained, grey, slightly moist, loose colour change to light grey at 0.4 m						
5.0 Dites: Sampling Typ B - Bulk/Dis UD - Undistur	turbed San					Method: Moisture: HA - Hand Auger D - Dry E - Excavator M - Moist		ر الم	jed :	AB		

BH - Backhoe Bucket

W - Wet

PERTH SAND PENETROMETER (PSP) TEST CERTIFICATES

(AS 1289.6.3.2)

Density Correlation - Table 6.4.6.2 HB 160-2006

Reference	LG0502020GI	Test ID	01 to 04
Client	Dem	Date Tested	28/02/2020
Project	Geotechnical Investigation	Tested by	M Seet
Site	469 & 471 Canning Highway, Como WA	Checked by	A Rahman

PSP No.	PS	P 1	PS	P 2	PS	Р 3	PS	Р4
Depth below ground level (mm)		Penetratio	n Resistan	ce - Blows	/300mm E	ensity Cla	ssification	
0 – 150	Sea	ting	Sea	ting	Sea	iting	Sea	ting
150 – 450	4	L	7	MD	4	L	4	L
450 – 750	6	MD	11	D	10	D	4	L
750 – 1050	9	D	12	D	11	D	8	D
1050 – 1350	8	D	8	D	10	D	8	D
1350 – 1650	8	D	11	D	14	D	12	D
1650 – 1950	12	D	16	VD	18	VD	16	VD

Remarks:

Density Correlation - Table 6.4.6.2 HB 160-2006

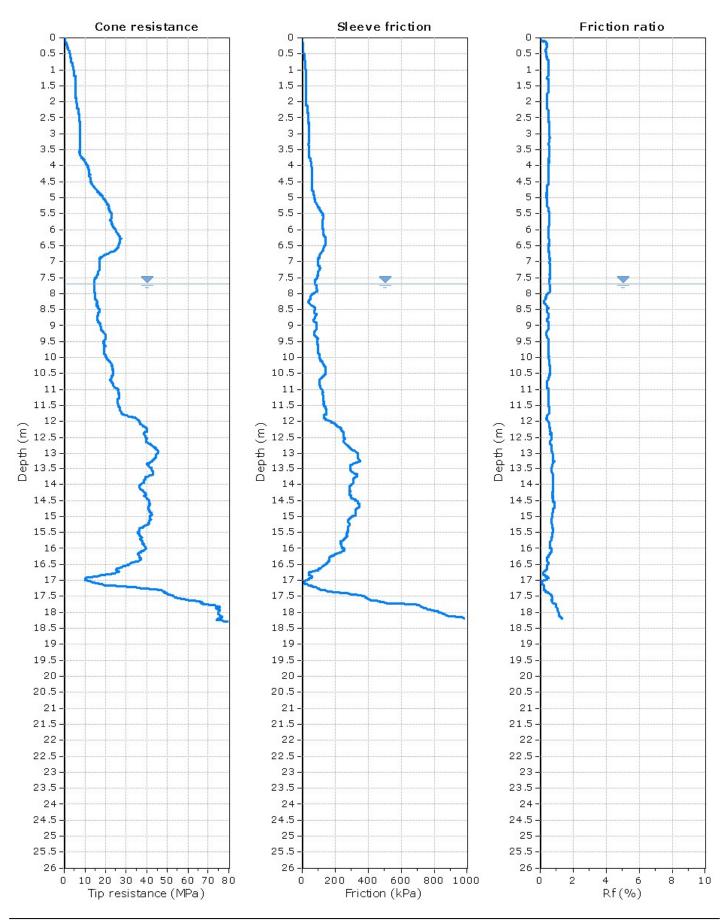
Very Loose (VL)	Loose (L)	Medium Dense (MD)	Dense (D)	Very Dense (VD)
≤ 2	2 – 6	6 – 8	8 – 15	> 15

GEOTECHNICS

INFILTRATION TEST CERTIFICATES (ASTM D 5126-90)

ABN: 61 737 984 867 PO Box 5050 Canning Vale South WA 6155 admin@localgeotechnics.com.au

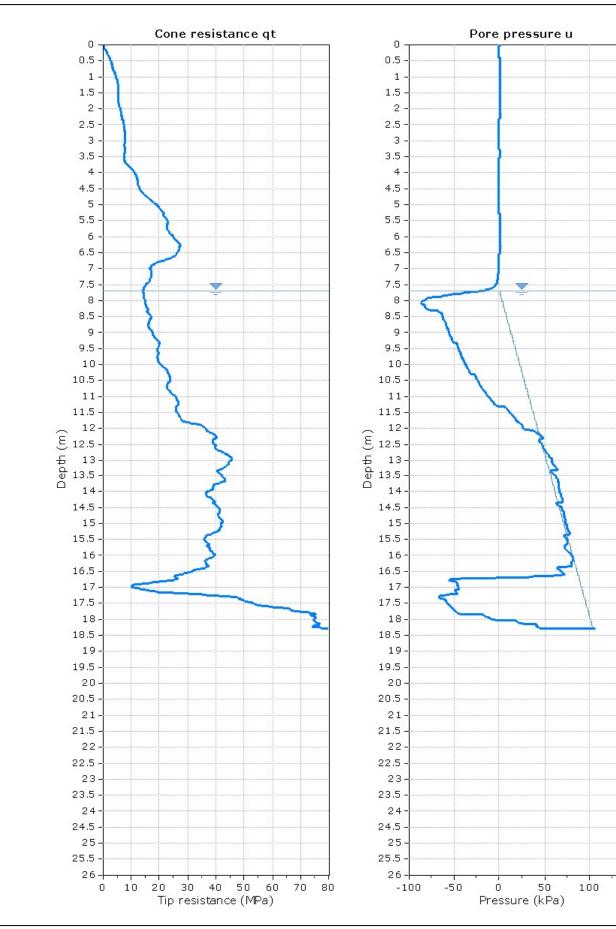
GEOTECHNICS	LG0502020GI	Test ID	FPT1
ent	Dem	Date Tested	28-Feb-20
oject	Geotechnial Investigation	Date Completed	28-Feb-20
cation	469 & 471 Canning Highway, Como WA	Instrument Type	Guelph Permeameter
sition	Northing: 6 458 236 Easting: 50 392 151	Tested by	A Bara
Rate of Water Level Change (cm/min)			
	0 0.5 1 1.5 2 Time (m) Test was conducted at a depth of 0.5 m from the existing Water Hydraulic conductivity K		3.5 4 m/sec m/day
	Signatory:	Date: <u>28/02/20</u> 2	20_


S LOCAL GEOTECHNICS

info@cptwest.com.au www.cptwest.com.au T: 0403 370 045

Project: 469 & 471 Canning Highway (Project No.: LG0502020GI) Location: Como

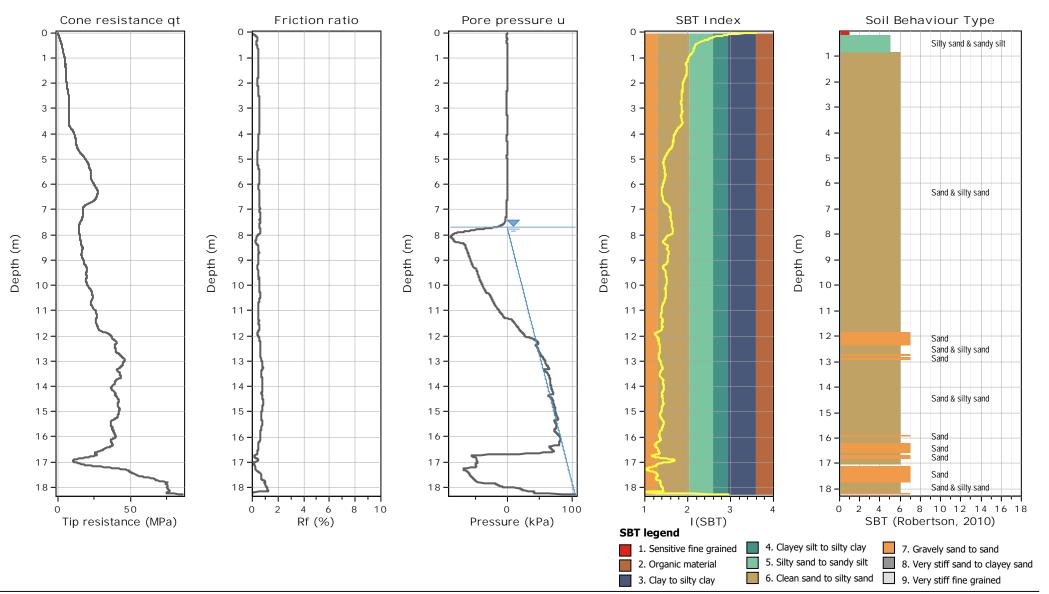
CPTu 1 Total depth: 18.28 m, Date: 5/03/2020 Surface Elevation: 9.02 m Coords: X:392176.39, Y:6458241.66 Cone Operator: Andrew


CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 6/03/2020, 9:45:55 AM Project file: C:\Users\CPTWest\Dropbox\projects\2018-2019\Local Geotech\018338_Como\018338\018338.cpt

info@cptwest.com.au www.cptwest.com.au T: 0403 370 045

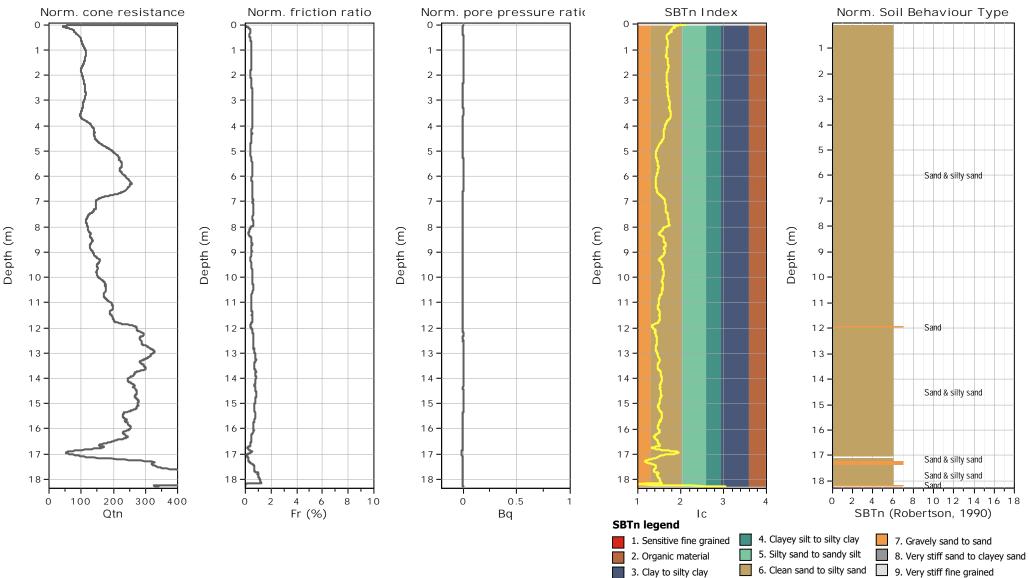
Project: 469 & 471 Canning Highway (Project No.: LG0502020GI) Location: Como

CPTu 1 Total depth: 18.28 m, Date: 5/03/2020 Surface Elevation: 9.02 m Coords: X:392176.39, Y:6458241.66 Cone Operator: Andrew



CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 6/03/2020, 9:45:55 AM Project file: C:\Users\CPTWest\Dropbox\projects\2018-2019\Local Geotech\018338_Como\018338\018338.cpt

150

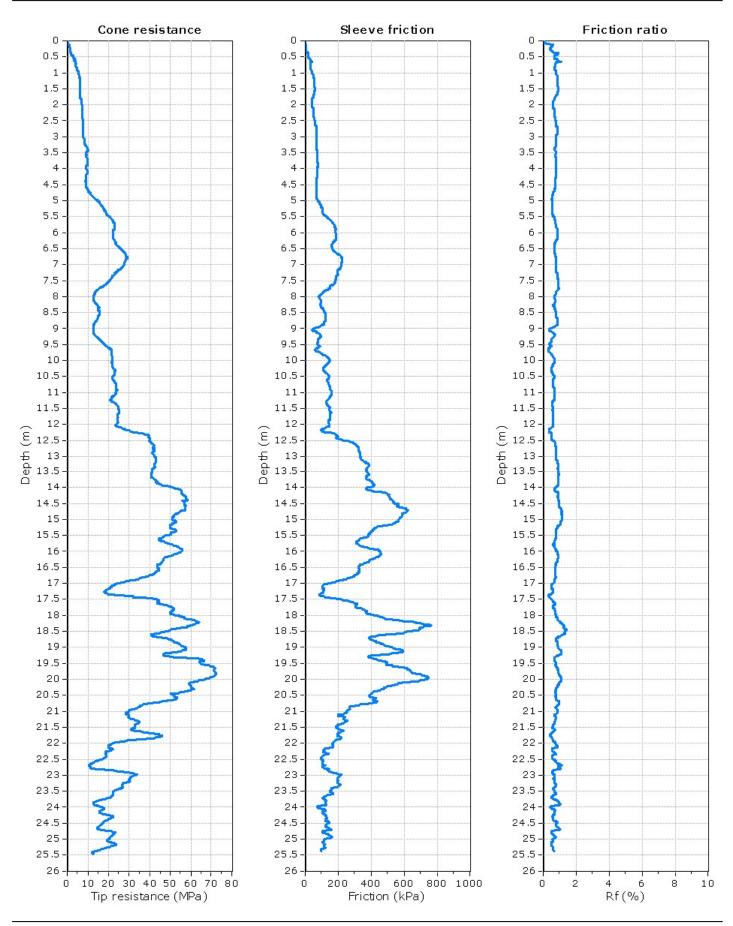

Project: Project No.: LG0502020G, Geotechnical Site Investigation Location: 469 & 471 Canning Highway, Como, WA

CPTu 1 Total depth: 18.28 m, Date: 05-Mar-20

Project:Project No.: LG0502020G, Geotechnical Site InvestigationLocation:469 & 471 Canning Highway, Como, WA

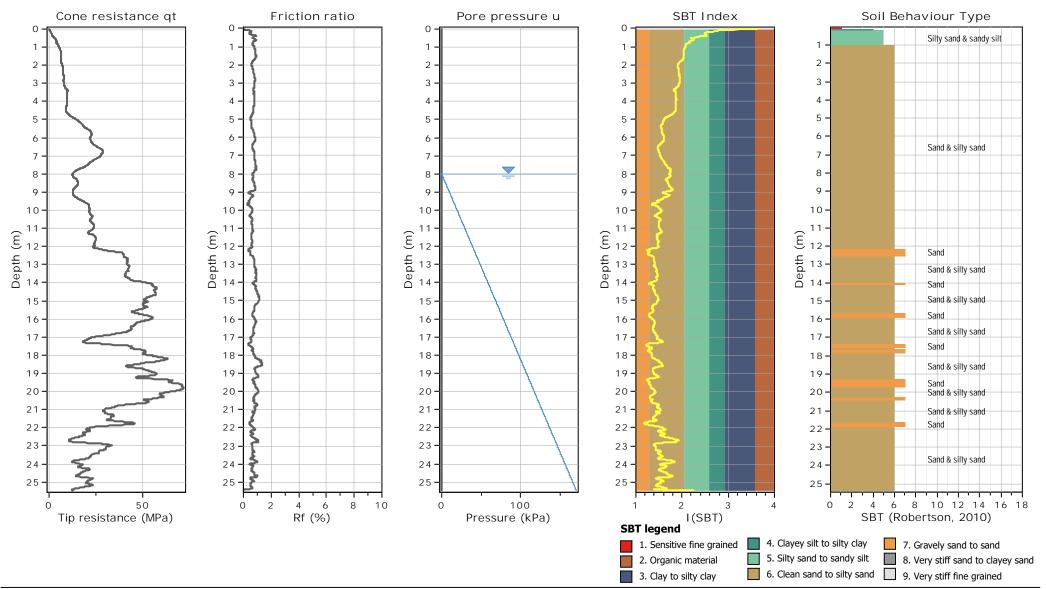
CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 10-Mar-20, 11:22:18 PM Project file: D:\My Document_D\LG\2020\202005 LG0502020GI_469 & 471 Canning Highway, Como WA\CPT\CPeT-IT_469 Canning Hwy.cpt

2


CPT: CPTu 1 Total depth: 18.28 m, Date: 05-Mar-20

info@cptwest.com.au www.cptwest.com.au T: 0403 370 045

Project: 469 & 471 Canning Highway (Project No.: LG0502020GI) Location: Como


CPT 2 Total depth: 25.46 m, Date: 5/03/2020 Surface Elevation: 9.55 m Coords: X:392151.08, Y:6458226.94 Cone Operator: Andrew

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 6/03/2020, 9:45:56 AM Project file: C:\Users\CPTWest\Dropbox\projects\2018-2019\Local Geotech\018338_Como\018338\018338.cpt

Project: Project No.: LG0502020G, Geotechnical Site Investigation Location: 469 & 471 Canning Highway, Como, WA

CPT 2 Total depth: 25.46 m, Date: 05-Mar-20

Qtn

E

Depth

Project: Project No.: LG0502020G, Geotechnical Site Investigation Location: 469 & 471 Canning Highway, Como, WA

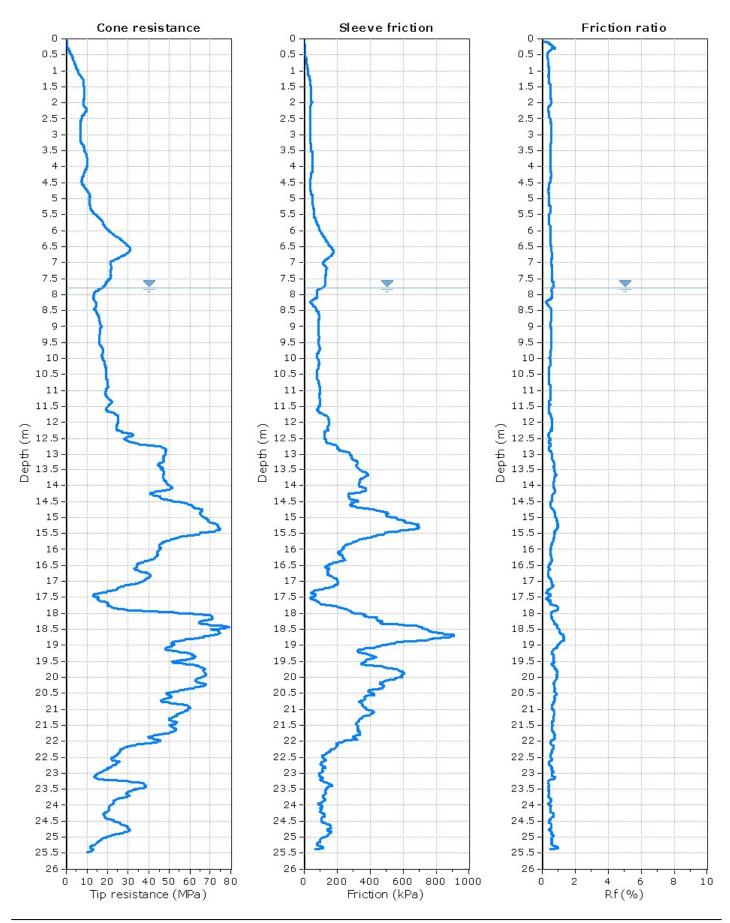
Norm. Soil Behaviour Type Norm, cone resistance Norm. friction ratio Norm. pore pressure ratio SBTn Index 0 -0. 5 . 7 -10. 11. E_{12}^{11} Ξ₁₂-E E Sand & silty sand Depth 13-Depth (Depth Depth 13. 13-15-16-16. 17. 17-18. 18-19. 19-20. 20. 20-22. 22-Silty sand & sandy silt 23. Sand & silty sand Silty sand & sandy silt Silty sand & sandy silt 2 4 6 8 10 12 14 16 18 300 400 -0.2 0 0.2 0.4 0.6 0.8 1 Fr (%) Βq Ιc SBTn (Robertson, 1990) SBTn legend 1. Sensitive fine grained 4. Clayey silt to silty clay 7. Gravely sand to sand 8. Very stiff sand to clayey sand 2. Organic material 5. Silty sand to sandy silt

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 10-Mar-20, 11:22:19 PM Project file: D:\My Document_D\LG\2020\202005 LG0502020GI_469 & 471 Canning Highway, Como WA\CPT\CPeT-IT_469 Canning Hwy.cpt

Total depth: 25.46 m, Date: 05-Mar-20

6. Clean sand to silty sand 🔲 9. Very stiff fine grained

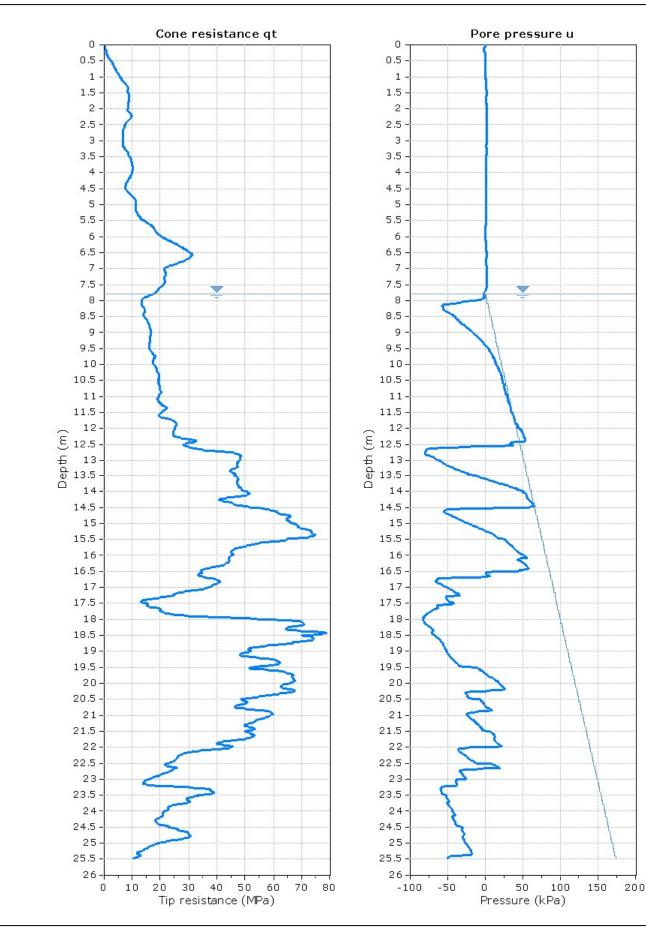
3. Clay to silty clay


CPT: CPT 2

info@cptwest.com.au www.cptwest.com.au T: 0403 370 045

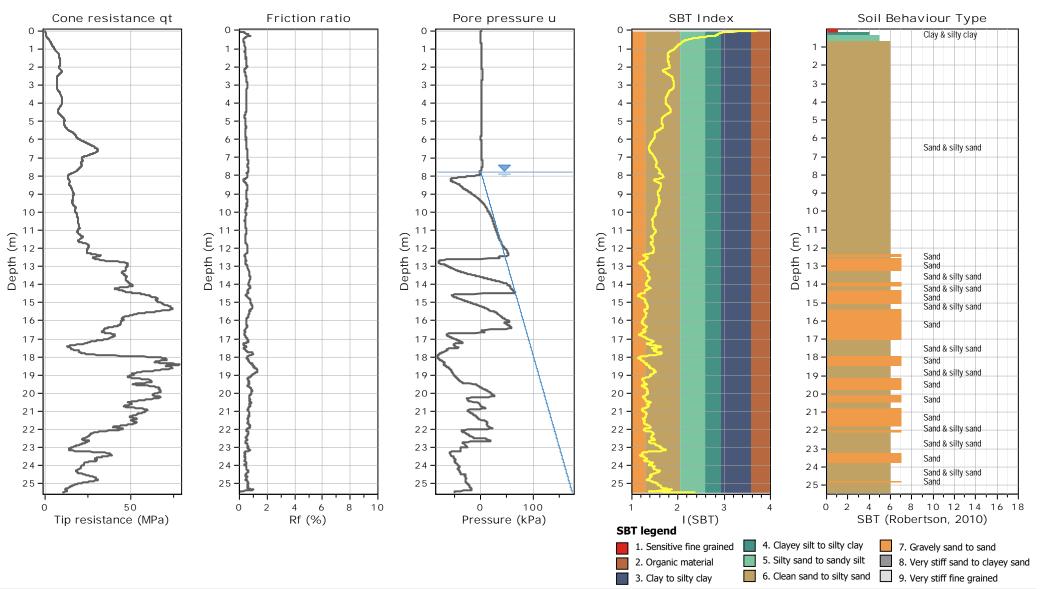
Project: 469 & 471 Canning Highway (Project No.: LG0502020GI) Location: Como

CPTu 3 Total depth: 25.48 m, Date: 5/03/2020 Surface Elevation: 9.19 m Coords: X:392143.31, Y:6458204.43 Cone Operator: Andrew


CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 6/03/2020, 9:45:56 AM Project file: C:\Users\CPTWest\Dropbox\projects\2018-2019\Local Geotech\018338_Como\018338\018338.cpt

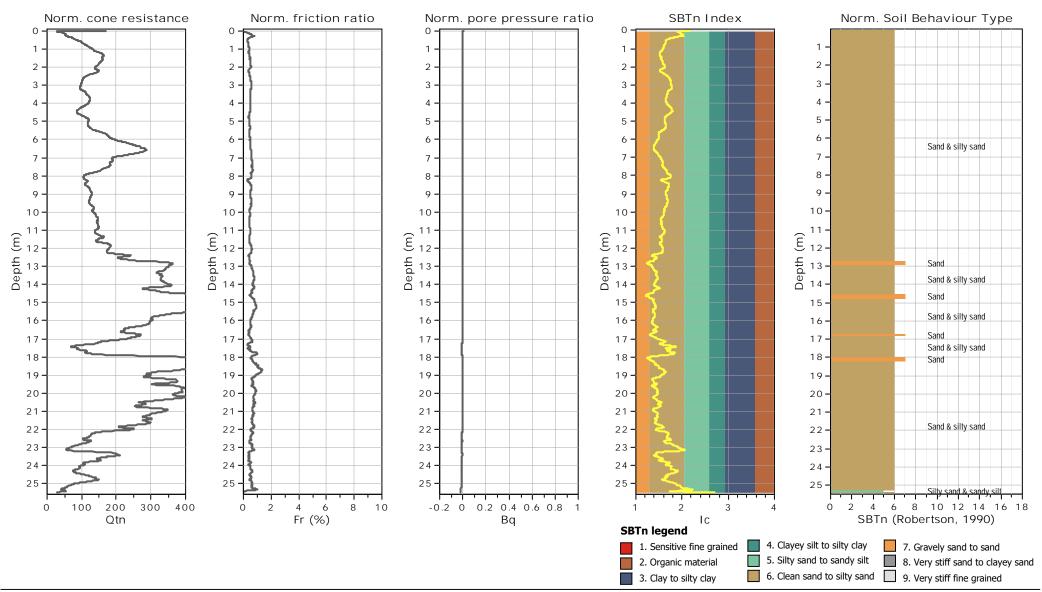
info@cptwest.com.au www.cptwest.com.au T: 0403 370 045

Project: 469 & 471 Canning Highway (Project No.: LG0502020GI) Location: Como


CPTu 3 Total depth: 25.48 m, Date: 5/03/2020 Surface Elevation: 9.19 m Coords: X:392143.31, Y:6458204.43 Cone Operator: Andrew

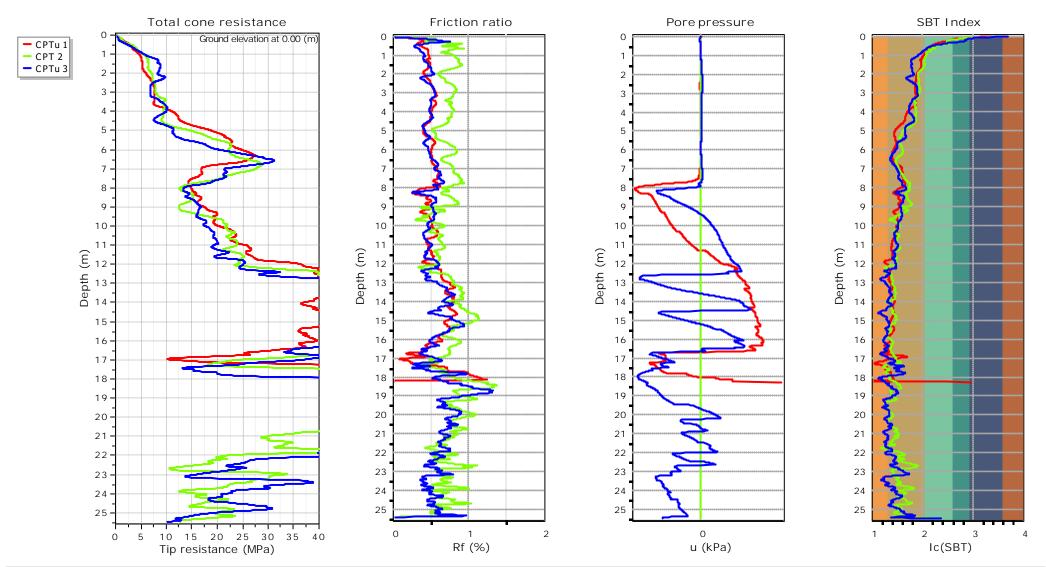
CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 6/03/2020, 9:45:56 AM Project file: C:\Users\CPTWest\Dropbox\projects\2018-2019\Local Geotech\018338_Como\018338\018338.cpt

Project: Project No.: LG0502020G, Geotechnical Site Investigation Location: 469 & 471 Canning Highway, Como, WA


CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 10-Mar-20, 11:22:19 PM Project file: D:\My Document_D\LG\2020\202005 LG0502020GI_469 & 471 Canning Highway, Como WA\CPT\CPeT-IT_469 Canning Hwy.cpt

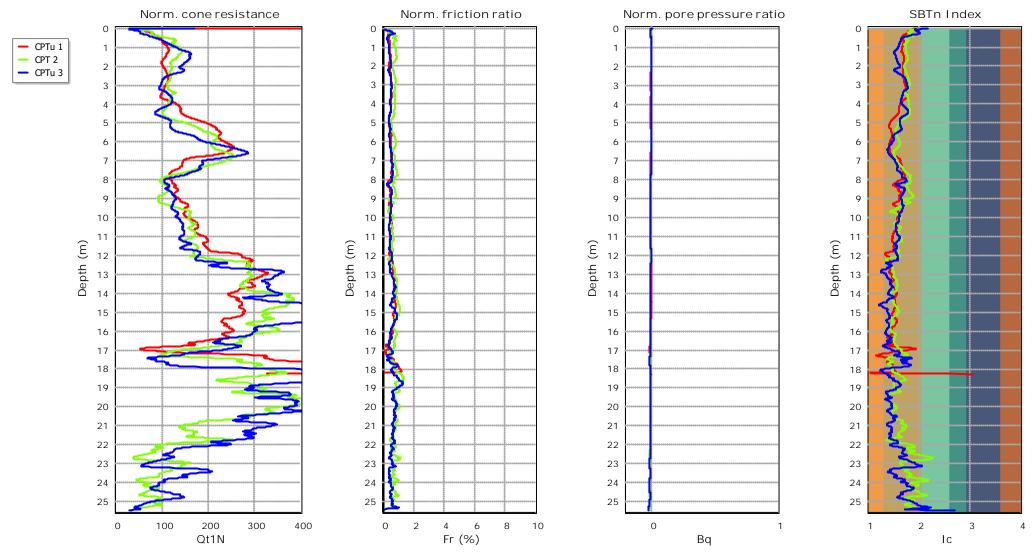
CPTu 3 Total depth: 25.48 m, Date: 05-Mar-20

Project: Project No.: LG0502020G, Geotechnical Site Investigation Location: 469 & 471 Canning Highway, Como, WA


CPT: CPTu 3 Total depth: 25.48 m, Date: 05-Mar-20

Project: Project No.: LG0502020G, Geotechnical Site Investigation

Location: 469 & 471 Canning Highway, Como, WA


Overlay basic interpretation plots

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 10-Mar-20, 11:27:39 PM Project file: D:\My Document_D\LG\2020\202005 LG0502020GI_469 & 471 Canning Highway, Como WA\CPT\CPeT-IT_469 Canning Hwy.cpt

Project: Project No.: LG0502020G, Geotechnical Site Investigation

Location: 469 & 471 Canning Highway, Como, WA

Normalized basic plots

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 10-Mar-20, 11:27:39 PM

Project file: D:\My Document_D\LG\2020\202005 LG0502020GI_469 & 471 Canning Highway, Como WA\CPT\CPeT-IT_469 Canning Hwy.cpt

APPENDIX D SITE PHOTOS

S LOCAL GEOTECHNICS

Photo 1. Site, view from the south west corner, facing north east

Photo 2. Site, view from the north east corner, facing south west

Photo 3. Test Location 01 (TH1), Sub-surface probing by using a hand auger

Photo 4. Soil from Test Location 01 (TH1)

ii

Photo 5. Test Location 02 (TH2), Sub-surface probing by using a hand auger

Photo 6. Test Location 03 (PSP3), Testing by a Perth Sand Penetrometer

Photo 7. Soil from Test Location 03 (TH3)

Photo 8. Test Location 04 (PSP4), Testing by a Perth Sand Penetrometer

Photo 9. Soil from Test Location 04 (TH4)

Photo 10. Soil permeability testing with a Guelph Permeameter (FPT1)

v

Photo 12. Testing Cone Penetration Test at Test Location, CPT2

Photo 12. Installed Stand Pipe at Test Location, CPTu1

SIDCAL GEOTECHNICS

PROJECT : Ge LOCATION : No					
PROJECT : Ge LOCATION : No		TEST CERTI	FICATE		
PROJECT : Ge LOCATION : No	cal Geotechnics			K&A JOB NO :	178 / 185 / 20
LOCATION : No	eotechnical Investig	ation		SAMPLE No :	NB48163
	o: 469 - 471 - Cann	ing Highway - Come		TEST DATE :	05/03/2020
SAMPLE ID : TH	H:1	8 8 2		LG Ref No :	LG0502020GI
	5 - 3.0)				10000202001
			1.000 - 4 - 62	er a dae - Pile Ancie Statione e	
TEST	DATA	TEST METHODS		PLASTICITY CHAI	RT
LIQUID LIMIT(%)	N/A N/A	AS 1289 3.1.2 AS 1289 3.2.1	80		
PLASTIC LIMIT(%) PLASTICITY INDEX	N/A N/A	AS 1289 3.2.1 AS 1289 3.3.1	(%) 60		'A' LINE
LINEAR SHRINKAGE(9		AS 1289 3.4.1	Xepu 50 40		
the local data was a second as the second	TING INFORMATION		30 j)	
ATTERBERG LIMITS:			20 10 10		
	PLE HISTORY:	N/A	c		ļļ
METH	HOD OF PREPARATION	N/A		0 10 20 30 40 Liquid Lin	50 60 70 80 90
LINEAR SHRINKAGE :					
	OF MOULD (mm)	N/A			
CRUN AS 1289 3.6.1	MBLING OR CURLING	N/A	DTICI E CI	ZE DISTRIBUTION	
AS 1289 3.6.1 PARTICLE SIZE DISTRIB	N.	AS 1407 J.0.1 - PA	RICLE SL	LE DISTRIDUTION	
SIEVE SIZE %PA	ASSING 100				
100.0mm	44				
75.0mm	90				
53.0mm	80				
	70		/		
37.5mm					
26.5mm	6 0				
19.0mm	Bassing 60		T		
9.50mm	% ₄₀				
4.75mm					
2.36mm	30				
1.18mm	100 20	<u></u>			
0.600mm	82				
0.425mm	54 10				
0.300mm	19 0				
0.150mm	3 0	0.01 0.1		1	10
0.075mm	2		Partic	ele Size (mm)	

CLIENT: Local Geotechnics							SAMPLER: Aurelian Bara								(ALS)	
	S / OFFICE: 12/8 Production Road, Can	ning Vale 6	155				MOBILE: 0470 082 233							ALS Laboratory Group		
	MANAGER (PM) Harun Meer							0426 08 4387 (Ashrafur)		an@localgeotechnics.com.au; admin@l					
	T ID: LG0502020GI						EMAIL REPO									,
TE: 46	9 & 471 Canning Highway, Como WA			P.O. NO.:				CE TO: (if different t								······
SULTS	S REQUIRED (Date):			QUOTE NO	D.:		ANALYSIS R	EQUIRED including	SUITES (no	te - suite co	aes mus	beliste	10 10 AL			Notes: e.g. Highly contaminated s
OR FABORATORY USE ONLY COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:						pH and pHFDX (ASS field screening test)	pH plus EC (1:5) - IN-45: Chloride (requires 1:5 soil water leach) - EC045; Sulfate - Total ss SC4 - EC0407; Salinty - Total Soluble Salts - EA014							-	e.g. "High PAHs expected". Extra volume for QC or trace LOF	
HULED	yes No				CONTAINER INFC		nd pHFO)	lus EC (1 lires 1:5 s 45; Sulfat 40T; Salir - EA014								
<u> </u>	SAMPLE INFORMATION (note: S =	Soil, W=V	(ater) DATE	Time	Type / Code	Total cont	PH ar	ED0, Salts	_							
	SAMPLE ID		DATE		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		x									
5	TH1 (0.25m, 0.75m, 1.25m, 2.0m, 3.0m)	soil					x	<u> </u>								
10	TH2 (0.0m, 0.5m, 1.0m, 1.75m, 2.5m)	soil			<u> </u>		×					_				
15	TH3 (0.25m, 0.75m, 1.5m, 2.0m, 3.0m)	soil					×					-				
20	TH4 (0.0m, 0.5m, 1.25m, 1.75m, 2.5m)	soil														
2	TH1 (0.75m)						×		···							
20	TH4 (2.5m)							×					-			
	r					<u> </u>		×			$ \rightarrow $					
									<u> </u>		┝──┼					
								<u> </u>	<u> </u>							
	N		[↓↓	_				
	· · · · · · · · · · · · · · · · · · ·								<u> </u>							
								T								
	·	<u></u>			· · ·					_						
		+				<u>+</u>		<u>+</u>								
				+	<u> </u>											
												-+				
			ļ	<u> </u>						-+	+	-+			-+	
										_	+ -	+	_			
									ļ					- 1		
									<u> </u>							
				T												
			1													
	1	RELINQU	SHED BY		<u> </u>			4	B	ECEIVED	BY	~+	<u> </u>	10	7	METHOD OF SHIPME
Namo	: Ashrafur Rahman	<u>,</u>	<u>9, 10 91.</u>		Date: 28/2/2020		Name:	ND			Date:	28/	<u>2</u> [20	10	Con' Note No:
	cal Geotechnics				Time:		Of:	AUS			Time	16	73	5	_	
Name					Date:		Name:	·			Date:					Transport Co:
~	Container Codes: P = Unpreserved				Time:		Of:				Time					

Environmental Division Perth Work Order Reference EP2002172

Telephone: +61-6-9406 1301

ALS LABORATORY GROUP

Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

COC Page _1_ of _1_

CERTIFICATE OF ANALYSIS

Work Order	EP2002172	Page	: 1 of 6	
Client		Laboratory	: Environmental Division Pert	h
Contact	: Harun Meer	Contact	: Customer Services EP	
Address	: PO Box 5050	Address	: 26 Rigali Way Wangara WA	Australia 6065
	Canning Vale South Western Australia 6155			
Telephone	: 08 9457 3517	Telephone	: +61-8-9406 1301	
Project	: LG0502020GI	Date Samples Received	: 28-Feb-2020 16:45	SWIIII.
Order number	:	Date Analysis Commenced	: 03-Mar-2020	
C-O-C number	:	Issue Date	: 09-Mar-2020 21:47	
Sampler	: Aurelian Bara			HAC-MRA NATA
Site	: 469 & 471 Canning Highway, Como WA			
Quote number	: EN/222			
No. of samples received	: 20			Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 20			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA
Daniel Fisher	Inorganics Analyst	Perth ASS, Wangara, WA
Daniel Fisher	Inorganics Analyst	Perth Inorganics, Wangara, WA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

Page	: 3 of 6
Work Order	EP2002172
Client	: LOCAL GEOTECHNICS
Project	: LG0502020GI

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	TH1 (0.25m)	TH1 (0.75m)	TH1 (1.25m)	TH1 (2.0m)	TH1 (3.0m)
	Cl	ient sampli	ing date / time	28-Feb-2020 00:00				
Compound	CAS Number	LOR	Unit	EP2002172-001	EP2002172-002	EP2002172-003	EP2002172-004	EP2002172-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit		6.4			
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm		6			
EA014 Total Soluble Salts								
Total Soluble Salts		5	mg/kg		20			
EA037: Ass Field Screening Analysi	s							
рН (F)		0.1	pH Unit	6.1	6.3	6.6	6.8	7.0
pH (Fox)		0.1	pH Unit	4.5	4.7	5.0	5.2	5.0
Reaction Rate		1	-	Slight	Slight	Slight	Slight	Slight
EA055: Moisture Content (Dried @ 10	05-110°C)							
Moisture Content		0.1	%		0.6			
ED040: Sulfur as SO4 2-								
Sulfate as SO4 2-	14808-79-8	100	mg/kg		<100			
ED045G: Chloride by Discrete Analys	ser							
Chloride	16887-00-6	10	mg/kg		<10			

Page	: 4 of 6
Work Order	: EP2002172
Client	: LOCAL GEOTECHNICS
Project	: LG0502020GI

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			TH2 (0.0m)	TH2 (0.5m)	TH2 (1.0m)	TH2 (1.75m)	TH2 (2.5m)
	Cl	ient sampli	ng date / time	28-Feb-2020 00:00				
Compound	CAS Number	LOR	Unit	EP2002172-006	EP2002172-007	EP2002172-008	EP2002172-009	EP2002172-010
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
рН (F)		0.1	pH Unit	7.9	7.5	8.3	7.6	6.8
pH (Fox)		0.1	pH Unit	5.6	5.6	5.7	5.5	5.3
Reaction Rate		1	-	Moderate	Moderate	Moderate	Moderate	Slight

Page	5 of 6
Work Order	: EP2002172
Client	: LOCAL GEOTECHNICS
Project	: LG0502020GI

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			TH3 (0.25m)	TH3 (0.75m)	TH3 (1.5m)	TH3 (2.0m)	TH3 (3.0m)
	ient sampli	ng date / time	28-Feb-2020 00:00					
Compound	CAS Number	LOR	Unit	EP2002172-011	EP2002172-012	EP2002172-013	EP2002172-014	EP2002172-015
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
рН (F)		0.1	pH Unit	7.1	7.2	7.1	7.0	6.9
pH (Fox)		0.1	pH Unit	4.5	5.1	4.8	5.0	5.0
Reaction Rate		1	-	Moderate	Moderate	Moderate	Slight	Slight

Page	: 6 of 6
Work Order	: EP2002172
Client	: LOCAL GEOTECHNICS
Project	: LG0502020GI

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	TH4 (0.0m)	TH4 (0.5m)	TH4 (1.25m)	TH4 (1.75m)	TH4 (2.5m)
	CI	ient sampli	ing date / time	28-Feb-2020 00:00				
Compound	CAS Number	LOR	Unit	EP2002172-016	EP2002172-017	EP2002172-018	EP2002172-019	EP2002172-020
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit					7.0
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm					3
EA014 Total Soluble Salts								
Total Soluble Salts		5	mg/kg					11
EA037: Ass Field Screening Analysis								
pH (F)		0.1	pH Unit	7.0	7.1	7.2	7.2	7.2
pH (Fox)		0.1	pH Unit	4.8	5.1	5.2	5.1	5.2
Reaction Rate		1	-	Slight	Slight	Slight	Slight	Slight
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%					0.6
ED040: Sulfur as SO4 2-								
Sulfate as SO4 2-	14808-79-8	100	mg/kg					<100
ED045G: Chloride by Discrete Analyse	ər							
Chloride	16887-00-6	10	mg/kg					<10

QUALITY CONTROL REPORT

Work Order	: EP2002172	Page	: 1 of 3	
Client		Laboratory	: Environmental Division Pe	erth
Contact	: Harun Meer	Contact	: Customer Services EP	
Address	: PO Box 5050 Canning Vale South Western Australia 6155	Address	: 26 Rigali Way Wangara W	/A Australia 6065
Telephone	: 08 9457 3517	Telephone	: +61-8-9406 1301	
Project	: LG0502020GI	Date Samples Received	: 28-Feb-2020	SMIIII.
Order number	:	Date Analysis Commenced	: 03-Mar-2020	
C-O-C number	:	Issue Date	: 09-Mar-2020	
Sampler	: Aurelian Bara			HAC-MRA NATA
Site	: 469 & 471 Canning Highway, Como WA			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 20			Accredited for compliance with
No. of samples analysed	: 20			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA
Daniel Fisher	Inorganics Analyst	Perth ASS, Wangara, WA
Daniel Fisher	Inorganics Analyst	Perth Inorganics, Wangara, WA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA002: pH 1:5 (Soils	s) (QC Lot: 2889731)								
EP2002172-002	TH1 (0.75m)	EA002: pH Value		0.1	pH Unit	6.4	6.4	0.00	0% - 20%
EA010: Conductivity	y (1:5) (QC Lot: 28897	32)							
EP2002172-002	TH1 (0.75m)	EA010: Electrical Conductivity @ 25°C		1	µS/cm	6	6	0.00	No Limit
EA037: Ass Field S	creening Analysis (Q	C Lot: 2893423)							
EP2002172-001	TH1 (0.25m)	EA037: pH (F)		0.1	pH Unit	6.1	6.1	0.00	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	4.5	4.5	0.00	0% - 20%
EP2002172-010	TH2 (2.5m)	EA037: pH (F)		0.1	pH Unit	6.8	6.8	0.00	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	5.3	5.3	0.00	0% - 20%
EA055: Moisture Co	ontent (Dried @ 105-11	0°C) (QC Lot: 2891372)							
EP2002137-006	Anonymous	EA055: Moisture Content		0.1	%	9.4	9.9	5.45	0% - 20%
EP2002196-007	Anonymous	EA055: Moisture Content		0.1	%	14.8	14.1	4.78	0% - 50%
ED040T : Total Sulfa	ate by ICPAES (QC Lo	ot: 2889735)							
EP2002172-002	TH1 (0.75m)	ED040T: Sulfate as SO4 2-	14808-79-8	100	mg/kg	<100	<100	0.00	No Limit
ED045G: Chloride b	y Discrete Analyser(QC Lot: 2889733)							
EP2002172-002	TH1 (0.75m)	ED045G: Chloride	16887-00-6	10	mg/kg	<10	<10	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA002: pH 1:5 (Soils) (QCLot: 2889731)									
EA002: pH Value			pH Unit		4 pH Unit	100	70.0	130	
					7 pH Unit	100	70.0	130	
EA010: Conductivity (1:5) (QCLot: 2889732)									
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	24800 µS/cm	102	93.6	106	
ED040T : Total Sulfate by ICPAES (QCLot: 2889735)									
ED040T: Sulfate as SO4 2-	14808-79-8	100	mg/kg	<100	2500 mg/kg	112	80.0	120	
ED045G: Chloride by Discrete Analyser (QCLot: 2889733)									
ED045G: Chloride	16887-00-6	10	mg/kg	<10	50 mg/kg	98.2	88.0	115	
				<10	5000 mg/kg	100	88.0	115	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
ED045G: Chloride	by Discrete Analyser (QCLot: 2889733)							
EP2002172-020	TH4 (2.5m)	ED045G: Chloride	16887-00-6	5000 mg/kg	98.0	70.0	130	

	QA/QC Compliance Assessment to assist with Quality Review						
Work Order	EP2002172	Page	: 1 of 4				
Client		Laboratory	: Environmental Division Perth				
Contact	: Harun Meer	Telephone	: +61-8-9406 1301				
Project	: LG0502020GI	Date Samples Received	: 28-Feb-2020				
Site	: 469 & 471 Canning Highway, Como WA	Issue Date	: 09-Mar-2020				
Sampler	: Aurelian Bara	No. of samples received	: 20				
Order number	:	No. of samples analysed	: 20				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA002: pH 1:5 (Soils)								
Snap Lock Bag (EA002)								_
TH1 (0.75m),	TH4 (2.5m)	28-Feb-2020	04-Mar-2020	06-Mar-2020	✓	04-Mar-2020	04-Mar-2020	✓
EA010: Conductivity (1:5)								
Snap Lock Bag (EA010)								
TH1 (0.75m),	TH4 (2.5m)	28-Feb-2020	04-Mar-2020	06-Mar-2020	✓	04-Mar-2020	01-Apr-2020	✓
EA037: Ass Field Screening Analysis								
Snap Lock Bag - frozen on receipt at ALS	(EA037)							
TH1 (0.25m),	TH1 (0.75m),	28-Feb-2020	03-Mar-2020	26-Aug-2020	1	03-Mar-2020	26-Aug-2020	\checkmark
TH1 (1.25m),	TH1 (2.0m),							
TH1 (3.0m),	TH2 (0.0m),							
TH2 (0.5m),	TH2 (1.0m),							
TH2 (1.75m),	TH2 (2.5m),							
TH3 (0.25m),	TH3 (0.75m),							
TH3 (1.5m),	TH3 (2.0m),							
TH3 (3.0m),	TH4 (0.0m),							
TH4 (0.5m),	TH4 (1.25m),							
TH4 (1.75m),	TH4 (2.5m)							
EA055: Moisture Content (Dried @ 105-1	10°C)							
Snap Lock Bag (EA055)								
TH1 (0.75m),	TH4 (2.5m)	28-Feb-2020				03-Mar-2020	13-Mar-2020	✓
ED040: Sulfur as SO4 2-								
Snap Lock Bag (ED040T)								
TH1 (0.75m),	TH4 (2.5m)	28-Feb-2020	03-Mar-2020	06-Mar-2020	1	04-Mar-2020	31-Mar-2020	✓
ED045G: Chloride by Discrete Analyser								
Snap Lock Bag (ED045G)				07.14 0000				
TH1 (0.75m),	TH4 (2.5m)	28-Feb-2020	04-Mar-2020	27-Mar-2020	 ✓ 	04-Mar-2020	01-Apr-2020	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
ASS Field Screening Analysis	EA037	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride Soluble By Discrete Analyser	ED045G	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH (1:5)	EA002	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate as SO4 2- Total	ED040T	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Chloride Soluble By Discrete Analyser	ED045G	2	2	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
pH (1:5)	EA002	2	2	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate as SO4 2- Total	ED040T	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chloride Soluble By Discrete Analyser	ED045G	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	2	50.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Sulfate as SO4 2- Total	ED040T	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Chloride Soluble By Discrete Analyser	ED045G	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	In house: Referenced to Rayment and Lyons 4A1 and APHA 4500H+. pH is determined on soil samples after a
			1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3)
Electrical Conductivity (1:5)	EA010	SOIL	In house: Referenced to Rayment and Lyons 3A1 and APHA 2510. Conductivity is determined on soil samples
			using a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3)
Total Soluble Salts	EA014	SOIL	In house: The concentration of Total Soluble Salts in a soil is calculated from the Electrical conductivity of a water
			extract. This method is compliant with NEPM (2013) Schedule B(3) (Method 104)
ASS Field Screening Analysis	EA037	SOIL	In house: Referenced to Acid Sulfate Soils Laboratory Methods Guidelines, version 2.1 June 2004. As received
			samples are tested for pH field and pH fox and assessed for a reaction rating.
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C.
			This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Sulfate as SO4 2- Total	ED040T	SOIL	In house: Total Sulfate is determined off a HCI digestion by ICPAES as S , and reported as SO4
Chloride Soluble By Discrete Analyser	ED045G	SOIL	In house: Referenced to APHA 4500-CI- E. The thiocyanate ion is liberated from mercuric thiocyanate through
			sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions
			the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm. Analysis is
			performed on a 1:5 soil / water leachate.
Preparation Methods	Method	Matrix	Method Descriptions
Drying only	EN020D	SOIL	In house
HCI Digest	EN24	SOIL	1g of soil is digested in 30 ml of 30% HCl and the resultant digest bulked and filtered for analysis by ICP.
1:5 solid / water leach for soluble	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts
analytes			are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for
			analysis

LOCAL GEOTECHNICS

11 December 2019

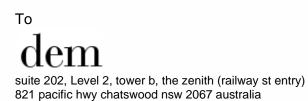
Report on

Geotechnical Investigation

109, 111 & 113 Robert Street, Como WA

Project: LGK9542019GI REV_0

dem



PO Box 5050, Canning Vale South, WA 6155

08 9457 3517 (0), 0425 545 508 (ABN 61 737 984 867 admin@localgeotechnics.com.au localgeotechnics.com.au

11 December 2019

Dear Sir/Madam,

RE: Geotechnical Investigation for 109, 111 & 113 Robert Street, Como WA.

This letter presents our report on a Geotechnical Investigation carried out at 109, 111 & 113 Robert Street, Como, WA. The report must be thoroughly read and implemented in full. No partial implementation of this report is allowed.

If you have any questions in regards to the geotechnical site investigation or we can be of further assistance, please do not hesitate to contact Local Geotechnics.

Sincerely yours

Dr. Harun Meer Ph.D.(Geotech), M. Eng. (Geotech), B. Eng. (Civil), MIE Aust Director Local Geotechnics

PROJECT INFORMATION

Project	LGK9542019GI Geotechnical Inves	stigation		
Site Location	109, 111 & 113 Rol	pert Street, Como WA		
Rev	Description	Date	Prepared by	Approved by
0	Issued to client	11 December 2019	R Khan	H Meer

Project: LGK9542019GI_Rev0 Geotechnical Investigation Site: 109, 111 & 113 Robert Street, Como WA Client: dem

TABLE OF CONTENTS

EXECI	JTIVE SUMMARY	
1.0	INTRODUCTION	
2.0	PROPOSED DEVELOPMENT	8
3.0	SCOPE AND OBJECTIVES	8
4.0	SITE CONDITIONS	9
4.1	Surface condition	9
4.2	Site Geology	
4.3	Groundwater Information	
4.4	Acid Sulfate Soils (ASS) Review	10
5.0	FIELD INVESTIGATION	11
5.1	General	11
5.2	Test Hole Drilling	12
5.3	Perth Sand Penetrometer Test	12
5.4	Electric Friction Cone Penetrometer Test	12
5.5	Standpipe Piezometer Installation	13
5.6	Permeability Test	13
6.0	LABORATORY TESTING	13
6.1	General	13
6.2	Geotechnical Laboratory Test Results	14
6.3	Acid Sulfate Soils (ASS) Test Results	14
6.3.1	1 Concluding Remarks on ASS Status	15
6.4	Soil Aggressivity Test Results	15
7.0	ENGINEERING CONSIDERATIONS AND RECOMMENDATIONS	16
7.1	Inferred Subsurface Conditions	16
7.2	Groundwater and Dewatering	16
7.3	Geotechnical Design Parameters	16
7.4	Geotechnical Design Parameters for Retaining Structures	17
7.5	Site Classification	17
7.6	Earthquake Design Factor	
7.7	Earthworks	
7.7.1		
7.7.2		
7.7.3	3 Site Preparation	18
7.8	Bearing Capacity	
7.8.1	1 Strip and Pad Foundation	19
7.8.2		
7.9	California Bearing Ratio (CBR) for Roads & Carpark's Subgrade	20
7.10	Excavatability	20
7.11	Cut and Fill Batters	21
7.12	5	
7.13		
8.0	LIMITATION OF USE	
9.0	REFERENCES	22

LIST OF FIGURES

- Figure 1. Site location map (source: Google Maps)
- Figure 2. Extracted Geological Map (Ref. 1:50,000 Geology Series Fremantle sheet)
- Figure 3. Water table information (Source: Perth Groundwater Atlas)
- Figure 4. Acid Sulfate Soils (ASS) Maps

LIST OF TABLES

 Table 1. Summary of Field Tests

Table 2. Summary of Permeability Test Results

Table 3. Summary of Geotechnical Laboratory Test Results

 Table 4. Summary of Preliminary ASS Laboratory Test Results

Table 5. Soil Aggressivity Assessment for the Soil Materials

Table 6. Summary of Groundwater Depth

Table 7. Inferred Geotechnical Design Parameters for the current site conditions

Table 8. Geotechnical Design Parameters for Retaining Structures

 Table 9. Earthquake Design Factors

Table 10. Allowable Bearing Pressures for Basement Level Spread & Strip Footings

Table 11. Ultimate Bearing Capacities for Piles

APPENDICES

Appendix A: Site Sketch /Test location Plan

Appendix B: Test Hole Logs, PSP and Infiltration Test Certificates

Appendix C: CPT Traces & Interpretation

Appendix D: Site Photos

Appendix E: Laboratory Test Certificates

EXECUTIVE SUMMARY

A geotechnical site investigation, that comprised onsite underground services check, hand auger test hole drilling, PSP test, CPT tests and standpipe piezometer installation were undertaken on 27 November 2019 to assess the prevailing subsurface conditions at 109, 111 & 113 Robert Street, Como, WA (site). The topography of the site was observed to be gently sloped downward from west to east (Lily Lane to Robert St). Site elevation varies between 9.5 m AHD (near Robert St) and 11.5 m AHD (near Lily Lane).

Subsurface conditions inferred from the site investigation can be described as follows:

- TOPSOIL, SAND (SP) fine to medium grained, brown, dark brown, grey, dry, loose to dense; with grass, organics; extended from surface to a depth of around 0.2 m, overlying,
- SAND (SP) fine to medium grained, yellow, light yellow, brown, grey, and light grey at depths, moist, quartz, extended to the maximum investigated depth 25.5 m. In this unit, following generalised densities were assessed:
 - \circ 0.2 5.7 m: medium dense,
 - \circ 5.7 25.5 m: dense to very dense.

GROUNDWATER & DEWATERING – groundwater was encountered at depths varying between 8.3 m and 10.3 m below ground level (approximately 1.2 m AHD). Ground surface elevation of the site varies between 9.5 m AHD and 11.5 m AHD and historical highest groundwater table (GWT) was at 2 m AHD as per the Perth Groundwater Atlas. That indicates that estimated highest groundwater depth varies between 7.5 m and 9.5 m below the ground surface. Lower basement floor level of the proposed building was unknown during preparation of this report. If the basement Bulk Excavation Level (BEL) leaves a sand cover of less than 1m above the GWT, dewatering will be required to facilitate clean excavation, compaction for foundation bases and subsequent construction.

<u>Site class (AS2870-2011)</u> – the site was classified as 'Class P'. However, if the backfilling, earthworks and compaction are undertaken as per the recommendations presented in Section 7.7.3, the site can be reclassified to 'Class A'.

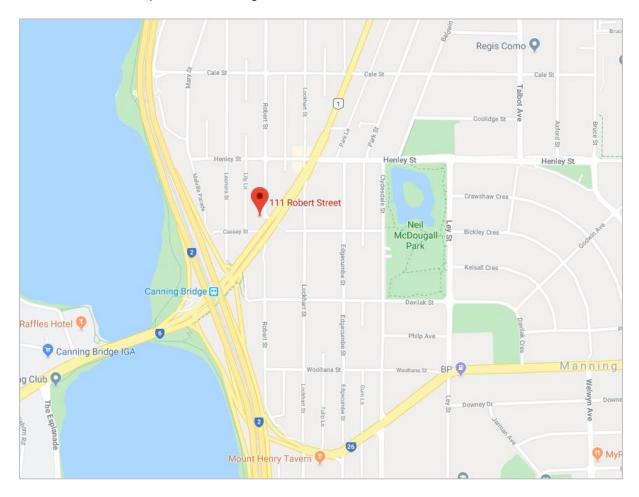
Earthquake sub-soil class (AS1170.4-2007) - "Class Ce - Shallow Soil".

Geotechnical strength and stiffness parameters for the existing ground is presented in Section 7.3. Bearing capacity parameters for shallow and pile foundations are presented in the report in Sections 7.8.1 & 7.8.2. Based on the sandy material, a design CBR value of 12% can be considered.

Based on the measured pH, chloride, sulphate and resistivity values, the soil exposure classification for both concrete and steel is 'non-aggressive'. The ASS field screening tests indicate that the presence of AASS and PASS at the tested locations of the site is less likely.

Temporary excavation up to 1 m depth can be conducted with a maximum dry slope angle of 1V: 2H. Cut and fill batters above groundwater table will be generally stable at 1V: 2H. Intermediate benches have to be created if excavation is deeper than 1m.

The recommended measure for the disposal of stormwater is onsite through soakwells or through to the basement stormwater management network. The volume of expected stormwater (worst case scenario) is to be estimated and designed by a suitably qualified Civil Engineering professional considering the soil category and infiltration rate.


We recommend undertaking of an additional site investigation soon after the demolition of the existing buildings. The additional investigation may comprise a series of borehole drilling which will assist detail design of soldier pile retention wall for basements

1.0 INTRODUCTION

dem (the client) engaged Local Geotechnics (LG) to undertake a geotechnical site investigation for a proposed church and associated building development at 109, 111 & 113 Robert Street, Como WA.

It is anticipated that the site investigation work will assist developing a concept design of a 2-3 level basement carparks over which two 10-12 storey residential tower apartments will be constructed. Further geotechnical (detail) investigation for detailed design stage might be taken place after the site is cleared or prior to the construction.

The site location map is shown in Figure 1.

Figure 1. Site location map (source: Google Maps)

A geotechnical site investigation, that comprises onsite underground services check, hand auger test holes drilling, Perth Sand Penetrometer tests and electric friction cone penetrometer tests, was undertaken on 27 November 2019 to assess the prevailing subsurface conditions for the proposed development.

This report presents the factual data obtained during the field investigation and recommendations and discussions on site classification, subsurface conditions, bearing pressure, foundation type, backfill and estimated settlements.

2.0 PROPOSED DEVELOPMENT

A church and associated buildings which may include a 2-3 level basement below ground and 10-12 storey residential tower apartments above ground.

The below ground basements may be constructed using soldier pile retention system. The building can be supported on pad and strip footings at lower level basement.

3.0 SCOPE AND OBJECTIVES

Following is the scope of work LG has undertaken to achieve the project objectives:

- Desktop review of geological survey maps, groundwater atlas and other publicly available information for the site.
- Identifying any underground services crossing the proposed field investigation locations by conducting "Dial-Before-You-Dig" search and engaging a service locating contractor.
- Preparation of a Job Safety and Environmental Analysis (JSEA) document for the geotechnical investigation and implementation of the JSEA during the fieldworks.
- Undertaking 4 Electric Friction Cone Penetrometer Tests (CPTs) to a target depth between 15 m and 25 m. Two tests were undertaken with a piezocone to assess the pore pressure profile and depth to the groundwater table.
- Installation of two 25mm diameter standpipe piezometers at two CPT locations. These piezometers were constructed to monitor the groundwater level until the construction.
- Drilling of 5 hand auger Test Holes (THs) across the proposed development site to a target depth of 3 m, refusal or hole collapse, whichever was encountered first.
- Conducting 5 Perth Sand Penetrometer (PSP) tests at the locations of THs, to a depth of 1.05 m from the ground surface.
- Conducting 2 Field Permeability Tests (FPT) across the proposed development site at a depth of 0.3 m below surface level.
- Undertaking laboratory testing of soil.
- Preparation of this geotechnical investigation report to include the following information relevant to the design development.
 - Factual data from the field testing.
 - Site classification (AS2870-2011) and remedial measures to improve this classification if required.
 - Sub-soil class (AS1170.4-2007), earthquake parameter.
 - Subsurface conditions in the significant foundation zone.
 - Recommendations on ground improvement.
 - Description of groundwater conditions.
 - Geotechnical design/strength parameters.
 - Site preparation recommendations (AS 3798-2007).

4.0 SITE CONDITIONS

4.1 Surface condition

The site is located in a residential suburb of Como, WA and is approximately 6 km south of the Perth CBD.

The topography of the site was observed to be gently sloped downward from west to east (Lily Lane to Robert St). Site elevation varies between 9.5 m AHD (near Robert St) and 11.5 m AHD (near Lily Lane). The site was occupied with church building, residential houses, paved paths, carparks, covered with sand, trees, grass in the front and back yards, and was accessible by 4WD vehicle and CPT rig.

The site photos taken during the field investigation are shown in Appendix D.

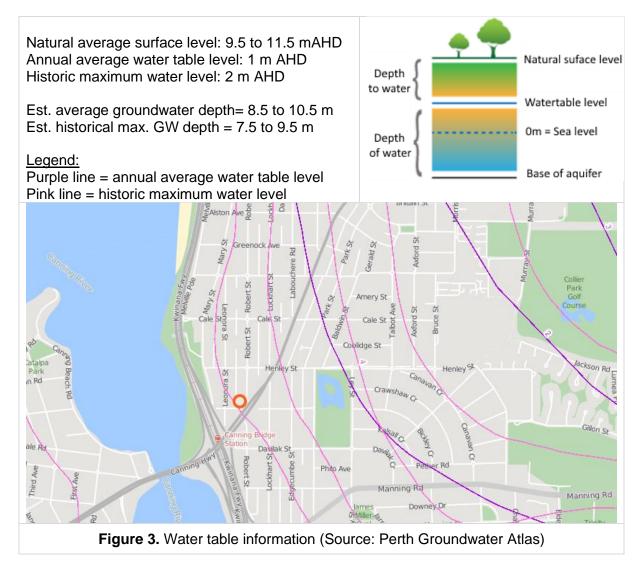
4.2 Site Geology

The 1: 50,000 Geology Series Map, Fremantle Sheet, No. 2033 I and IV, issued by the Geological Survey of Western Australia, indicates that the site is underlain by Quaternary age Sand Deposit (S7) that is derived from Tamala Limestone.

The sand was described to be pale yellowish brown, medium to coarse grained, subangular, quartz, trace of feldspar, moderately sorted, of residual origin.

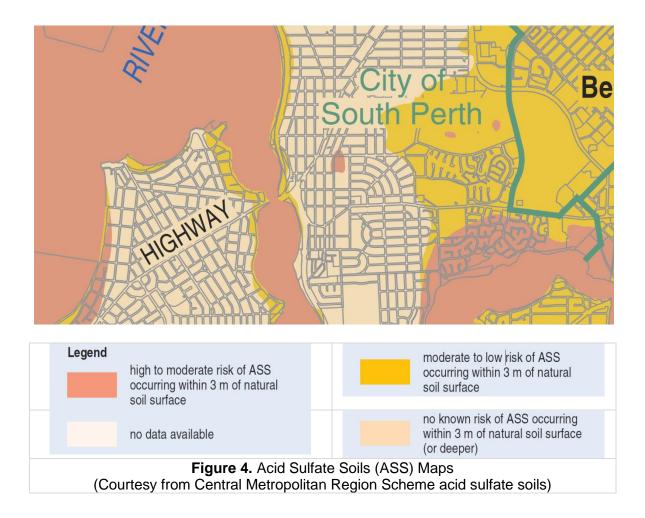
The Environmental Geological map also revealed that the site soil has high permeability, low corrosion potential, low to medium slope stability, low to medium bearing capacity.

An extracted site geological map is shown in Figure 2.


Figure 2. Extracted Geological Map (Ref. 1:50,000 Geology Series Fremantle sheet)

Project: LGK9542019GI_Rev0 Geotechnical Investigation Site: 109, 111 & 113 Robert Street, Como WA Client: dem

4.3 Groundwater Information


A review of the 'Perth Ground Water Atlas' of the Department of Water was carried out for this site. 'Perth Ground Water Atlas' indicated that the site natural ground surface elevation varied between 9.5 and 11.5 mAHD, annual average water table of 1 m AHD and historical maximum water table of 2 m AHD as per May 2003 data.

4.4 Acid Sulfate Soils (ASS) Review

Acid sulfate soils (ASS) maps 1:50 000 "Central Metropolitan Region Scheme acid sulfate soils" of Department of Environment and Conservation, WA revealed that site is in "no known risk of ASS occurring within 3 m of natural surface level (or deeper)".

5.0 FIELD INVESTIGATION

5.1 General

The geotechnical site investigation was undertaken on 27 November 2019 in the full-time presence of a geotechnical engineer from LG. The geotechnical site investigation comprised 4 CPT tests (CPTu1, CPTu2, CPT3 and CPT4), 5 Hand Auger test holes (TH1 to TH5), 5 Perth Sand Penetrometer tests (PSP1 to PSP5) and 2 Field Permeability Tests (FPT1 and FPT2).

Summary of the tests undertaken onsite is shown in Table 1 and test location plan is shown in Appendix A.

Test ID	Test Type	Easting (m, GDA94)	Northing (m, GDA94)	RL * (m, AHD)	Groundwater Depth (m)	Termination Depth (m)
CPTu1	Cone Penetrometer	392112	6458197	9.69	8.3	19.66 (refusal)
CPTu2	Test	392065	6458147	11.51	10.3	25.47

Table 1. Summary of Field Tests

Project: LGK9542019GI_Rev0 Geotechnical Investigation Site: 109, 111 & 113 Robert Street, Como WA Client: dem

Test ID	Test Type	Easting (m, GDA94)	Northing (m, GDA94)	RL * (m, AHD)	Groundwater Depth (m)	Termination Depth (m)
CPT3		392080	6458185	10.64	-	15.31
CPT4		392070	6458204	10.72	9.5	15.26
TH1 & PSP1		392097	6458210	-	NE	3.0
TH2 & PSP2	Hand Auger Hole & PSP	392088	6458197	-	NE	3.0
TH3 & PSP3		392113	6458199	-	NE	3.0
TH4 & PSP4	Test	392117	6458168	-	NE	3.0
TH5 & PSP5		392063	6458157	-	NE	3.0
FPT1	Field	392063	6458157	-	NE	0.3
FPT2	Permeability Tests	392 196	6458196	-	NE	0.3

Note: Approx. = Approximate, NE = Not Encountered. * RL of the test locations were not surveyed, however, CPT test location RLs were recorded from the DGPS.

5.2 Test Hole Drilling

Five Test Holes (TH1 – TH5) were drilled across the site by using a hand auger. During test hole drilling, the spoil was stockpiled adjacent to the test location. The subsurface profiles exposed in the test holes were logged in accordance with AS1726 and were photographed to provide a visual record of subsurface conditions encountered. Following these activities, each test location was progressively backfilled in the reverse order of drilling works. During backfilling, test hole was compacted by a tamping rod.

Summary of the THs is shown in Table . Logs and photographs of the THs are presented in Appendix B and Appendix D, respectively.

5.3 Perth Sand Penetrometer Test

Five Perth Sand Penetrometer tests (PSP1 – PSP5) were conducted adjacent to each TH in accordance with AS 1289.6.3.3-1997. PSP test data were used to estimate the field density on the basis of correlations presented in Standard Australia HB 160-2006. All PSPs were terminated at 1.05 m bgl. PSP test data are presented in Appendix B together with the TH logs.

It is observed from the PSP tests that the site was in loose to dense condition.

5.4 Electric Friction Cone Penetrometer Test

The Electric Friction Cone Penetrometer Test (CPT) was undertaken by CPT West using a 22 tonne truck rig. The investigation was carried out in accordance with AS 1289.6.5.1-1999.

The CPT test generally interprets profile of soil, type, subsurface strength and stiffness parameters along the probing depth in accordance with Robertson et. al. (1986).

The results of the test are presented in Appendix C as plots of Cone Tip Resistance (qc), Sleeve Friction (fs), Friction Ratio (Rf = $fs/qc \times 100\%$) versus depth.

CPTu1 was met refusal at depth 19.66 m due to high tip resistance (over 80 MPa). The remaining 3 CPTs reached target depths, between approximately 15 m and 25m. After each probing, the probe hole was dipped by a weighted measuring tape with the intention to directly measure the depth to the groundwater table. Groundwater depth was recorded at between 8.3 m and 10.3 m.

5.5 Standpipe Piezometer Installation

Two CPT probes, CPTu1 and CPTu2, were converted into standpipe piezometers by installing a 25mm diameter perforated PVC pipe to a depth of 11.5m and 14.5 m, respectively. Water depths were measured post installation which were 8.3 m for CPTu1 and 10.3 m for CPTu2.

5.6 Permeability Test

Guelph Permeability Tests to assess infiltration rate/permeability of the surficial ground (within 0.5 m depth) was undertaken by LG. It is a falling head permeability test to assist in designing disposal of stormwater runoff. Approximate test location (FPT1 and FPT2) is shown in Appendix A.

The results and the interpretation of the testing are presented in Appendix B and summarised in Table 2Table .

Test ID	Soil Description	Depth bgl (m)	Estimated Permeability, k (m/day)
FPT 1	Sand (SP)	0.30	5.6
FPT 2	Sand (SP)	0.30	5.4

Table 2. Summary of Permeability Test Results

The summary of permeability tests is:

- Permeability tests were undertaken within the top 300 mm depth.
- The soil profile encountered onsite and in test pits was generally sand.
- According to AS/NZS 1547-2012, sand material is described to have 'Soil Category 1' with an indicative permeability greater than 3 m/day.
- Average coefficient of permeability varied between 5.4 m/day (or 6.3 x 10⁻⁵ m/s) and 5.6 m/day (or 6.5 x 10⁻⁵ m/s); Ref. Calculation sheets at Appendix B.

6.0 LABORATORY TESTING

6.1 General

Laboratory testing was undertaken by a NATA accredited laboratory. The test standard applicable to each test is recorded on the laboratory testing certificates/reports. The scheduled laboratory testing included:

- 2 x Particle Size Distribution test (PSD, from 75 mm to 75 micron, AS1289.3.6.1)
- 20 x pH and PH_{FOX}, Acid Sulfate Soils (ASS) screening test
- 2 x Soil Aggressivity Test (pH, EC, SO₄, Cl).

As clayey soils were not encountered during the site investigation, no Atterberg Limits test was undertaken.

6.2 Geotechnical Laboratory Test Results

The geotechnical laboratory test results are summarised in Table 3. The laboratory test certificates/reports are included in Appendix E.

Test Parameters	Sample ID: TH3 (1 – 2 m)	TH5 (1.5 – 3 m)		
	Particle Size Distribution			
Gravel (%)	0	0		
Sand (%)	99	99		
Fines < 75µm (%)	1	1		

Table 3. Summary of Geotechnical Laboratory Test Results

Particle Size Distribution testing was undertaken in accordance with Australian Standard, AS 1289.3.6.1. The soil matrix tested comprises approximately 0% gravel, 99% sand and 1% fines. According to AS1726-1993, the samples tested can be classified as Poorly Graded SAND (SP).

6.3 Acid Sulfate Soils (ASS) Test Results

The laboratory ASS test results are summarised in Table 4. The laboratory test certificates/reports are included in Appendix E.

Sample ID	pH⊧	рН _{ГОХ}	ΔрΗ	Reaction rate	SPOCAS %S	NAAS/AASS/ PASS
TH1_0.25 m	6.6	4.6	2.0	М	-	NASS
TH1_1.0 m	7	5	2.0	S	-	NASS
TH1_2.0 m	7	5.1	1.9	S	-	NASS
TH1_3.0 m	7.1	5.2	1.9	S	-	NASS
TH2_0 m	6.9	4.6	2.3	М	-	NASS
TH2_0.5 m	7	5.1	1.9	М	-	NASS
TH2_1.5 m	7.1	5.3	1.8	S	-	NASS
TH2_2.5m	7.1	5.4	1.7	S	-	NASS
TH3_0 m	6.8	4.3	2.5	М	-	NASS
TH3_0.75 m	6.3	4.4	1.9	М	-	NASS
TH3_2.0 m	6.2	4.6	1.6	S	-	NASS
TH3_3.0 m	6.1	4.4	1.7	S	-	NASS
TH4_0.25 m	6.7	4.9	1.8	М	-	NASS
TH4_1.0 m	6.9	5.0	1.9	М	-	NASS
TH4_1.5 m	6.1	5.0	1.1	М	-	NASS
TH4_2.5 m	6.9	5.5	1.4	S	-	NASS
TH5_0.5 m	7.4	5.5	1.9	М	-	NASS
TH5_1.5 m	7.8	5.6	2.2	М	-	NASS
TH5_2.0m	7.9	5.8	2.1	М	-	NASS
TH5_3.0 m	8.2	5.8	2.4	М	-	NASS

Table 4. Summary of Preliminary ASS Laboratory Test Results

Note: M = Moderate, S= Slight, NASS = Non-Acid Sulfate soils, AASS = Actual Acid Sulfate soils, PASS = Potential Acid Sulfate soils. S = Net Acidity excluding ANC (Sulfur units).

A total of 20 samples collected from the 5 THs were submitted to the laboratory for field pH_{F} and pH_{FOX} screening test. Interpretation of results are presented below:

- pH_F results ranged between 6.1 and 8.2.
- pH_{FOX} results ranged between 4.3 and 5.8.
- None of the samples were assessed to have both pH_F and pH_{FOX} < 4.0, which suggest the samples tested are non-AASS.
- All samples were assessed to have both pH_F and pH_{FOX} > 4.0, which suggest non-ASS (=NASS).
- None of the samples have $pH_F > 4.0$ and $pH_{FOX} < 4.0$, which suggest the sample tested is non-PASS.
- The difference between the two measurements, ΔpH (= pH_F pH_{FOX}), varies between 1.1 and 2.5. pH_{FOX} value at least one unit below pH_F may indicate PASS but depends on the initial and resultant pH. However, one unit change from higher end pH, e.g., 6.1 to 8.2 will not indicate PASS.
- pH_{FOX} value >5 indicates little net acidifying ability and neutral to alkaline pH.
- Slight (L) to Moderate (M) reaction of soil with peroxide is a less likely indication. Moderate (M) reaction may be caused due to the presence of organic matter and other clayey soil constituents.

6.3.1 Concluding Remarks on ASS Status

The foregoing discussions on the ASS field screening tests indicate that the presence of AASS and PASS at the tested locations of the site is less likely.

6.4 Soil Aggressivity Test Results

The aggressivity (chemical) test results are summarised in Table 5. The laboratory test certificates are included in Appendix E.

Chemical tests were undertaken to establish the corrosivity and aggressiveness of the soil at the site.

Exposure classification stated in Tables 6.4.2 (C) and 6.5.2 (C) of AS 2159-2009 'Piling - design and installation' for soils above and below groundwater table were used to assess the soils' aggressivity. These exposure classifications are applicable to all buried concrete and steel structures.

Sample ID	рН	Sulphate in Soil (ppm)	Chloride in Soil (ppm)	Resistivity, ohm.cm		ssification for il Conditions B*]
			Concrete	Steel		
TH3(1-2m)	7.8	<100	<10	200,000	Non-aggressive	Non-aggressive
TH5(1.5-3m)	8.4	<100	<10	43,478	Non-aggressive	Non-aggressive

Table 5. Soil Aggressivity Assessment for the Soil Materials

**Soil conditions B = low permeability soils or all soils above groundwater

Based on the measured pH, chloride, sulphate and resistivity values, the soil exposure classification for both concrete and steel is '**non-aggressive**'.

7.0 ENGINEERING CONSIDERATIONS AND RECOMMENDATIONS

7.1 Inferred Subsurface Conditions

Subsurface conditions inferred from the site investigation can be described as follows:

- TOPSOIL, SAND (SP) fine to medium grained, brown, dark brown, grey, dry, loose to dense; with weeds, grass, organics; extended from surface to a depth of around 0.2 m, overlying,
- SAND (SP) fine to medium grained, yellow, light yellow, brown, grey, and light grey at depths, moist, quartz, extended to the maximum investigated depth 25.5 m. In this unit, following generalised densities were assessed:
 - \circ 0.2 5.7 m: medium dense,
 - \circ 5.7 25.5 m: dense to very dense.

7.2 Groundwater and Dewatering

Groundwater depth was recorded on 27 November and 10 December 2019 as follows:

Table 6. Summary of Groundwater Depth

Test Location	Depth	RL (m AHD)	
	Date: 27/11/19	Date: 10/12/19	(approx.)
CPTu1	8.30	8.39	1.30
CPTu2	10.30	10.09	1.14
CPT4	9.50	-	1.22

Ground surface elevation of the site varies between 9.5 m AHD and 11.5 m AHD and historical highest groundwater table was at 2 m AHD as per the Perth Groundwater Atlas. That indicates that estimated highest groundwater depth varies between 7.5 m and 9.5 m below the ground surface.

Lower basement floor level of the proposed building was unknown during preparation of this report. We recommend that a sand cover of 1 m above the Ground Water Table (GWT) should be left in the design process to facilitate a clean construction environment, a stable raft and pad foundation construction.

If the basement Bulk Excavation Level (BEL) leaves a sand cover of less than 1m above the GWT, dewatering will be required to facilitate clean excavation, compaction for foundation bases and subsequent construction.

7.3 Geotechnical Design Parameters

Geotechnical design parameters for the site were inferred on the basis of the site investigation data and are presented in Table 7 below.

Dopth			Soi	k				
(m, bgl)	Depth (m, bgl) Layer Description		C _u (kN/m²)	γ (kN/m³)	E' (MPa)	ν'	k₅ (MN/m³)	k (m/s)
0 – 5.7	Sand (SP) loose to medium dense	34	-	20	25	0.3	5	6.5 x 10 ⁻⁵
5.7 – 25.5	Sand (SP) Dense to very dense	38	-	20	90	0.3	20	6.5 x 10⁻⁵

Table 7. Inferred Geotechnical Design Parameters for the current site conditions

Notes: φ' = Effective friction angle, c_u = Undrained shear strength, γ = Bulk density, E' = Drained Elastic Modulus, v' = Poisson's Ratio, k_s = Modulus of vertical subgrade reaction, k = Coefficient of Permeability.

7.4 Geotechnical Design Parameters for Retaining Structures

Earth pressure parameters for the design of retaining structures are presented in Table 8. These parameters should be considered as preliminary.

Table 8. Geotechnical Design Parameters for Retaining Structures

Material type	γ ϕ'		Κo	Wall friction, $\delta = 0^{\circ}$	
	(kN/m³)	(N/m ³) (degrees),		Ka	Kp
Loose to medium dense in situ sand	17	30	0.50	0.33	3.00
Dense Sand or Compacted Sand Fill	18	34	0.44	0.28	3.54

Notes: γ = Bulk unit weight, ϕ '= Effective friction angle, K_0 = Coefficient of earth pressure at rest, K_a = Coefficient of drained active earth pressure, K_p = Coefficient of drained passive earth pressure.

7.5 Site Classification

Based on the subsurface and surrounding site conditions observed during the field investigation, the site was classified as "**Class P**" in accordance with AS 2870-2011 "Residential Slabs and Footings".

The site classification 'Class P' was based on the following basis:

- 'Loose sand' of the site within the surficial 3 m depth is considered to be an unstable foundation ground.
- Excessive foundation settlement may occur due to loading on the loose and compressible foundation ground.
- Presence of potential demolition debris from the existing structures and the land uses.

Site Classification Upgrade

Provided the earthworks and compaction are completed as per the recommendations presented in Section 7.7.3, the site can be reclassified to "**Class A**" in accordance with the definitions provided in the Australian Standard AS 2870 -2011 "Residential Slabs and Footings - Construction".

Class "A" sites will experience slight or no ground surface movement due to soil wetting and drying cycles associated with seasonal changes in available moisture.

7.6 Earthquake Design Factor

Australian Standard AS1170.4-2007 Structural design actions Part 4 "Earthquake actions in Australia" is recommended for earthquake consideration. AS1170.4-2007 outlines the design criteria required for a structure in consideration of the risk of being subjected to earthquake loads. Earthquake design factors are summarised in Table 9.

Table 9. Earthquake Design Factors

Factor/Class	Value/Name	Ref. AS1170.4- 2007
Hazard Factor (z) (Peak Ground Acceleration, g for 500 years return period)	0.09	Figure3.2 (D)
Site sub-soil class	Class C_e – Shallow Soil	Section 4 Clause 4.1

7.7 Earthworks

7.7.1 Suitability of Excavated Materials for use as Fill

In situ sands are considered to be suitable for reuse as structural fill material.

7.7.2 Structural Fill

Suitable materials for structural fill shall be a clean sand fill. The fill material at compaction should comprise sand that is free from oversized material (i.e. material > 75 mm in any dimension), contains less than 5% fines (material passing 0.075 mm sieve), and free from foreign material, organic material or other deleterious material. It should also be free from industrial waste, solid waste, or construction and demolition debris.

7.7.3 Site Preparation

Earthworks should be carried out in general accordance with the Australian Standard AS 3798-2007 "Guidelines on Earthworks for Commercial and Residential Developments". The following are general guidelines to be followed during preparation of the site areas within the proposed development footprints:

- Remove and grub all root masses and tree stumps, if any.
- Strip top soil, approximately 200 mm, and any uncontrolled fill, cobbles and boulders, paved materials, demolition debris, green waste, weeds/grass, organic matter or other deleterious material, if any and stockpile them separately.

Considering Basement Construction:

- Specialist D&C piling contractor will construct the piled retention system, surrounding the building area.
- Undertake staged excavation, each stage approximately 1.5m deep depending on site subsurface and surrounding conditions, and then construct infill shotcrete wall. Advice from a geotechnical engineer should be sought to determine the lift depth.
- Excavate up to the Bulk Excavation Level (BEL) and construct shotcrete wall up to the lower basement floor level.
- Excavate locally up to the required depths, for strip and pad/raft foundations, at BEL, allowing a maximum dry slope angle of 1V: 1H for less than 1m deep cut. Allow 1V:1.5H for up to 2 m deep cut.
- Compact the exposed strip and pad foundations' bases, with required number of passes of a suitable hand-held compactor to a dense state, i.e., to 95% of MMDD in accordance with AS1289.5.2.1. Add moisture as needed during the compaction. Compaction must not be attempted if the exposed ground is saturated or groundwater is at excavation level.
- Care will need to be taken when compacting in the vicinity of existing structures to avoid damage from excessive vibrations.
- A dilapidation survey monitoring plan is recommended to prepare if neighbourhood properties (building, garage, road, electrical poles etc) are located within 0.5m to 2.5 m from the basement retention wall.

It is recommended that a geotechnical engineer supervises the site activities to ensure that all demolition debris have been adequately removed from the area and that site is safely excavated and adequately backfilled and compacted as per the procedures described above.

7.8 Bearing Capacity

7.8.1 Strip and Pad Foundation

The proposed building structure is proposed to be supported on conventional pad, strip and raft footings founded at the Bulk Excavation Level (BEL) of the basement floor. As discussed in Section 7.7.3, all footing bases must be compacted to dense state, to a minimum depth of 1 m below the footing excavation level.

It should be ensured that footings are founded on compacted sand layer. In such conditions, footings may be designed on the basis of the allowable bearing pressures as given in Table 10.

Table 10. Allowable Bearing Pressures for Basement Level Spread & Strip Footings

Founding Layer Description	Footing Type	Allowable Bearing Pressure (kPa)	Approximate Settlement (mm)
Dense Sand	Pad and Raft	450	20
(SP/SM)	Strip	300	15

Considering the proposed depth of BEL, the stress relief will be partially balanced by the total load applied by the proposed structure. Long term settlements are therefore anticipated to be

negligible. Localised settlements will take place directly beneath individual footing as a result of recompression of the founding stratum during the construction of the proposed building structure. It is anticipated that the majority of the settlements will take place relatively quickly upon the application of the structural load.

Total settlements were estimated to be approximately 0.5% of the footing width for pad footings and approximately 1.0% of the footing width for strip footings. Differential settlements between adjacent isolated footings subjected to similar loadings are anticipated to be approximately half of the total settlement value. It should be noted that where isolated footings are subject to significantly different loadings, differential settlement between these footings may exceed acceptable limits. Settlements should be checked in detail where such instances arise.

We recommend a qualified engineer be on site to inspect the footing excavations and base ground preparation prior to the placement of concrete to ensure that the founding conditions are consistent with the design recommendations. If the design recommendations are not met it may be necessary to either increase the founding depth of the footings or alternatively increase the plan area of the footings.

7.8.2 Pile Foundation

The geotechnical strength reduction factor, ϕ_g , can be considered as 0.50 in accordance with AS2159. Geotechnical parameters for pile foundation design are preliminary estimated for the encountered subsoil materials and presented in Table 11 below.

Foundation Material	End Bearing Capacity, f _{bu} (kPa)	Skin Friction, f _{su} (kPa)
Sand (SP) loose to medium dense	1,000	25
Sand (SP) Dense to very dense	5,000	90

Table 11. Ultimate Bearing Capacities for Piles

7.9 California Bearing Ratio (CBR) for Roads & Carpark's Subgrade

The subgrade of the proposed carpark, internal roads, hardstand and driveway areas shall be prepared as per the general guidelines set out in Section 7.7.3 and compacted to a density ratio of 98% MMDD.

Based on the sandy material, a design CBR value of 12% can be considered for this project.

7.10 Excavatability

The loose to dense state of the in-situ sandy soils suggests that the materials should be excavatable with a standard earthmoving equipment (e.g., 20 to 30 tonne excavator).

7.11 Cut and Fill Batters

Temporary excavation up to 1 m depth can be conducted with a maximum dry slope angle of 1V: 2H. Cut and fill batters above groundwater table will generally be stable at 1V: 2H. Intermediate benches have to be created if excavation is deeper than 1m. However, batters constructed at 1V: 3H will enable re-establishment of vegetation and be less prone to damage from wetting, drying and erosion.

7.12 Stormwater Drainage

The site is underlain by the Sand. According to AS/NZS 1547-2012, sandy material is described to have 'Soil Category 1'. Groundwater table was at around 1.2 mAHD. Coefficient of permeability was estimated to be 5.5 m/day. Institute of Municipal Engineering Australia WA Division (1998) recommended that finished site levels be maintained at least 1.2 m above the annual average maximum groundwater level.

The recommended measure for the disposal of stormwater is onsite through soakwells or through to the basement stormwater management network. The volume of expected stormwater (worst case scenario) is to be estimated and designed by a suitably qualified Civil Engineering professional considering the above-mentioned soil category and infiltration rate.

7.13 Additional Site Investigation Recommendation

We recommend undertaking of an additional site investigation soon after the demolition of the existing buildings. The additional investigation may comprise a series of borehole drilling which will assist detail design of soldier pile retention wall for basements.

8.0 LIMITATION OF USE

The ground is a product of continuing natural and man-made processes and therefore exhibits characteristics and properties which vary from place to place and can change with time. Geotechnical site investigation involves gathering and assimilating limited facts about these characteristics and properties in order to better understand or predict the behaviour of the ground at a particular site under certain conditions.

This site investigation has been carried out by inspection, using a limited amount of CPT, pit excavation, sampling, testing or other means of investigation. Achieving a full coverage of the site to ensure all variations is not practical and is seldom done due to cost constraints as well as the impracticality.

It should be noted that the subsurface conditions encountered by the limited number of field tests as part of this geotechnical site investigation represents the ground conditions at the locations where the samples were taken and where tests have been undertaken and as such are an extremely small proportion of the site to be developed.

The facts reported in this document are directly relevant only to the ground at the place where, and time when, the investigation was carried out and are believed to be reported accurately. Given the limited number of field and laboratory testing carried out with respect to the overall site area, variations between investigation locations are likely and ground conditions different to those presented in this report may be present within the subject site area. The risk associated with this variability and the impact it will have on the proposed development should be carefully considered.

The level of geotechnical investigation that has been completed to date is considered appropriate for the project objectives. If the above mentioned client, its subcontractors, agents or employees use this factual information for any other purpose for which it was not intended, then the client, its subcontractors, agents or employees does so at their own risk and Local Geotechnics will not and cannot accept liability in respect of the advice, whether under law of contract, tort or otherwise.

Any interpretation or recommendation given in this report is based on judgement and experience and not on greater knowledge of the facts reported. Local Geotechnics does not represent that the information or interpretation contained in this report addresses completely the existing features, subsurface conditions or ground behaviour at the subject site.

9.0 REFERENCES

- Australian Standard AS1170.4-2007, "Earthquake Actions in Australia".
- Australian/New Zealand Standard AS/NZS 1547-2012, "On-site Domestic Wastewater Management".
- Australian Standard AS 1726-1993 "Geotechnical Site Investigations".
- Australian Standard AS 2870-2011, "Residential Slabs and Footings".
- Australian Standard AS 3798-2007, "Guidelines on Earthworks for Commercial and Residential Developments".
- Bowles JE (2013), Foundation Analysis and Design, 5th edition, McGraw Hill London
- CSIRO publication 2003 "Guide to Home Owners on Foundation Maintenance and Footing Performance" in Building Technology File Number 18.
- Geological Survey of Western Australia (1986). 1:50,000 Environmental Geology Series Map, Fremantle Sheet No 2033 I and IV.
- Institute of Municipal Engineering Australia, WA Division Inc (1998), Local Government Guidelines for Subdivisional Development
- Perth Groundwater Atlas online version, https://maps.water.wa.gov.au/#/webmap/gwm, Department of Environment, WA (browsed 8 Dec. 2019).
- Robertson. P.K., Campanella, R.G., Gillespie, D., and Greig, J., (1986), "Use of Piezometer Cone data", In-Situ'86 Use of In-situ testing in Geotechnical Engineering, GSP 6, ASCE, Reston, VA, Specialty Publication, pp 1263-1280.
- Standards Australia, Hand Book HB 160-2006 "Soil Testing".

SITE SKETCH

SIDCAL GEOTECHNICS

E-mail: <u>admin@localgeotechnics.com.au</u> Web: www.localgeotechnics.com.au

APPENDIX B

TEST HOLE LOGS PERMEABILITY & PSP TEST CERTIFICATE

S LOCAL GEOTECHNICS

Reference	: LGK9542019GI		Test Pit/BH No.:	01
Client	: dem		Date Excavated:	27-Nov-2019
Project	: Geotechnical Investigation	on	Date completed:	27-Nov-2019
Location	: 109, 111 & 113 Robert Str	reet, Como WA	Equipment Type:	Hand Auger
GPS Zone 50	: Northing: 6 458 210	Easting: 392 097	Water Table:	Not Encountered

Line Line Line Additional observations 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0.	
0.2 grey, signify molst, dense with grass	
SP SAND- fine to medium grained, light grey, slightly	
0.5 moist, dense, trace gravel	
SP SAND- fine to medium grained, yellow, slightly	
moist, dense	
H 1.5	
2.0	
2.5	
Terminated at target depth of 3.0 m	
$\mathbf{H} \mid \mathbf{I} \mid $	
$H \mid I \mid $	
$H \mid I \mid $	
3.5	
4.0	
H	
$H \mid I \mid $	
$H \mid I \mid $	
4.5	
$\mathbf{H} \mid \mathbf{I} \mid $	
$\mathbf{H} \mid \mathbf{I} \mid $	
H 5.0	
Notes:	
Sampling Type: Method: Moisture:	
B - Bulk/Disturbed Sample, HA - Hand Auger D - Dry	Logged : MS
UD - Undisturbed Sample E - Excavator M - Moist	Checked: AR
BH - Backhoe Bucket W - Wet	

(m)	od tration resistance bling Type nic Log	Description of Soil Strat	a Additional observations	Perth Sand Penetrometer Test (Blows/300mm)	
GPS Zone 50	Northing:	458 197 Easting: 392 088	Water Table:	Not Encountered	
Location : 109, 111 & 113 Robert Street, Como WA			Equipment Type:	Hand Auger	
Project	: Geotechr	ical Investigation	Date completed:	27-Nov-2019	
Client	: dem	: dem Date Excavated: 27-Nov-2019			
Reference	: LGK9542	19GI	Test Pit/BH No.:	02	

Oepth (m)	RL (m)	Method	Penetration res	Sampling Type	Graphic Log	assification 3	Description of Soil Strata	Additional observations	Perth Sand Penetrome (Blows/300mm	
De	RL	Me	Pe	Sal	ō	ő			3 6 9	12 15
0.0						SP	TOPSOIL, SAND- fine to medium grained, grey,	0.		
0.2							slightly moist, loose with grass			
						SP	SAND- fine to medium grained, light grey, dry, loose			
								0.5		
- 1								0.0		
-										
- 1										
1.0										
1.0						сD	SAND- fine to medium grained, light grey, moist,	1 ·		
- 1						3P	dense			
- 1							dense			
- 1										
- 1								1.5		
HI										
2.0										
								2 ·		
								2.5		
3.0								3 -		
							Terminated at target depth of 3.0 m	5		
								3.5 ·		
μI										
μI										
μI										
H_{\perp}										
4.0								4 -		
ΗI										
ΗI										
HI										
HI										
ΗI								4.5		
HI										
HI										
HI										
5.0										
Notes:								5.		
	ng Type	:					Method: Moisture:			
B - B	ulk/Distu	irbed Sar	nple,				HA - Hand Auger D - Dry		Logged :	MS
UD - Ur	ndisturbe	ed Sampl	е				E - Excavator M - Moist		Checked:	AR
							BH - Backhoe Bucket W - Wet			

Reference	: LGK9542019GI		Test Pit/BH No.:	03
Client	: dem		Date Excavated:	27-Nov-2019
Project	: Geotechnical Investiga	tion	Date completed:	27-Nov-2019
Location	: 109, 111 & 113 Robert S	Street, Como WA	Equipment Type:	Hand Auger
GPS Zone 50	: Northing: 6 458 199	Easting: 392 113	Water Table:	Not Encountered

0.0 0.1 SP TOPSOLL, SAND- fine to medium grained, dark brows. silphty moist, loose 0.6 SP SAND- fine to medium grained, grey, slightly moist, loose 0.6 SP SAND- fine to medium grained, grey, slightly moist, loose 0.6 colour changes to light grey at 0.6 m 1.0 colour change to light yellow at 2.5 m 2.0 Sector change to light yellow at 2.5 m 3.0 Terminated at target depth of 3.0 m 4.0 Ferminated at target depth of 3.0 m 4.0 Mater	Depth (m)		RL (m)	Method	Penetration resistance	Sampling Type	Graphic Log	Classification Symbol	Description of Soil Strata	Additional observations	Perth Sand Penetrometer (Blows/300mm)	Test
1.0 1.0 2.0 colour changes to light grey at 0.6 m 2.0 2 2.1 colour change to light yellow at 2.5 m 3.0 Terminated at target depth of 3.0 m 3.0 Terminated at target depth of 3.0 m 4.0 4 4.0 4 5.0 4								SP		0 ·		
10 1000000000000000000000000000000000000	H).2						<u>ер</u>	brown, slightly moist, loose			
0.6 0.6 0.5 0	Н							55				
10 10 colour changes to light grey at 0.6 m 10 1 1 20 0 15 20 0 0 30 0 0 30 0 0 40 0 0 50 0 0 50 0 0	Н											
10 1 1 1 20 1 15 1 20 2 2 2 21 15 2 1 22 15 2 1 25 1 1 15 2 30 1 1 1 1 30 1 1 1 1 40 1 1 1 1 40 1 1 1 1 5.0 1 1 1 1 5.0 1 1 1 1 5.0 1 1 1 1 5.0 1 1 1 1 5.0 1 1 1 1 5.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C	0.6								0.5		
20 Colour change to light yellow at 2.5 m 3.0 Terminated at target depth of 3.0 m 4.0 Terminated at target depth of 3.0 m 5.0 4.0 5.0 4.0	Ц								colour changes to light grey at 0.6 m			
20 Colour change to light yellow at 2.5 m 3.0 Terminated at target depth of 3.0 m 4.0 Terminated at target depth of 3.0 m 5.0 4.0 5.0 4.0	н											
20 Colour change to light yellow at 2.5 m 3.0 Terminated at target depth of 3.0 m 4.0 Terminated at target depth of 3.0 m 5.0 4.0 5.0 4.0	H ₁	0										
2.0 2.5 colour change to light yellow at 2.5 m 2.5 3.0 Terminated at target depth of 3.0 m 3.6 4.0 4 4 5.0 4 4	H									1 ·		
2.0 2.5 colour change to light yellow at 2.5 m 2.5 3.0 Terminated at target depth of 3.0 m 3.6 4.0 4 4 5.0 4 4												
2.0 2.5 colour change to light yellow at 2.5 m 2.5 3.0 Terminated at target depth of 3.0 m 3.6 4.0 4 4 5.0 4 4												
2.0 2.5 colour change to light yellow at 2.5 m 2.5 3.0 Terminated at target depth of 3.0 m 3.6 4.0 4 4 5.0 4 4	н											
2.5 colour change to light yellow at 2.5 m 2.5 3.0 Terminated at target depth of 3.0 m 3 4.0 4 4 5.0 4 4 5.0 4 4										1.5		
2.5 colour change to light yellow at 2.5 m 2.5 3.0 Terminated at target depth of 3.0 m 3 4.0 4 4 5.0 4 4 5.0 4 4	H											
2.5 colour change to light yellow at 2.5 m 2.5 3.0 Terminated at target depth of 3.0 m 3 4.0 4 4 5.0 4 4 5.0 4 4												
2.5 colour change to light yellow at 2.5 m 2.5 3.0 Terminated at target depth of 3.0 m 3 4.0 4 4 5.0 4 4 5.0 4 4												
3.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 3.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 5.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 5.0 Image: colour change to light yellow at 2.5 m Image: colour c	2	2.0								2 ·		
3.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 3.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 5.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 5.0 Image: colour change to light yellow at 2.5 m Image: colour c	Н											
3.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 3.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 5.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 5.0 Image: colour change to light yellow at 2.5 m Image: colour c	Н											
3.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 3.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 4.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 5.0 Image: colour change to light yellow at 2.5 m Image: colour change to light yellow at 2.5 m 5.0 Image: colour change to light yellow at 2.5 m Image: colour c	н											
3.0 3.0 4.0 4.0 5.0 Notes:		2.5								25		
4.0 5.0	н								colour change to light yellow at 2.5 m	2.0		
4.0 5.0	Н											
4.0 5.0	Н											
4.0 4.0 5.0 Notes:	H a	3.0										
4.0 4.0 5.0 Notes:									Terminated at target depth of 3.0 m	3 ·		
4.0 4.0 5.0 Notes:	Н											
4.0 4.0 5.0 Notes:	н											
4.0 4.0 5.0 Notes:	Н											
5.0 Notes:	Η									3.5 ·		
5.0 Notes:	Π											
5.0 Notes:	Ц											
5.0 Notes:	H											
5.0 5.0	\mathbb{H}^4	r.U								4 ·		
5.0 5.0	Η											
5.0 5.0												
5.0 5.0	μ											
Notes:	Η									4.5 ·		
Notes:	Η											
Notes:	Η											
Notes:	Π											
										5.		
			a Tvne						Method: Moieturo			
B - Bulk/Disturbed Sample, HA - Hand Auger D - Dry Logged : MS					nple,						Logged : MS	
UD - Undisturbed Sample E - Excavator M - Moist Checked: AR									E - Excavator M - Moist			
BH - Backhoe Bucket W - Wet									BH - Backhoe Bucket W - Wet			

Reference	: LGK9542019GI		Test Pit/BH No.:	04
Client	: dem		Date Excavated:	27-Nov-2019
Project	: Geotechnical Investiga	tion	Date completed:	27-Nov-2019
Location	: 109, 111 & 113 Robert \$	Street, Como WA	Equipment Type:	Hand Auger
GPS Zone 50	: Northing: 6 458 168	Easting: 392 117	Water Table:	Not Encountered

Depth (m)	RL (m)	Method	Penetration resistance	Sampling Type	Graphic Log	Classification Symbol	Description of Soil Strata	Additional observations	Perth Sand Penetrometer Test (Blows/300mm)
0.0						SP	TOPSOIL, SAND- fine to medium grained, brown dry, loose, with organics	0 -	
- 0.2							SAND- fine to medium grained, grey, slightly moist,		
0.4							loose		
Η							colour changes to light grey at 0.4 m	0.5	
H									
1.0									
1.0								1 ·	
Н									
Н									
								1.5	
H									
H									
2.0								2 ·	
Н								2	
Н									
H								2.5	
Н									
3.0					:::::		Terminated at target depth of 3.0 m	3 ·	
Н									
Н									
H								3.5 ·	
Н									
4.0									
								4 ·	
Н									
Η									
F								4.5 ·	
Η									
Η									
5.0 Notes:								5.	
	ling Type	e:					Method: Moisture:		
		turbed Sar					HA - Hand Auger D - Dry		Logged : MS
UD - l	Undisturb	oed Sampl	e				E - Excavator M - Moist BH - Backhoe Bucket W - Wet		Checked: AR
									

ENGINEERING LOG

ABN:61 737 984 867

eference Flient Project ocation GPS Zone 50	:dem :Geote :109, 1		Investigation 3 Robert Street, Como WA	Test Pit/BH No.: Date Excavated: Date completed: Equipment Type: Water Table:	05 27-Nov-2019 27-Nov-2019 Hand Auger Not Encountered		
Depth (m) RL (m) Method	Penetration resistance Sampling Type	Graphic Log Classification Symbol	Description of Soil Strata	Additional observations	Perth Sand Pene (Blows/30		
0.1 0.4 0.6 1.0 2.0		SP	TOPSOIL, SAND- fine to medium grained, dark brown, dry, loose, with organic, tree bark, branch leaves SAND- fine to medium grained, dark brown, dry, loose colour changes to brown at 0.4 m colour changse to light yellow at 0.6 m	es, 0.5 1 1.5 2 2.5			
4.0			Terminated at target depth of 3.0 m	3.5			
				4.5			

5.0			5.		
Notes:					
Sampling Type:	Method:	Moisture:			
B - Bulk/Disturbed Sample,	HA - Hand Auger	D - Dry		Logged :	MS
UD - Undisturbed Sample	E - Excavator	M - Moist		Checked:	AR
	BH - Backhoe Bucket	W - Wet			

PERTH SAND PENETROMETER (PSP) TEST CERTIFICATES

(AS 1289.6.3.2)

Density Correlation - Table 6.4.6.2 HB 160-2006

Reference Client	LGK9542019GI dem	Test ID Date Tested	01 to 05 27/11/2019
Project	Geotechnical Investigation	Tested by	A Bara
Site	109, 111 & 113 Robert Street, Como WA	Checked by	A Rahman

PSP No.	PSP1	PSP2	PSP3	PSP4	PSP5	
Depth below ground level (mm)		Penetration	Resistance - B	lows/300mm		
150 - 450	8	2	4	4	3	
450 - 750	13	4	6	6	4	
750 - 1050	13	8	8	9	8	
Depth below ground level (mm)	Density Classification					
150 - 450	D	L	L	L	L	
450 - 750	D	L	MD	MD	L	
750 - 1050	D	D	D	D	D	
Remarks:				•		

Density Correlation - Table 6.4.6.2 HB 160-2006

Very Loose (VL)	Loose (L)	Medium Dense (MD)	Dense (D)	Very Dense (VD)
< 2	2-6	6 – 8	8 – 15	≥ 15

GEOTECHNICS

INFILTRATION TEST CERTIFICATES (ASTM D 5126-90)

ABN: 61 737 984 867 PO Box 5050 Canning Vale South WA 6155 admin@localgeotechnics.com.au

eference LGK95	LGK9542019SA		Test ID	FPT1	
lient dem			Date Tested	27-Nov-19	
roject Geote	chnical Investigation		Date Completed	27-Nov-19	
ocation 109, 1	11 & 113 Robert Street, Como	WA	Instrument Type	Guelph Permeamete	
osition Northing	: 6 458 157 Easting:	392 063	Tested by	A Bara	
20 15 0 0 0 0 0 0 0 0 0 0 0 0 0					
	0.5 1 1	5 2	25	3 35	
	0.5 1 1 Time	.5 2	2.5	3 3.5	

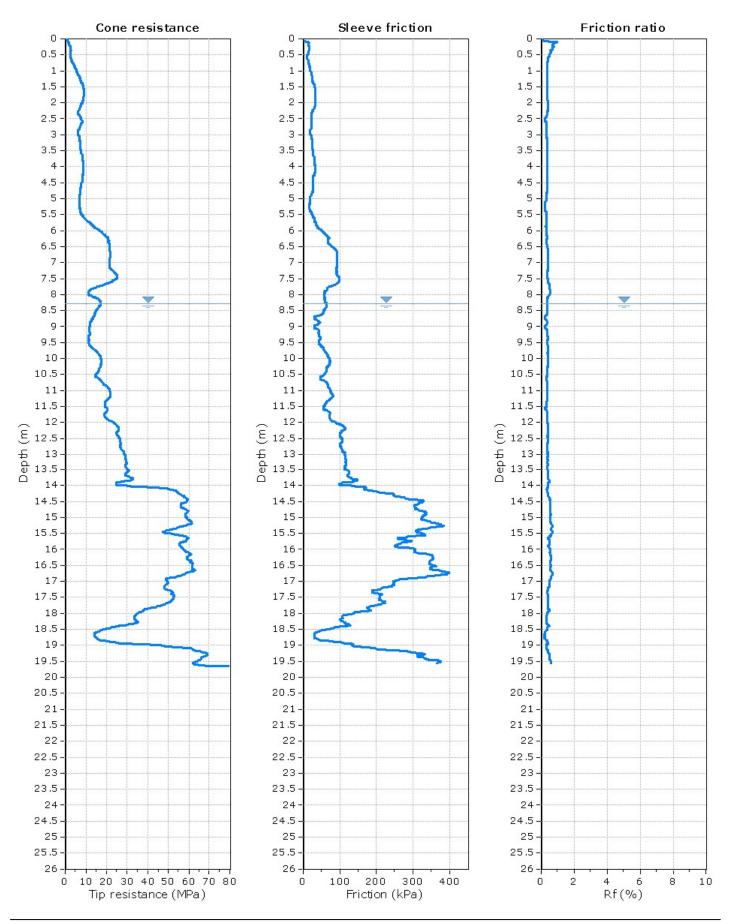
Notes: Test was conducted at a depth of 0.3 m from the existing surface level

Notes:	Test was con	ducted at a depth of 0.3 m from the	e existing surface I	evel		
		Water Hydraulic condu	uctivity K _{fs} :	6.5E-05 5.6E+00	m/sec m/day	
	Signatory:	Dr. Harun Meer	Dat	e: <u>27/11/20</u>	1 <u>19</u>	

INFILTRATION TEST CERTIFICATES (ASTM D 5126-90)

ABN: 61 737 984 867 PO Box 5050 Canning Vale South WA 6155 admin@localgeotechnics.com.au

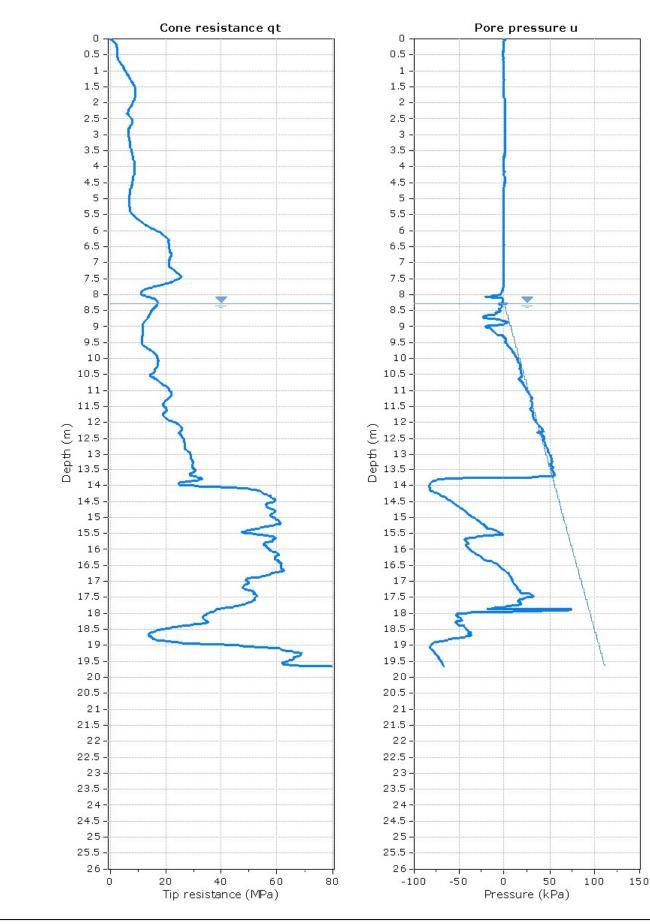
SEOTECHNICS	LGK9542019SA		Test ID	FPT2	
nt	dem		Date Tested	27-Nov-19	
ect	Geotechnical Investigation		Date Completed	27-Nov-19	
ation	109, 111 & 113 Robe		Instrument Type	Guelph Permeameter	
tion	Northing: 6 458 196	Easting: 392 085	Tested by	A Bara	
Rate of Water Level Change (cm/min)					
0 Sat	0.5	1 1.5 Time (m)	2 2.5	3 3.5	
Notes:		Time (m) depth of 0.3 m from the existin dater Hydraulic conductivity		m/sec m/day	
	Signatory:	Sant	Date: 27/11/20	19	


S LOCAL GEOTECHNICS

info@cptwest.com.au www.cptwest.com.au T: 0403 370 045

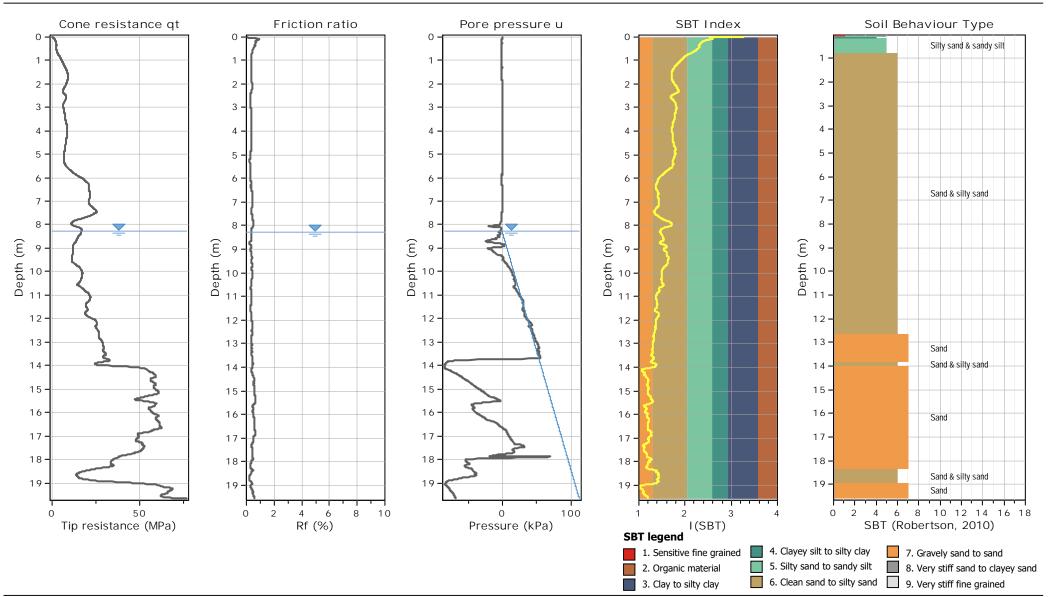
Project: 109 & 111-113 Robert Street (Project No.: LGK9542019GI) Location: Como

CPTu 1 Total depth: 19.66 m, Date: 27/11/2019 Surface Elevation: 9.69 m Coords: X:392112.10, Y:6458197.44 Cone Operator: Andrew


CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 28/11/2019, 8:46:51 AM Project file: C:\Users\CPTWest\Dropbox\projects\2018-2019\Local Geotech\018319_Como\018319\018319\cpt

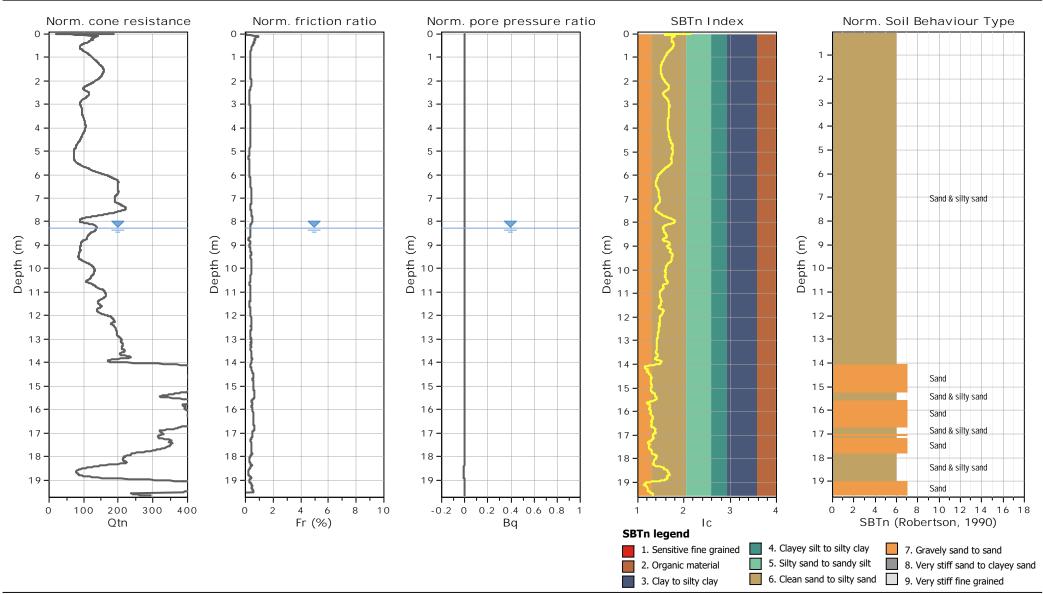
info@cptwest.com.au www.cptwest.com.au T: 0403 370 045

Project: 109 & 111-113 Robert Street (Project No.: LGK9542019GI) Location: Como


CPTu 1 Total depth: 19.66 m, Date: 27/11/2019 Surface Elevation: 9.69 m Coords: X:392112.10, Y:6458197.44 Cone Operator: Andrew

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 28/11/2019, 8:46:51 AM Project file: C:\Users\CPTWest\Dropbox\projects\2018-2019\Local Geotech\018319_Como\018319\018319\cpt

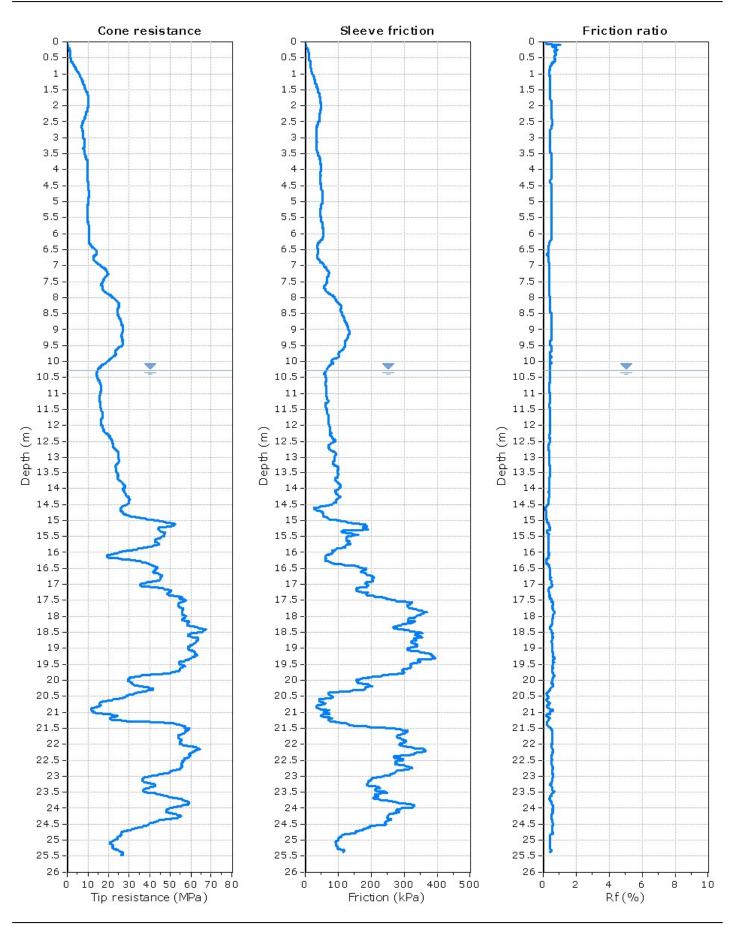
Project:Project No.: LGK9542019GI - Geotechnical Site InvestigationLocation:109 & 111-113 Robert Street, Como, WA



CPTu 1 Total depth: 19.66 m, Date: 27-Nov-19

Project: Project No.: LGK9542019GI - Geotechnical Site Investigation Location: 109 & 111-113 Robert Street, Como, WA

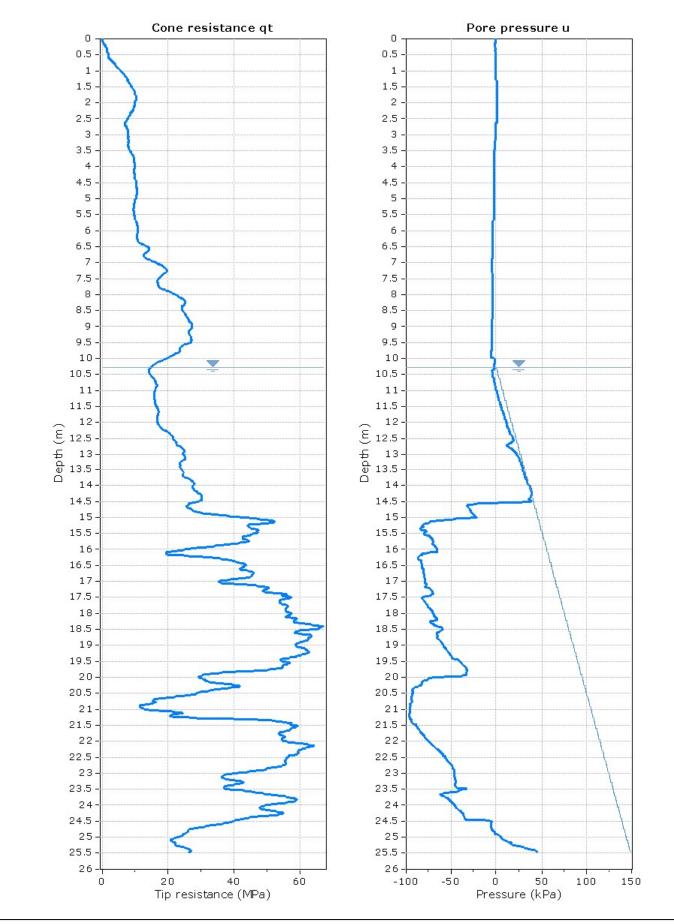
CPT: CPTu 1 Total depth: 19.66 m, Date: 27-Nov-19



info@cptwest.com.au www.cptwest.com.au T: 0403 370 045

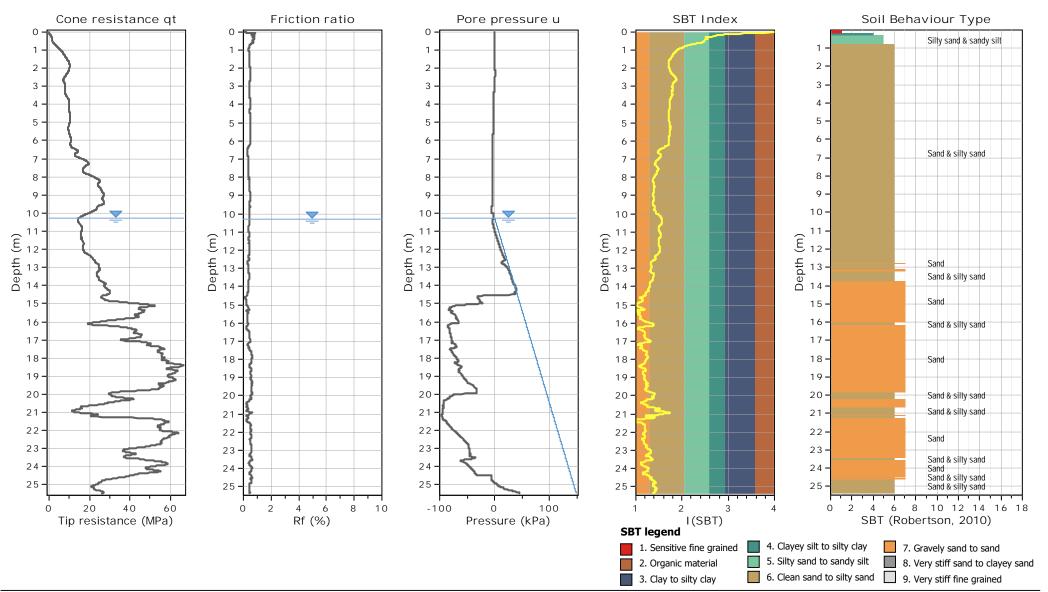
Project: 109 & 111-113 Robert Street (Project No.: LGK9542019GI) Location: Como

CPTu 2 Total depth: 25.47 m, Date: 27/11/2019 Surface Elevation: 11.51 m Coords: X:392065.39, Y:6458147.12 Cone Operator: Andrew


CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 28/11/2019, 8:46:51 AM Project file: C:\Users\CPTWest\Dropbox\projects\2018-2019\Local Geotech\018319_Como\018319\018319.cpt

info@cptwest.com.au www.cptwest.com.au T: 0403 370 045

Project: 109 & 111-113 Robert Street (Project No.: LGK9542019GI) Location: Como


CPTu 2 Total depth: 25.47 m, Date: 27/11/2019 Surface Elevation: 11.51 m Coords: X:392065.39, Y:6458147.12 Cone Operator: Andrew

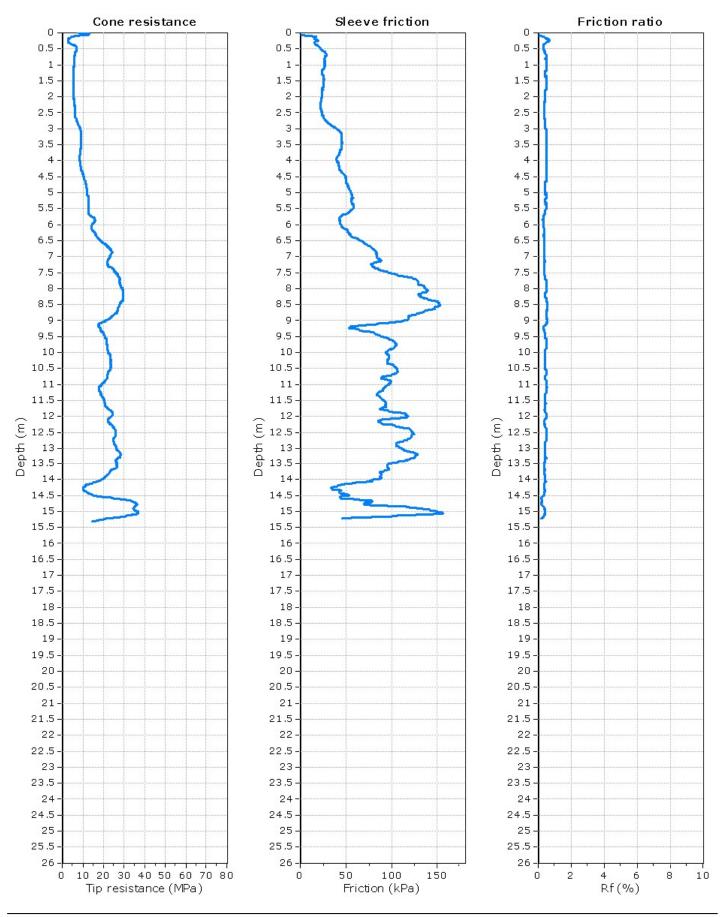
CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 28/11/2019, 8:46:52 AM Project file: C:\Users\CPTWest\Dropbox\projects\2018-2019\Local Geotech\018319_Como\018319\018319\cpt

Project:Project No.: LGK9542019GI - Geotechnical Site InvestigationLocation:109 & 111-113 Robert Street, Como, WA

CPTu 2 Total depth: 25.47 m, Date: 27-Nov-19

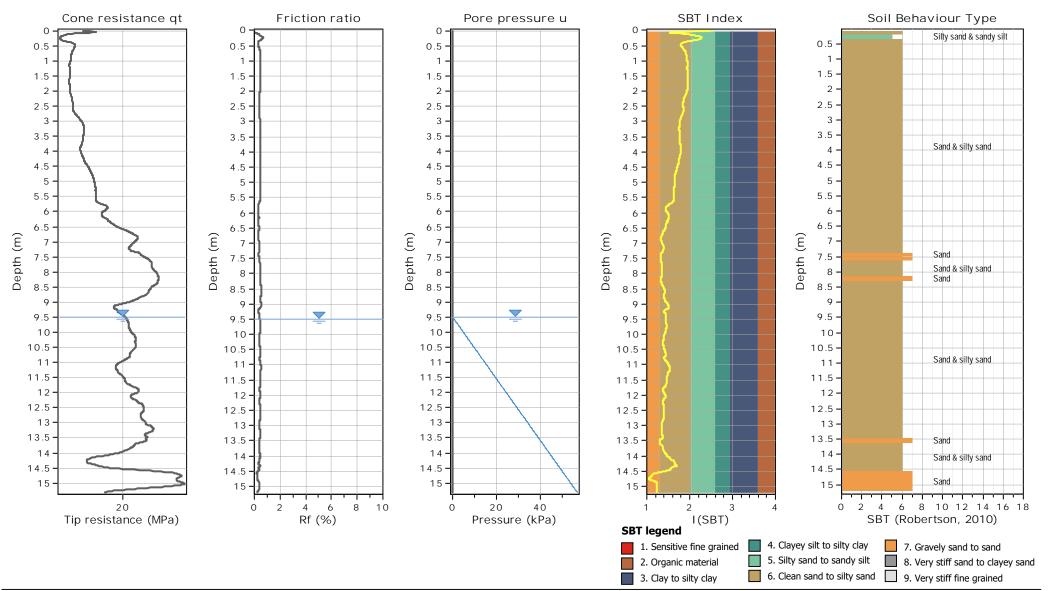
Project:Project No.: LGK9542019GI - Geotechnical Site InvestigationLocation:109 & 111-113 Robert Street, Como, WA

CPT: CPTu 2 Total depth: 25.47 m, Date: 27-Nov-19

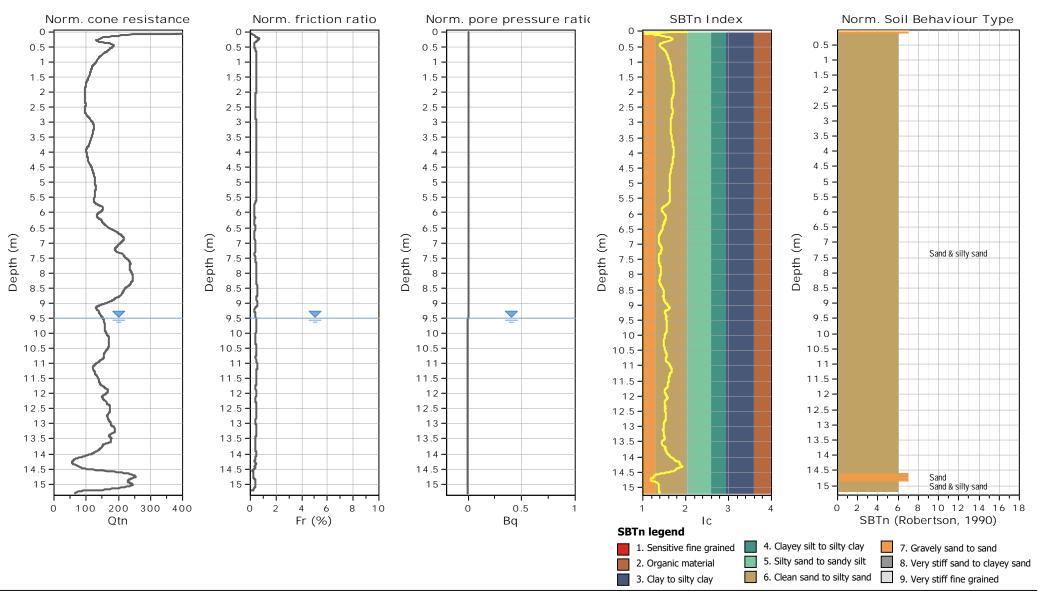


info@cptwest.com.au www.cptwest.com.au T: 0403 370 045

Project: 109 & 111-113 Robert Street (Project No.: LGK9542019GI) Location: Como

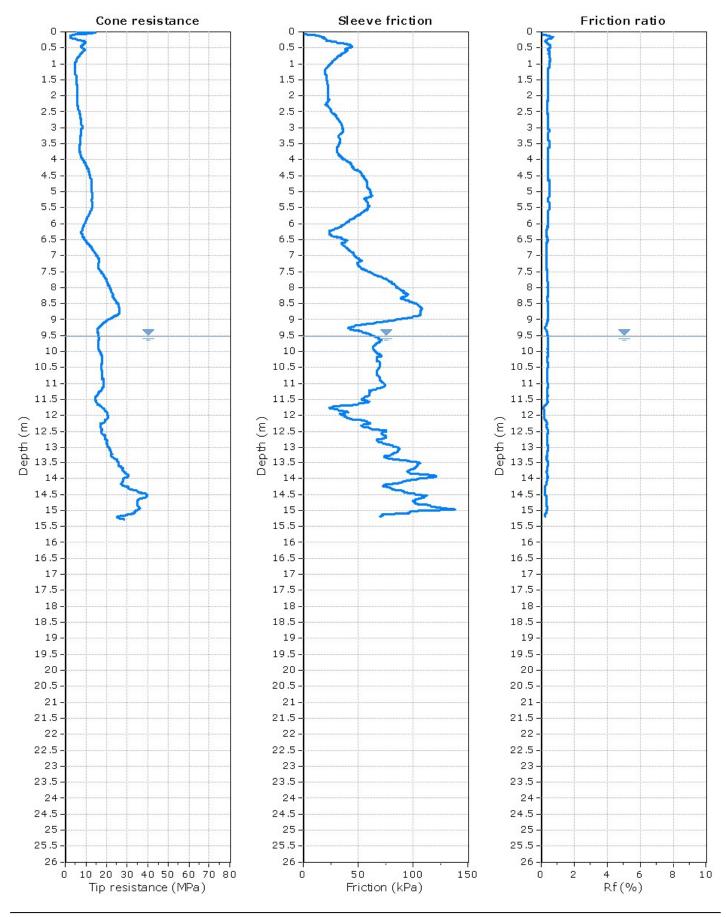

CPT 3 Total depth: 15.31 m, Date: 27/11/2019 Surface Elevation: 10.64 m Coords: X:392080.49, Y:6458185.18 Cone Operator: Andrew

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 28/11/2019, 8:46:52 AM Project file: C:\Users\CPTWest\Dropbox\projects\2018-2019\Local Geotech\018319_Como\018319\018319\cpt


Project:Project No.: LGK9542019GI - Geotechnical Site InvestigationLocation:109 & 111-113 Robert Street, Como, WA

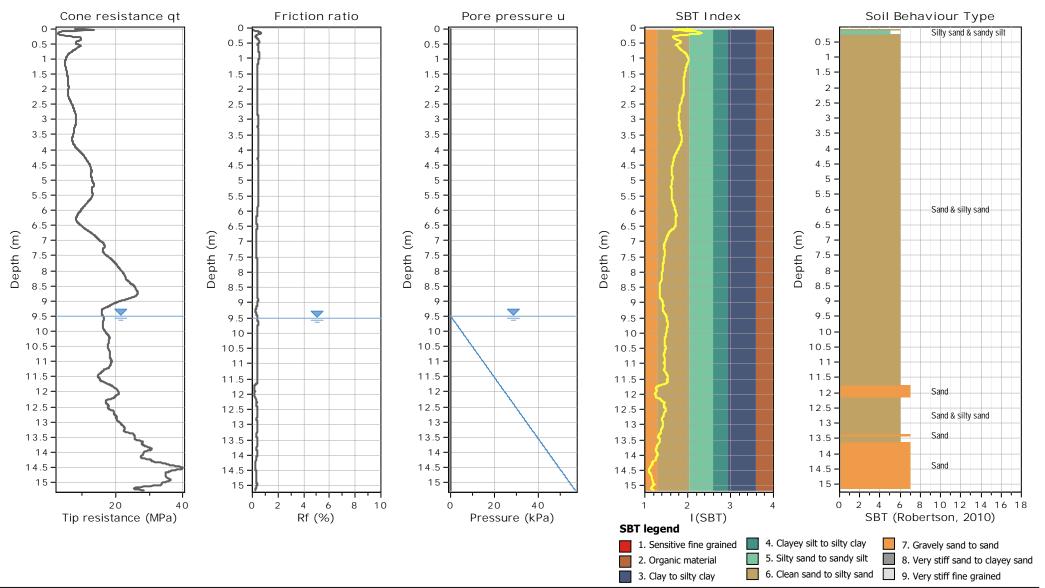
CPT 3 Total depth: 15.31 m, Date: 27-Nov-19

Project: Project No.: LGK9542019GI - Geotechnical Site Investigation Location: 109 & 111-113 Robert Street, Como, WA


CPT: CPT 3 Total depth: 15.31 m, Date: 27-Nov-19

info@cptwest.com.au www.cptwest.com.au T: 0403 370 045

Project: 109 & 111-113 Robert Street (Project No.: LGK9542019GI) Location: Como

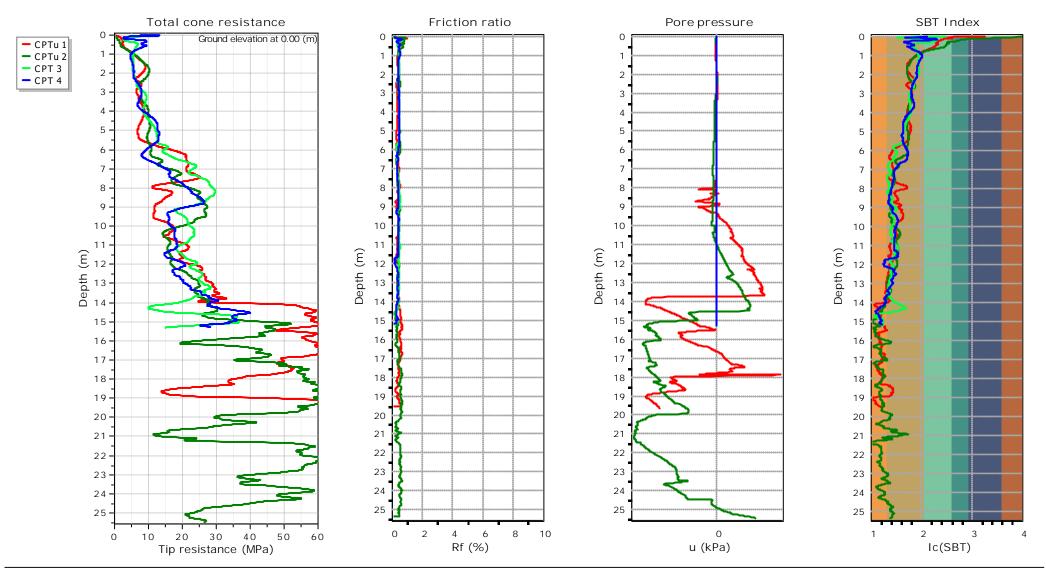

CPT 4 Total depth: 15.26 m, Date: 27/11/2019 Surface Elevation: 10.72 m Coords: X:392070.10, Y:6458203.60 Cone Operator: Andrew

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 28/11/2019, 8:46:52 AM Project file: C:\Users\CPTWest\Dropbox\projects\2018-2019\Local Geotech\018319_Como\018319\018319.cpt


Project: Project No.: LGK9542019GI - Geotechnical Site Investigation Location: 109 & 111-113 Robert Street, Como, WA

CPT 4 Total depth: 15.26 m, Date: 27-Nov-19

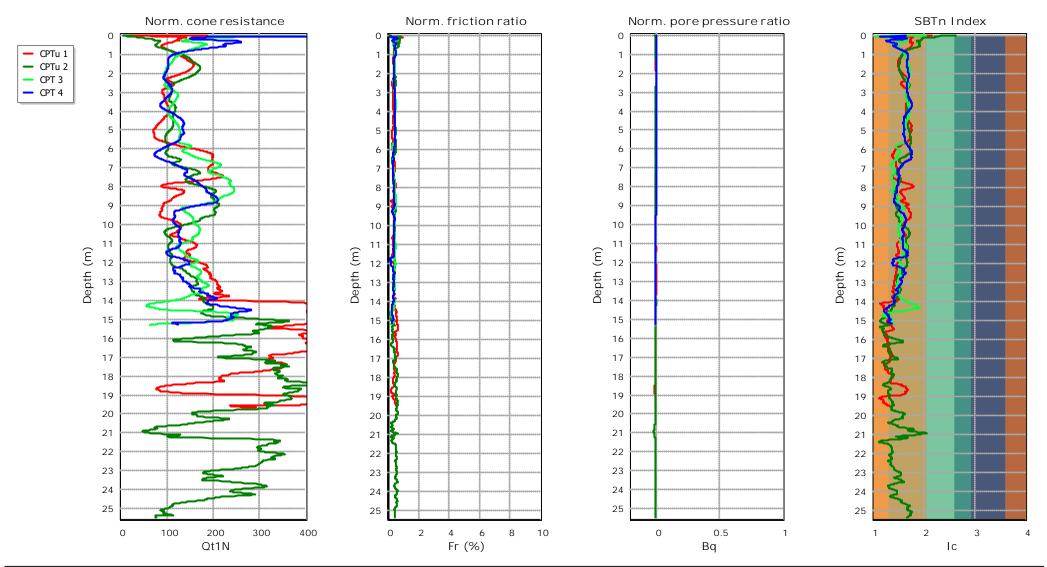
Project:Project No.: LGK9542019GI - Geotechnical Site InvestigationLocation:109 & 111-113 Robert Street, Como, WA


8

CPT: CPT 4 Total depth: 15.26 m, Date: 27-Nov-19

Project: Project No.: LGK9542019GI - Geotechnical Site Investigation

Location: 109 & 111-113 Robert Street, Como, WA


Overlay basic interpretation plots

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 03-Dec-19, 11:39:17 PM Project file: D:\My Document_D\LG\2019\201949 LGK9542019GI - 109 & 111-113 Robert Street Como WA Church\CPT\CPeT-IT_109 Robert St Como.cpt

Project: Project No.: LGK9542019GI - Geotechnical Site Investigation

Location: 109 & 111-113 Robert Street, Como, WA

Normalized basic plots

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 03-Dec-19, 11:39:17 PM Project file: D:\My Document_D\LG\2019\201949 LGK9542019GI - 109 & 111-113 Robert Street Como WA Church\CPT\CPeT-IT_109 Robert St Como.cpt

APPENDIX D SITE PHOTOS

S LOCAL GEOTECHNICS

Photo 1. Site, view from the Robert Street, Como WA

Photo 2. Site, view of daycare car park from Cassey Street, Como WA

Project: LGK9542019GI Geotechnical Investigation Site: 109, 111 & 113 Robert Street, Como WA Client: dem

Photo 3. Site, view of church car park from Lily Lane, Como WA

Photo 4. Locating of underground services by Ground Penetrating Radar (GPR)

ii

Photo 5. Test Location 02 (TH2), Sub-surface probing by using a hand auger and PSP testing

Photo 6. Soil from Test Location 01 (TH1)

Photo 7. Test Location 03 (TH3), Sub-surface probing by using a hand auger and PSP testing

Photo 8. Test Location 05 (DCP5), testing by a Dynamic Cone Penetrometer

Project: LGK9542019GI Geotechnical Investigation Site: 109, 111 & 113 Robert Street, Como WA Client: dem

Photo 9. Test Location 02 (TH2), Testing by Guelph Permeameter

Photo 10. CPT Test Location 04 (CPT4), Performing Cone Penetrometer Testing

Project: LGK9542019GI Geotechnical Investigation Site: 109, 111 & 113 Robert Street, Como WA Client: dem

V

SIDCAL GEOTECHNICS

PROJECT: Geotechnical InvestigationSAMPLOCATION: No : 109 & 111 - 113 - Robert Street - Como WATESTSAMPLE ID: TH : 3LG ReDEPTH(m): (1.0 - 2.0)LG ReTEST DATAATTERBERG LIMITSTEST METHODSLIQUID LIMIT(%)N/AAS 1289 3.1.2PLASTICITY INDEXN/AAS 1289 3.2.1PLASTICITY INDEXN/AAS 1289 3.4.1LINEAR SHRINKAGE(%)N/AAS 1289 3.4.1TESTING INFORMATION	JOB NO : 164 / 185 / 19 PLE No : NB47570 DATE : 29/11/2019 of No : LGK9542019GI	
CLIENT : Local Geotechnics K&A J PROJECT : Geotechnical Investigation SAMP LOCATION : No : 109 & 111 - 113 - Robert Street - Como WA TEST SAMPLE ID : TH : 3 LG Re DEPTH(m) : (1.0 - 2.0) PLAST TEST DATA PLAST ATTERBERG LIMITS TEST METHODS LIQUID LIMIT(%) N/A AS 1289 3.1.2 PLASTIC LIMIT(%) N/A AS 1289 3.2.1 PLASTICITY INDEX N/A AS 1289 3.4.1 LINEAR SHRINKAGE(%) N/A AS 1289 3.4.1 ATTERBERG LIMITS: SAMPLE HISTORY: N/A METHOD OF PREPARATION N/A LINEAR SHRINKAGE : N/A	PLE No : NB47570 DATE : 29/11/2019 of No : LGK9542019GI FICITY CHART	
PROJECT : Geotechnical Investigation SAMP LOCATION : No : 109 & 111 - 113 - Robert Street - Como WA TEST SAMPLE ID : TH : 3 LG Re DEPTH(m) : (1.0 - 2.0) Itest DATA TEST DATA PLAST ATTERBERG LIMITS TEST METHODS LIQUID LIMIT(%) N/A AS 1289 3.1.2 PLASTIC LIMIT(%) N/A AS 1289 3.3.1 LIQUID LIMIT(%) N/A AS 1289 3.3.1 LIQUID LIMIT(%) N/A AS 1289 3.4.1 PLASTIC LIMITS: Itest Information ATTERBERG LIMITS: Itest Information ATTERBERG LIMITS: Itest Information ATTERBERG LIMITS: Itest Information ATTERBERG LIMITS: Itest Information INFORMATION Itest Information ATTERBERG LIMITS: Itest Information Information Itest Information Internet Itest Information <td< td=""><td>PLE No : NB47570 DATE : 29/11/2019 of No : LGK9542019GI FICITY CHART</td></td<>	PLE No : NB47570 DATE : 29/11/2019 of No : LGK9542019GI FICITY CHART	
OF MARKEN STREET - Como WA TEST DATA DEPTH(m) : (1.0 - 2.0) TEST DATA PLAST TEST DATA PLAST ATTERBERG LIMITS TEST METHODS LIQUID LIMIT(%) N/A AS 1289 3.1.2 PLASTIC LIMIT(%) N/A AS 1289 3.2.1 PLASTICITY INDEX N/A AS 1289 3.2.1 \$ \$	DATE : 29/11/2019 of No : LGK9542019GI TICITY CHART	
SAMPLE ID : TH : 3 LG Re DEPTH(m) : (1.0 - 2.0) TEST DATA PLAST TEST DATA PLAST ATTERBERG LIMITS TEST METHODS LIQUID LIMIT(%) N/A AS 1289 3.1.2 PLASTIC LIMIT(%) N/A AS 1289 3.2.1 OF TESTING INFORMATION Somple History: N/A ATTERBERG LIMITS: N/A AS 1289 3.4.1 SAMPLE HISTORY: N/A MATHER BERG LIMITS: O 10 0 ATTERBERG LIMITS: SAMPLE HISTORY: N/A MAPLE HISTORY: N/A MAPLE HISTORY: N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td cols<="" td=""><td>TICITY CHART</td></td>	<td>TICITY CHART</td>	TICITY CHART
DEPTH(m) : (1.0 - 2.0) TEST DATA PLAST ATTERBERG LIMITS TEST METHODS LIQUID LIMIT(%) N/A AS 1289 3.1.2 80 70 60 PLASTIC LIMIT(%) N/A AS 1289 3.2.1 80 70 60	TICITY CHART	
TEST DATA PLAST ATTERBERG LIMITS TEST METHODS LIQUID LIMIT(%) N/A AS 1289 3.1.2 PLASTIC LIMIT(%) N/A AS 1289 3.2.1 PLASTICITY INDEX N/A AS 1289 3.3.1 LINEAR SHRINKAGE(%) N/A AS 1289 3.4.1 TESTING INFORMATION 30 20 ATTERBERG LIMITS: 10 0 ATTERBERG LIMITS: 0 10 LINEAR SHRINKAGE : N/A N/A		
ATTERBERG LIMITS TEST METHODS LIQUID LIMIT(%) N/A AS 1289 3.1.2 PLASTIC LIMIT(%) N/A AS 1289 3.2.1 PLASTICITY INDEX N/A AS 1289 3.3.1 LINEAR SHRINKAGE(%) N/A AS 1289 3.4.1 TESTING INFORMATION ATTERBERG LIMITS: SAMPLE HISTORY: N/A METHOD OF PREPARATION N/A LINEAR SHRINKAGE :		
LIQUID LIMIT(%) N/A AS 1289 3.1.2 PLASTIC LIMIT(%) N/A AS 1289 3.2.1 PLASTICITY INDEX N/A AS 1289 3.3.1 LINEAR SHRINKAGE(%) N/A AS 1289 3.4.1 TESTING INFORMATION 30 ATTERBERG LIMITS: 10 SAMPLE HISTORY: N/A METHOD OF PREPARATION N/A JINEAR SHRINKAGE : 0	'A' LINE	
PLASTIC LIMIT(%) N/A AS 1289 3.2.1 PLASTICITY INDEX N/A AS 1289 3.3.1 LINEAR SHRINKAGE(%) N/A AS 1289 3.4.1 TESTING INFORMATION 30 ATTERBERG LIMITS: 10 SAMPLE HISTORY: N/A METHOD OF PREPARATION N/A LINEAR SHRINKAGE : 0	'A' LINE	
PLASTICITY INDEX N/A AS 1289 3.3.1 LINEAR SHRINKAGE(%) N/A AS 1289 3.4.1 TESTING INFORMATION 30 ATTERBERG LIMITS: 10 SAMPLE HISTORY: N/A METHOD OF PREPARATION N/A LINEAR SHRINKAGE : 0	'A' LINE	
SAMPLE HISTORY: N/A 0 10 METHOD OF PREPARATION N/A 0 10	'A' LINE	
SAMPLE HISTORY: N/A 0 10 METHOD OF PREPARATION N/A 0 10		
SAMPLE HISTORY: N/A 0 10 METHOD OF PREPARATION N/A 0 10		
SAMPLE HISTORY: N/A METHOD OF PREPARATION N/A LINEAR SHRINKAGE : 0		
METHOD OF PREPARATION N/A 0 10		
LINEAR SHRINKAGE :	20 30 40 50 60 70 80 90	
SIZE OF MOULD (mm) N/A	Liquid Limit (%)	
CRUMBLING OR CURLING N/A AS 1289 3.6.1 AS 1289 3.6.1 - PARTICLE SIZE DIST	PIRUTION	
PARTICLE SIZE DISTRIBN.		
SIEVE SIZE %PASSING 100		
100.0mm		
90 90 90 90 90 90 90 90 90 90 90 90 90 9		
53.0mm 80		
70		
37.5mm 70 60		
26.5mm 60 6		
19.0mm 50 9.50mm 50		
× 10		
4./5mm		
2.36mm 30		
1.18mm 100 20		
0.600mm 69		
0.425mm 29 10		
0.300mm 8 0		
0.150mm 2 0.01 0.1 1	10	
0.075mm 1 Particle Size (r	mm)	

												Page	2 of	2	
			1	гезт с	ERT	IFICAT	ſE								
CLIENT	: Local Ge	otechnics						X&A JO)R N():		164	/ 185	/ 19	
PROJECT	: Geotechn	ical Inves		n				SAMPL				NB4'		11)	
LOCATION	: No : 109		- Com	o WA		TEST D				29/11		0			
SAMPLE ID	: TH:5	com										CI			
DEPTH(m)									LGK	9542	0190	JI			
)					the second								
ATTERBERG LIM	TEST DATA		TES	T METHODS			F	PLASTIC	CITY	CH	ART				
LIQUID LIMIT(%		N/A		1289 3.1.			80								
PLASTIC LIMIT(PLASTICITY INI		N/A N/A		5 1289 3.2. 5 1289 3.3.		(%)	70 60								
LINEAR SHRINK		N/A		5 1289 3.4.		ndex	50					'A' LI	VE	/	
	TESTING INF					Plasticity Index (%)	40 30								
ATTERBERG LIMI	TS					lasti	20								
T LKDLKO LIMI	SAMPLE HIST	ORY:		N/A		<u>a</u> .	10 0					_			
	METHOD OF P	REPARATIO	N	N/A				0 10 2	20 30		50		70 80	90	
LINEAR SHRINKA					- x - 2				Li	quid L	imit (%	6)			
	SIZE OF MOUL			N/A											
AS 1289	CRUMBLING (JK CURLING		N/A	1 _ DA	RTICLE	SIZI	F DIGTO	IPIT	ION					
PARTICLE SIZE D			Ac	5 1207 5.0	 I A	RIICLE	SILI								
SIEVE SIZE	%PASSING	100)												Т
100.0mm		90													2 . S
75.0mm							-								
53.0mm		80)												† ·
37.5mm		70) —												+ 1
26.5mm		5 60)												1
19.0mm		sing													
9.50mm	·	% Passing)												t
4.75mm		× 40) —								+++				+
2.36mm		30	,												
1.18mm	100														
0.600mm	85	20) <u> </u>								+++				+
		1() ——							1					+
0.425mm	50		,												
0.300mm	12		0.01		0.1			1			10				
						Par	ticle	Size (m	m)						
0.075mm	1														
0.150mm 0.075mm	Note: Sample	spplied by 6 02/12/201	lient. Re	sults apply	y to the		receiv	ved.	· · · ·	J.Wa	la	J.) m	N	51	_
	'Accr	edited for a	complian	ice with IS	SO/IEC	17025'									
COMPETENCE		document s	-				Ι.								
PARTICLE SIZE	E DISTRIBUTI	ON - TEST	CERTIF	FICATE	K	anga &	As	sociate	s				1		
42Lionel Street, Naval Base-WA 6165															
CERTIF	ICATE No:	N43301	CERTIFICATE No: N43301						ACCREDITATION No. 2337						
					1714			11110. 2							

СНА	IN OF CUSTODY	DOC	UME	ΝΤΑΤ	ION													
CLIENT:	Local Geotechnics						SAMPLER:	Aurelian Bara										
	S / OFFICE: 12/8 Production Road	d, Canning	Vale 6155				MOBILE:	0470 082 233										
PROJEC	T MANAGER (PM) Harun Meer						PHONE: 0426 08 4387 (Ashrafur)									ALS Laboratory Group		
PROJECT ID: LGK9542019GI							EMAIL REPO	ORT TO:	ashrafur.ra	hman@	localgeo	echnic	s.com	.au; ad	min@i	localgeotechnics.com.au		
SITE: 109,111 & 113 Robert St. Como WA P.O. ND.:						EMAIL INVOICE TO: (if different to report)												
RESULT	S REQUIRED (Date):			QUOTE N	10.:		ANALYSIS REQUIRED including SUITES (note - suite codes must be listed to attract suite prices)											
	BORATORY USE ONLY		ENTS / SPE	CIAL HAN	DLING / STORAGE O	R DISPOSAL;	-	PH plus EC (1:5) - IN-45; Chloride (requires 1:5 soil water leach) - ED045; Suffate - Total as SO4 - ED0407; Salinity - Total Soluble Satis - EA014						1	Notes: e.g. Highly contaminated samples			
COCLER	SEAL (circle appropriate)						υ	soluj Soluj								e.g. "High PAHs expected".		
Intact:	Yes No D	144.00		-			pH and pHFOX (ASS field screening test)	N-4S ater k fal a: rotai								Extra volume for QC or trace LORs etc.		
							(AS	5) - 1 01 ws 11y - 1										
GHILLED	O No	Al-ve-		·			fest)	C (1: 1:5 s ulfate 014										
	SAMPLE INFORMATION (note:	S = Soil \A	/=\//ater)		CONTAINER INF	ORMATION	hd br Pring	lus E 15; S 167; S										
ALS ID	SAMPLE ID	MATRIX	DATE	Time	Type / Code	Total cont	pH a scree	PH p ED0.										
1-4	TH1 (0.25m, 1.0m, 2.0m, 3.0m)	soil					x											
5-8	TH2 (0.0m, 0.5m, 1.5m, 2.5m)	soil					x								+			
9-12	TH3 (0.0m, 0.75m, 2.0m, 3.0m)	soil					x								1	4		
<u> </u>	¢	soil				1	x			-								
1.	TH4 (0.25m, 1.0m, 1.5m, 2.5m) TH5 (0.5m, 1.5m, 2.0m, 3.0m)	soil				1	x							-	+			
21	TH3 (1.0m-2.0m)	SUI	<u> </u>					x										
27	TH5 (1.5m-3.0m)					1	1	x		1				-	1			
-6		1					1					-	+		-			
<u> </u>										+				1	+			
	···· ····						<u> </u>			+			+	+	+	•		
		+										+		+				
	· · · · · · · · · · · · · · · · · · ·					1	-					+				-		
					· · · · · ·	1												
		+										+	+			· · · · · · · · · · · · · · · · · · ·		
										-		+	+					
							1					+		_	-	· · · · · · · · ·		
									•			-						
								1					+	_	1			
	<u>_</u>			<u> </u>								_	-					
							<u> </u>			_		_	_					
			1						<u> </u>									
ļ				<u> </u>			 		<u> </u>			+			+			
L			<u> </u>		1	1		<u></u>	1									
RELINQUISHED BY;						L	. 1.3	REC	EIVED B	1								
	Ashrafur Rahman				Date: 2/12/2019		Name: Of:	M			Date: 2/12/19					Con' Note No:		
	al Geotechnics				Time: Date:		Ot: Name:	10)			Time: Date:	130)			Transport Co:		
Name: Of:					Time:		Of:		-		Time:							
1 ^{31.}							Q1.											

Environmental Division Perth Work Order Reference EP1912722 -4

Telephone : + 61-8-9406 1301

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; CRC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved;

V = VOA Vial HCI Preserved; VS = VOA Vial Sulphunc Preserved; SG = Sulfuric Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved Specialion bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; AS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order	: EP1912722	Page	: 1 of 7
Client		Laboratory	Environmental Division Perth
Contact	: Harun Meer	Contact	: Customer Services EP
Address	: PO Box 5050	Address	: 26 Rigali Way Wangara WA Australia 6065
	Canning Vale South Western Australia 6155		
Telephone	: 08 9457 3517	Telephone	: +61-8-9406 1301
Project	: LGK9542019GI	Date Samples Received	: 27-Nov-2019 17:30
Order number	:	Date Analysis Commenced	: 04-Dec-2019
C-O-C number	:	Issue Date	: 10-Dec-2019 08:14
Sampler	: Aurelian Bara		
Site	: 109,111 & 113 Robert St, Como WA		
Quote number	: EN/222		Accreditation No. 8
No. of samples received	: 22		Accreditation No. 8 Accredited for compliance wi
No. of samples analysed	: 22		ISO/IEC 17025 - Testi

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA
Daniel Fisher	Inorganics Analyst	Perth ASS, Wangara, WA
Daniel Fisher	Inorganics Analyst	Perth Inorganics, Wangara, WA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

Page	: 3 of 7
Work Order	: EP1912722
Client	: LOCAL GEOTECHNICS
Project	: LGK9542019GI

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TH1 (0.25m)	TH1 (1.0m)	TH1 (2.0m)	TH1 (3.0m)	TH2 (0.0m)
	Cl	ient sampli	ng date / time	27-Nov-2019 00:00				
Compound	CAS Number	LOR	Unit	EP1912722-001	EP1912722-002	EP1912722-003	EP1912722-004	EP1912722-005
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
рН (F)		0.1	pH Unit	6.6	7.0	7.0	7.1	6.9
pH (Fox)		0.1	pH Unit	4.6	5.0	5.1	5.2	4.6
Reaction Rate		1	-	Moderate	Slight	Slight	Slight	Moderate

Page	: 4 of 7
Work Order	: EP1912722
Client	: LOCAL GEOTECHNICS
Project	: LGK9542019GI

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TH2 (0.5m)	TH2 (1.5m)	TH2 (2.5m)	TH3 (0.0m)	TH3 (0.75m)
	Cl	ient sampli	ng date / time	27-Nov-2019 00:00				
Compound	CAS Number	LOR	Unit	EP1912722-006	EP1912722-007	EP1912722-008	EP1912722-009	EP1912722-010
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
рН (F)		0.1	pH Unit	7.0	7.1	7.1	6.8	6.3
pH (Fox)		0.1	pH Unit	5.1	5.3	5.4	4.3	4.4
Reaction Rate		1	-	Moderate	Slight	Slight	Moderate	Moderate

Page	5 of 7
Work Order	: EP1912722
Client	: LOCAL GEOTECHNICS
Project	: LGK9542019GI

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TH3 (2.0m)	TH3 (3.0m)	TH4 (0.25m)	TH4 (1.0m)	TH4 (1.5m)
	Cl	ient sampli	ng date / time	27-Nov-2019 00:00				
Compound	CAS Number	LOR	Unit	EP1912722-011	EP1912722-012	EP1912722-013	EP1912722-014	EP1912722-015
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
рН (F)		0.1	pH Unit	6.2	6.1	6.7	6.9	6.1
pH (Fox)		0.1	pH Unit	4.6	4.4	4.9	5.0	5.0
Reaction Rate		1	-	Slight	Slight	Moderate	Moderate	Moderate

Page	: 6 of 7
Work Order	: EP1912722
Client	: LOCAL GEOTECHNICS
Project	LGK9542019GI

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TH4 (2.5m)	TH5 (0.5m)	TH5 (1.5m)	TH5 (2.0m)	TH5 (3.0m)
	Cli	ient sampli	ng date / time	27-Nov-2019 00:00				
Compound	CAS Number	LOR	Unit	EP1912722-016	EP1912722-017	EP1912722-018	EP1912722-019	EP1912722-020
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
рН (F)		0.1	pH Unit	6.9	7.4	7.8	7.9	8.2
pH (Fox)		0.1	pH Unit	5.5	5.5	5.6	5.8	5.8
Reaction Rate		1	-	Slight	Moderate	Moderate	Moderate	Moderate

Page	: 7 of 7
Work Order	: EP1912722
Client	: LOCAL GEOTECHNICS
Project	LGK9542019GI

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TH3 (1.0m-2.0m)	TH5 (1.5m-3.0m)	 	
	Cli	ent samplii	ng date / time	27-Nov-2019 00:00	27-Nov-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EP1912722-021	EP1912722-022	 	
				Result	Result	 	
EA002: pH 1:5 (Soils)							
pH Value		0.1	pH Unit	7.8	8.4	 	
EA010: Conductivity (1:5)							
Electrical Conductivity @ 25°C		1	µS/cm	5	23	 	
EA014 Total Soluble Salts							
Total Soluble Salts		5	mg/kg	16	75	 	
EA055: Moisture Content (Dried @ 105-1	10°C)						
Moisture Content		0.1	%	3.4	3.0	 	
ED040: Sulfur as SO4 2-							
Sulfate as SO4 2-	14808-79-8	100	mg/kg	<100	<100	 	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	10	mg/kg	<10	<10	 	

QUALITY CONTROL REPORT

Work Order	: EP1912722	Page	: 1 of 3	
Client		Laboratory	: Environmental Division Perth	
Contact	: Harun Meer	Contact	: Customer Services EP	
Address	: PO Box 5050 Canning Vale South Western Australia 6155	Address	: 26 Rigali Way Wangara WA Austra	alia 6065
Telephone	: 08 9457 3517	Telephone	: +61-8-9406 1301	
Project	: LGK9542019GI	Date Samples Received	: 27-Nov-2019	
Order number	:	Date Analysis Commenced	: 04-Dec-2019	
C-O-C number	:	Issue Date	: 10-Dec-2019	
Sampler	: Aurelian Bara		HC HC	BC-MRA NATA
Site	: 109,111 & 113 Robert St, Como WA		internet and the second se	
Quote number	EN/222			Accreditation No. 825
No. of samples received	: 22			Accredited for compliance with
No. of samples analysed	: 22			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA
Daniel Fisher	Inorganics Analyst	Perth ASS, Wangara, WA
Daniel Fisher	Inorganics Analyst	Perth Inorganics, Wangara, WA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA002: pH 1:5 (Soils	s) (QC Lot: 2744945)								
EP1912611-003	Anonymous	EA002: pH Value		0.1	pH Unit	8.0	8.3	3.57	0% - 20%
EA010: Conductivity	(1:5) (QC Lot: 274494	6)							
EP1912722-021	TH3 (1.0m-2.0m)	EA010: Electrical Conductivity @ 25°C		1	μS/cm	5	5	0.00	No Limit
EA037: Ass Field S	creening Analysis (QC	Lot: 2752782)							
EP1912722-001	TH1 (0.25m)	EA037: pH (F)		0.1	pH Unit	6.6	6.6	0.00	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	4.6	4.6	0.00	0% - 20%
EP1912722-010	TH3 (0.75m)	EA037: pH (F)		0.1	pH Unit	6.3	6.3	0.00	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	4.4	4.3	0.00	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2747760)							
EP1912722-021	TH3 (1.0m-2.0m)	EA055: Moisture Content		0.1	%	3.4	3.5	0.00	0% - 20%
EP1912760-003	Anonymous	EA055: Moisture Content		0.1	%	10.4	9.9	5.33	0% - 20%
ED040T : Total Sulfa	ate by ICPAES (QC Lot:	: 2743446)							
EP1912657-001	Anonymous	ED040T: Sulfate as SO4 2-	14808-79-8	100	mg/kg	350	340	0.00	No Limit
ED045G: Chloride b	y Discrete Analyser (Q	C Lot: 2744947)							
EP1912722-021	TH3 (1.0m-2.0m)	ED045G: Chloride	16887-00-6	10	mg/kg	<10	<10	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA002: pH 1:5 (Soils) (QCLot: 2744945)								
EA002: pH Value			pH Unit		4 pH Unit	100	70.0	130
					7 pH Unit	99.8	70.0	130
EA010: Conductivity (1:5) (QCLot: 2744946)								
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	24800 µS/cm	101	93.6	106
ED040T : Total Sulfate by ICPAES (QCLot: 2743446)								
ED040T: Sulfate as SO4 2-	14808-79-8	100	mg/kg	<100				
ED045G: Chloride by Discrete Analyser (QCLot: 2744	947)							
ED045G: Chloride	16887-00-6	10	mg/kg	<10	50 mg/kg	100	88.0	115
				<10	5000 mg/kg	100	88.0	115

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL	ub-Matrix: SOIL					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
ED045G: Chloride	by Discrete Analyser (QCLot: 2744947)										
EP1912722-022	TH5 (1.5m-3.0m)	ED045G: Chloride	16887-00-6	5000 mg/kg	99.8	70.0	130				

QA/QC Compliance As	ssessment to assist with	Quality Review		
EP1912722	Page	: 1 of 5		
	Laboratory	: Environmental Division Perth		
: Harun Meer	Telephone	: +61-8-9406 1301		
: LGK9542019GI	Date Samples Received	: 27-Nov-2019		
: 109,111 & 113 Robert St, Como WA	Issue Date	: 10-Dec-2019		
: Aurelian Bara	No. of samples received	: 22		
:	No. of samples analysed	: 22		
	: EP1912722 : LOCAL GEOTECHNICS : Harun Meer : LGK9542019GI : 109,111 & 113 Robert St, Como WA : Aurelian Bara	: LOCAL GEOTECHNICS Laboratory : Harun Meer Telephone : LGK9542019GI Date Samples Received : 109,111 & 113 Robert St, Como WA Issue Date : Aurelian Bara No. of samples received		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Page	: 2 of 5
Work Order	: EP1912722
Client	: LOCAL GEOTECHNICS
Project	: LGK9542019GI

Outliers : Analysis Holding Time Compliance

Matrix: SOIL							
Method		E	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA002: pH 1:5 (Soils)							
Snap Lock Bag							
TH3 (1.0m-2.0m),	TH5 (1.5m-3.0m)	09-Dec-2019	04-Dec-2019	5			
EA010: Conductivity (1:5)							
Snap Lock Bag							
TH3 (1.0m-2.0m),	TH5 (1.5m-3.0m)	09-Dec-2019	04-Dec-2019	5			

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	i: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA002: pH 1:5 (Soils)								
Snap Lock Bag (EA002)								
TH3 (1.0m-2.0m),	TH5 (1.5m-3.0m)	27-Nov-2019	09-Dec-2019	04-Dec-2019	22	09-Dec-2019	09-Dec-2019	✓
EA010: Conductivity (1:5)								
Snap Lock Bag (EA010)								
TH3 (1.0m-2.0m),	TH5 (1.5m-3.0m)	27-Nov-2019	09-Dec-2019	04-Dec-2019	*	09-Dec-2019	06-Jan-2020	✓
EA037: Ass Field Screening Analysis								
Snap Lock Bag - frozen on receipt at ALS (EA037)	•							
TH1 (0.25m),	TH1 (1.0m),	27-Nov-2019	05-Dec-2019	25-May-2020	1	05-Dec-2019	25-May-2020	 ✓
TH1 (2.0m),	TH1 (3.0m),							
TH2 (0.0m),	TH2 (0.5m),							
TH2 (1.5m),	TH2 (2.5m),							
TH3 (0.0m),	TH3 (0.75m),							
TH3 (2.0m),	TH3 (3.0m),							
TH4 (0.25m),	TH4 (1.0m),							
TH4 (1.5m),	TH4 (2.5m),							
TH5 (0.5m),	TH5 (1.5m),							
TH5 (2.0m),	TH5 (3.0m)							
EA055: Moisture Content (Dried @ 105-110°C)								
Snap Lock Bag (EA055)								
TH3 (1.0m-2.0m),	TH5 (1.5m-3.0m)	27-Nov-2019				06-Dec-2019	11-Dec-2019	✓

Page	: 3 of 5
Work Order	: EP1912722
Client	: LOCAL GEOTECHNICS
Project	: LGK9542019GI

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED040: Sulfur as SO4 2-								
Snap Lock Bag (ED040T) TH3 (1.0m-2.0m),	TH5 (1.5m-3.0m)	27-Nov-2019	04-Dec-2019	04-Dec-2019	1	04-Dec-2019	01-Jan-2020	~
ED045G: Chloride by Discrete Analyser								
Snap Lock Bag (ED045G) TH3 (1.0m-2.0m),	TH5 (1.5m-3.0m)	27-Nov-2019	09-Dec-2019	25-Dec-2019	1	09-Dec-2019	06-Jan-2020	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: 🗴 = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
ASS Field Screening Analysis	EA037	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride Soluble By Discrete Analyser	ED045G	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH (1:5)	EA002	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate as SO4 2- Total	ED040T	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Chloride Soluble By Discrete Analyser	ED045G	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
pH (1:5)	EA002	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chloride Soluble By Discrete Analyser	ED045G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate as SO4 2- Total	ED040T	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Chloride Soluble By Discrete Analyser	ED045G	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	In house: Referenced to Rayment and Lyons 4A1 and APHA 4500H+. pH is determined on soil samples after a
			1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3)
Electrical Conductivity (1:5)	EA010	SOIL	In house: Referenced to Rayment and Lyons 3A1 and APHA 2510. Conductivity is determined on soil samples
			using a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3)
Total Soluble Salts	EA014	SOIL	In house: The concentration of Total Soluble Salts in a soil is calculated from the Electrical conductivity of a water
			extract. This method is compliant with NEPM (2013) Schedule B(3) (Method 104)
ASS Field Screening Analysis	EA037	SOIL	In house: Referenced to Acid Sulfate Soils Laboratory Methods Guidelines, version 2.1 June 2004. As received
			samples are tested for pH field and pH fox and assessed for a reaction rating.
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C.
			This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Sulfate as SO4 2- Total	ED040T	SOIL	In house: Total Sulfate is determined off a HCI digestion by ICPAES as S , and reported as SO4
Chloride Soluble By Discrete Analyser	ED045G	SOIL	In house: Referenced to APHA 4500-CI- E. The thiocyanate ion is liberated from mercuric thiocyanate through
			sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions
			the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm. Analysis is
			performed on a 1:5 soil / water leachate.
Preparation Methods	Method	Matrix	Method Descriptions
Drying only	EN020D	SOIL	In house
HCI Digest	EN24	SOIL	1g of soil is digested in 30 ml of 30% HCl and the resultant digest bulked and filtered for analysis by ICP.
1:5 solid / water leach for soluble	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts
analytes			are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for
			analysis.