
DEPARTMENT OF PLANNING, LANDS AND HERITAGE	
DATE	FILE
16-Dec-2021	SDAU-016-20

Lot 4131 Smiths Beach Road, Yallingup Urban Water Management Plan

December 2021

Client: Smiths 2014 Pty Ltd

hyd<mark>2</mark>0

Contents

1.	Intro	oduction	1
	1.1	Planning Approvals	1
	1.2	Key Documents and Previous Studies	2
2.	Desi	ign Objectives	3
3.	Site	Characteristics	4
	3.1	Site Conditions	4
	3.2	Geotechnical	4
		3.2.1 Permeability Testing	6
		3.2.2 Acid Sulfate Soils	7
	3.3	Environment	7
	3.4	Contaminated Sites	7
	3.5	Surface Water	7
	3.6	Groundwater	9
		3.6.1 Groundwater Levels	9
		3.6.2 Groundwater Quality	10
4.	Wat	er Use Sustainability Initiatives	12
	4.1	WATER CONSERVATION STRATEGY	12
	4.2	Fit for Purpose Water Strategy	12
		4.2.1 Domestic Water Supply	12
		4.2.2 Landscape Areas	12
	4.3	Wastewater Management	13
5.	Stor	mwater Management	14
	5.1	Stormwater Modelling	15
6.	Gro	undwater Management	19
7.	Mar	nagement of Subdivision Works	20
	7.1	Dewatering and Acid Sulphate Soil	20
	7.2	Dust, Sediment and Erosion Control	20
8.	Mor	nitoring Program	21
	8.1	Pre Development Monitoring	21
	8.2	Post Development Monitoring	21
9.	Imp	lementation Plan	22
	9.1	Roles, Responsibilities, and Funding for Implementation	22
10	. Refe	erences	23

hyd<mark>2</mark>0

Appendices

APPENDIX A	UWMP Checklist
APPENDIX B	Geotechnical Report
APPENDIX C	Geophysical Report
APPENDIX D	Hyd2o Permeability Testing
APPENDIX E	Predevelopment Flow Estimation
APPENDIX F	Laboratory Water Quality Testing
DA APPENDIX C) - Engineering Report (Stantec)
APPENDIX H	Water Register Extracts
APPENDIX I	Post Development Runoff Rate Estimation
APPENDIX J	Post Development Modelling Outputs
APPENDIX K	Indicative Storage Cross Sections

Figures

FIGURE 1	Location Plan
FIGURE 2	Site Masterplan
FIGURE 3	Site Condition Plan
FIGURE 4	Geotechnical Plan
FIGURE 5	Environmental Plan
FIGURE 6	Surface Water Plan
FIGURE 7	Groundwater Plan
FIGURE 8	Stormwater Management Plan

Tables

TABLE 1	Updated Stormwater Reference Documents
TABLE 2	Urban Water Management Design Objectives
TABLE 3	Permeability Testing
TABLE 4	Predevelopment Flow Estimates
TABLE 5	Perched Groundwater Quality
TABLE 6	Post Development Stormwater Management – Holiday Home & Camping
TABLE 7	Post Development Stormwater Management – Hotel
TABLE 8	Post Development Stormwater Management – Community Hub
TABLE 9	Post Development Stormwater Management – Upstream Catchment
TABLE 10	Actions and Responsibilities

Disclaimer

This document is published in accordance with and subject to an agreement between Hyd2o and the Client for whom it has been prepared, and is restricted to those issues that have been raised by the Client in its engagement of Hyd2o. It has been prepared using the skill and care ordinarily exercised by hydrologists in the preparation of such documents.

Hyd2o recognise site conditions change and contain varying degrees of non-uniformity that cannot be fully defined by field investigation. Measurements and values obtained from sampling and testing in this document are indicative within a limited timeframe, and unless otherwise specified, should not be accepted as conditions on site beyond that timeframe. Any person or organisation that relies on or uses the document for purposes or reasons other than those agreed by Hyd2o and the Client does so entirely at their own risk.

Hyd2o denies all liability in tort, contract or otherwise for any loss, damage or injury of any kind whatsoever (whether in negligence or otherwise) that may be suffered as a consequence of relying on this document for any purpose other than that agreed with the Client.

Executive Summary

This Urban Water Management Plan (UWMP) has been prepared by Hyd2o on behalf of Smiths 2014 Pty Ltd to support planning approval for Lot 4131, Smiths Beach Road, Yallingup (herein referred to as the site) under the Significant Development Applications pathway.

The site is located approximately 250 km south west of the Perth CBD within the City of Busselton (Figure 1). The total area of the site is approximately 40 ha, and is bounded by Smiths Beach Rd and the existing Canal Rocks Apartments and Smiths Beach Resort to the north, Smiths Beach Rd to the east, and Leeuwin-Naturaliste National Park to the west and south. The site is characterised by two landform components, a ridgeline in the western area that falls toward the ocean in a northwesterly direction, and a gently sloping eastern section that rises to the south away from the beach. Elevations within the site rise to approximately 60 mAHD along the southern boundary of the site. The site has a variable geology ranging from shallow rock to sandy soils with high infiltration rates, and good clearance to groundwater in areas of permeable soils. There are no waterways in the site.

This UWMP has considered previous water management planning studies for the site in its development including the Wood & Grieve Engineers (2011b) Proposed Development on Loc 413 Smiths Beach Report on Stormwater Management. Planning has been undertaken consistent with the City of Busselton (2004) Combined Methodologies document recommended approach for stormwater management albeit with amended criteria where applicable to suit revisions in key guideline documents since 2004.

As the project is being considered through the State Development Assessment pathway and is therefore lodging a Development Application, it is important to note the UWMP document also contains details normally addressed in a Local Water Management Strategy (LWMS) to ensure overall water management requirements for the site are addressed in the site masterplan.

This UWMP has been prepared consistent with the guidelines contained in Better Urban Water Management (Western Australian Planning Commission, 2008) and Urban Water Management Plans: Guidelines for Preparing Plans and Complying with Subdivision Conditions (Department of Water, 2008).

This UWMP covers full development within the site acknowledging that detailed engineering drawings and landscape plans will be prepared in future. Where deemed necessary, brief UWMP addendums will be prepared to ensure overall compliance of engineering design with this plan.

The development will be delivered through a Community Title Scheme, with a Community Development Statement submitted to WAPC to seek approval to facilitate the application of a Community Scheme following the determination of the development application. The Community Development Statement will detail how the site will be subdivided and developed, including staging, management and implementation.

This approach will facilitate a coordinated management approach across all aspects of the development, including stormwater infrastructure.

A summary of key elements of the UWMP for the site is detailed in the following table. Better Urban Water Management's Urban Water Management Plan checklist is included as Appendix A.

Urban Water Management Plan Summary

Water Use Sustaina	ability
	Promotion of 6 star building standards (water efficient fixtures and fittings).
Water Efficiency	Use of water-wise plantings in POS and landscape rehabilitation areas.
Water Enleichey	Landscaping and masterplan design to retain significant vegetation areas.
	Maximise distributed infiltration of stormwater.
	Potable Supply: Water Corporation and rainwater tanks.
Water Supply	Landscape Areas: Recycled wastewater.
	Construction: Water cartage.
Wastewater	Onsite treatment and irrigation reuse.
Stormwater	
Docian 4	 Water quality to be managed through biofiltration treatment of runoff generated by first 15mm of rainfall prior to infiltration.
Design & Management	 Stormwater management for larger events to be via infiltration in distributed privat road swales and storages, and POS storage within the site.
Principles	Development levels to have suitable clearance above perched groundwater and 1% AEP flood levels.
Local Scale	 Soakwells and/or other measures (eg rainwater tanks) to retain and infiltrate first 1 mm rainfall on site within lots.
Measures	 Minimise clearing and use of water-wise landscaping to retain stormwater an minimise runoff.
	Biofiltration areas and swale in specified locations for water quality treatment.
Street Scale Measures	Distributed storage approach to reduce flow concentration.
	Minimisation of pipes drainage with maximised use of swales.
	 Consolidated water quality treatment areas where required for treatment of excess runoff from first 15mm rainfall not able to be managed in swales.
Estate Scale Measures	 Flood management storage areas within POS to infiltrate larger event flows in accordance with agency requirements.
	Use of underground storages to manage runoff from carpark areas.
	Post development system performance monitoring and annual reporting.
Groundwater & En	vironment
Fill & Subsoil	Minimal earthworks to maximise vegetation and landscape retention.
	Groundwater control via subsoil drainage not required.
ASS &	• The site has no risk of acid sulphate soils (ASS) within 3m of natural surface.
Contam Sites	No known contamination or possible impact from contaminated sites in the region
Wetlands, and	No Resource Enhancement of Conservation Category Wetlands within the site.
PECs	No change in hydrological conditions for identified Priority Ecological Communitie
Implementation	
Where necessary, UWMP addendums will be prepared to ensure f	
Process	development and engineering design remains compliant with this UWMP as

1. Introduction

This Urban Water Management Plan (UWMP) has been prepared by Hyd2o on behalf of Smiths 2014 Pty Ltd to support planning approval for Lot 4131, Smiths Beach Road, Yallingup (herein referred to as the site) under the Significant Development Applications pathway.

The site is located approximately 250 km south west of the Perth CBD within the City of Busselton (Figure 1). The total area of the site is approximately 40 ha, and is bounded by Smiths Beach Rd and the existing Canal Rocks Apartments and Smiths Beach Resort to the north, Smiths Beach Rd to the east, and Leeuwin-Naturaliste National Park to the west and south.

The proposed Masterplan for the site is shown in Figure 2, and consists of low density holiday homes, a hotel including wellness centre, campground and a community hub including cafe, bakery, Cape to Cape Welcome Centre & Surf Club. The design of the Masterplan has aimed to retain as much of the sites existing natural vegetation and landform as possible.

As the project is being considered through the State Development Assessment pathway and is therefore lodging a Development Application, it is important to note the UWMP document also contains details normally addressed in a Local Water Management Strategy (LWMS) to ensure overall water management requirements for the site are addressed in the site masterplan.

This UWMP has been prepared consistent with the guidelines contained in Better Urban Water Management (Western Australian Planning Commission, 2008) and Urban Water Management Plans: Guidelines for Preparing Plans and Complying with Subdivision Conditions (Department of Water, 2008).

This UWMP covers full development within the site acknowledging that detailed engineering drawings and landscape plans will be prepared in future. Where deemed necessary, brief UWMP addendums will be prepared to ensure overall compliance of engineering design with this plan.

1.1 Planning Approvals

The majority of the subject site is zoned Tourism under the City of Busselton Local Planning Scheme No. 21 (LPS 21). A portion of the site to the west is zoned Recreation.

The site is also affected by the following considerations under LPS 21 where a range of development requirements apply

- Additional Use Site No. 36 which provides residential density requirements and defers non-residential standards to the adopted structure plan.
- Landscape Value Area which requires development is visually compatible with the existing landscape character.

With respect to stormwater management, planning detailed in this UWMP has been undertaken consistent with the City of Busselton (2004) Combined Methodologies document recommended approach for stormwater management albeit with amended criteria where applicable to suit revisions in key guideline documents since 2004.

A list of the updated stormwater management documents used to guide this UWMP is detailed in Table 1.

Previous CoB (2004) Document Reference	Updated Current Reference
Australian Rainfall and Runoff (Institution of Engineers Australia, 1987)	Australian Rainfall and Runoff: A Guide to Flood Estimation (Ball J, Babister M, Nathan R, Weeks W, Weinmann E, Retallick M, Testoni I, (Editors), Commonwealth of Australia, 2016).
Interim Position Statement: Urban stormwater management in WA - principles and objectives (WRC, 2003)	Decision Process for Stormwater Management in WA (Department of Water and Environmental Regulation, 2017).
Stormwater Management Manual for WA (WRC, 1998)	Stormwater Management Manual for Western Australia (Department of Environment, 2004).
Draft Australian Runoff Quality Manual (Engineers Australia)	Australian Runoff Quality - A Guide to Water Sensitive Urban Design (Engineers Australia 2006).
Shire of Busselton Drainage Standards	Local Planning Policy No. 6.1 Stormwater Management (City of Busselton, 2021). Water Sensitive Urban Design Guidelines for Individual Lots, Infill Development and Subdivision, (City of Busselton, 2014).
-	Better Urban Water Management (WAPC, 2008).

Table 1: Updated Stormwater Reference Documents

1.2 Key Documents and Previous Studies

This UWMP uses the following key documents to define its principles, criteria and objectives:

- Decision Process for Stormwater Management in Western Australia (Department of Water and Environmental Regulation, 2017)
- Specification Separation Distances for Groundwater Controlled Urban Development, (Institute of Public Works Engineering Australia (IPWEA), 2016)
- Better Urban Water Management (WAPC, 2008)
- Stormwater Management Manual for WA (Department of Water, 2007)
- Sussex Location 413 Combined Methodologies (City of Busselton, 2004)

2. Design Objectives

Table 2 summarises the urban water management design objectives, based on the key reference documents, with some refinement based on the outcomes of more detailed planning and site investigations reflecting the opportunities and constraints of the site.

The basis for the design presented in this UWMP is provided by these objectives.

Table 2: Urban Water Management Design Objectives

Management Elements & Objectives

Water Conservation and Supply

- Water consumption target of 100 kL/person/yr.
- Reduce consumptive use through adoption of waterwise practices.
- Apply a "fit for purpose" water supply strategy, and minimise potable water use where drinking quality water is not essential.
- Waterwise landscaping and irrigation to be implemented in public open space areas.
- Encourage future landowners towards waterwise landscaping.
- Encourage the use of rainwater harvesting systems.
- Provide a wastewater system which meets agency requirements.

Stormwater Management

- Lots to retain and infiltrate first 15mm on site.
- Safely convey and retain stormwater generated within the site.
- Water quality to be managed through biofiltration treatment of runoff generated by first 15mm of rainfall prior to infiltration.
- Stormwater management for larger events via infiltration in distributed road reserve swales and storages, and POS storage within the site.
- Establish minimum habitable floor levels at 0.5m above the 1% AEP flood levels.
- To reduce health risks from mosquitos ensure that immobile stormwater is fully infiltrated in a time period not exceeding 96 hours.

Groundwater Management

Ensure adequate clearance to perched groundwater for dwellings and infiltration structures.

Environmental Management

- Undertake post development compliance monitoring to verify performance with design intent.
- Where required, implement management measures to ensure protection of significant vegetation and Priority Ecological Community hydrology.

3. Site Characteristics

3.1 Site Conditions

A site conditions plan is included as Figure 3. The total area of the site is approximately 40 ha, and is bounded by Smiths Beach Rd and the existing Canal Rocks Apartments and Smiths Beach Resort to the north, Smiths Beach Rd to the east, and Leeuwin-Naturaliste National Park to the west and south.

The site is largely vegetated, with scattered tracks and firebreaks, and has an existing artificially created waterhole along its northern boundary adjacent to the Canal Rocks Apartments. Regular rock outcrops are observed at both the eastern and western extents of the site.

The site is characterised by two landform components, a ridgeline in the western area that falls toward the ocean in a northwesterly direction, and a gently sloping eastern section that rises to the south away from the beach. Elevations within the site rise to approximately 60 mAHD along the southern boundary of the site.

3.2 Geotechnical

According to the Geological Survey of WA's 1:50 000 Environmental Geology Map Series Yallingup Sheet 1930 IV and Part Sheet 1830 I (Leonard 1991), the site is characterised as Sand (S7) pale and olive-yellow medium to coarse-grained sub-angular quartz moderately sorted in the east, and medium-grained mesocratic Gneiss (GN) in the west.

A geotechnical investigation for the site was undertaken by Golder Associates in December 2020 and March 2021 (Golder Associates, 2021). The geotechnical report is included as Appendix B. This investigation included drilling of 32 hand augered boreholes (with depths ranging from 0.2 to 3.0 m) and 8 diamond core boreholes (with depths ranging from 6.0 to 16.5m depth). A Perth Sand Penetrometer (PSP) test was also undertaken at each hand auger location and permeability testing undertaken at eight locations. Test locations are shown on Figure 4 and Appendix B.

The ground conditions encountered and inferred from the investigation were considered to be generally consistent with the published geology for the area although Gneiss also occurred along the eastern boundary of the site. The typical soil profile as described by Golder Associates (2021) was delineated into seven areas as follows:

Area 1 - Shallow Rock

• Silty SAND (SM), fine to medium grained, generally about 15% low plasticity fines, generally loose becoming medium dense to dense with depth, brown becoming pale brown orange and pale brown grey, extending to depths of between about 0 m (rock outcrops) and 1.9 m, overlying.

• Inferred GNEISS/GRANITE cobbles, boulders or bedrock, causing refusal at depths between 0.2 m and 1.9 m.

Area 2 - Shallow Clay

• Silty SAND (SM) or Sandy GRAVEL (GP), fine to medium grained sand, fine to coarse lateritised gneiss gravel, generally about 15% low plasticity fines, medium dense to dense with depth, brown, extending to depths of between about 0.4 m and 0.5 m, overlying.

• Sandy CLAY(CI/CH), medium to high plasticity, very stiff to hard, brown, orange and red, extending to the maximum depth investigated of 1.0 m.

Area 3- Sand

• SAND (SP), fine to medium grained, with silt in parts, loose becoming medium dense to dense with depth, orange brown to red brown, extending to the maximum depth investigated of 3.0 m.

Area 4 - Sand over Clayey Sand

• SAND (SP), fine to medium grained, with silt, loose becoming medium dense to dense with depth, orange brown to grey brown, extending to depths of between about 1.5 m and 2.1 m, overlying.

• Clayey SAND (SC), fine to coarse grained, about 15% to 25% low plasticity fines, dense to very dense, orange brown, orange yellow and yellow grey, containing a sand layer between 2.5 m and 3.0 m at HA31, extending to the maximum depth investigated of 3.0 m.

Area 5 - Silty Sand

• Silty SAND (SP), fine to medium grained, about 10% to 20% low plasticity fines, loose becoming medium dense to dense with depth, red brown to brown, extending to the maximum depth investigated of 2.0 m.

Area 6- Silty Sand over Clay

• SAND/Silty SAND (SP/SM), fine to medium grained, about 10% to 15% low plasticity fines, loose becoming medium dense to dense with depth, brown, extending to depths of between about 0.8 m and 1.4 m, overlying.

• Clayey SAND/Sandy CLAY(SC/CI/CH), medium to high plasticity, very stiff to hard, brown, orange brown and grey, extremely weathered rock, extending to the maximum depth investigated of 2.6 m.

Area 7 - Shallow Rock

• SAND/Silty SAND/Silty Gravelly SAND (SM), fine to medium grained, generally about 15% to 20% low plasticity fines, generally loose becoming medium dense to dense with depth, brown and red brown, fine to coarse gneiss gravel and cobbles, extending to depths of between about 0 m (rock outcrops) and 1.1 m, overlying.

• Inferred GNEISS/GRANITE cobbles, boulders or bedrock, causing refusal at depths between 0.3 m and 1.3 m.

During Golder Associates field investigation in December, groundwater was not encountered in any of the hand auger boreholes, although the groundwater level was considered to be close to the base of the hole at hand auger HA31. Perched water was however considered to potentially occur during wet periods. Golder Associates (2021) found stormwater was likely to readily infiltrate into the surficial higher permeability materials (sandy soil and highly fractured rock) and then more slowly into the underlying

lower permeability materials (clayey soil and relatively unfractured rock). Depending upon the amount of rainfall, this may result in some perching on the lower permeability soil, at relatively shallow depth over parts of the site.

A geophysical subsurface investigation (GBGMaps, 2020) was also carried out along a 200 metre section of the coastal foreshore and dune system adjacent to the northern boundary of the site. The investigation was carried out to assist in determining the elevation of underlying rock for coastal modelling. A copy of the report in included as Appendix C.

3.2.1 Permeability Testing

Golder Associates (2021) undertook eight in situ permeability tests within the site. Test locations are shown in Figure 4. The tests were performed using the Talsma Hallam method with testing performed at approximately 0.5m below natural surface.

Results of the testing as analysed by Golder Associates (2021) are provided in Table 3. The results of the investigation indicate that across Area 3 the measured permeability varied between 17 m/day and 64 m/day. Across the remainder of site, the near surface sand/silty sand had a measured permeability of 3 m/day to 7 m/day

Hyd2o also conducted permeability testing at the site in November 2020 (Table 3). Four permeability tests were undertaken based on a constant head test using a borehole permeameter. Results from the permeability tests are presented in Appendix D, with values ranging from approximately 1 to 64 m/day, indicating similar variability to that in Golder Associates testing.

Based on the above results, Golder Associates (2021) reported Area 3 sand as free draining and suitable for on-site disposal via soakwells or similar. For drainage design a permeability of 5 m/day to 10 m/day was recommended for the sand in this area.

Test Site	Tested By	Tested Material	Measured Permeability K_s m/day
HS1	Hyd2o	Silty Sand	3
HS2	Hyd2o	Sand	64
HS3	Hyd2o	Silty Sand	4
HS4	Hyd2o	Silty Sand	1
HA2	Golder	Silty Sand	3
HA4	Golder	Sand/Silty Sand	7
HA8	Golder	Sand	18
HA9	Golder	Sand	17
HA16	Golder	Sand	28
HA18	Golder	Sand	23
HA25	Golder	Rock - Gneiss	unable to test
HA28	Golder	Sandy Gravel over Sandy Clay	9

Table 3: Permeability Test Results

LOT 4131 SMITHS BEACH ROAD, YALLINGUP URBAN WATER MANAGEMENT PLAN

hyd20

Across the remainder of site, Golder Associates (2021) recommended a drainage design permeability of 1 m/day for sand/silty sand areas, and underlying rock and clayey soil was recommended to be considered impermeable. Suitably designed on-site drainage was still considered appropriate in these areas depending upon the depth of sand/silty sand overlying rock or clayey soil.

3.2.2 Acid Sulfate Soils

According to Planning Bulletin 64 Acid Sulphate Soils (WAPC, 2009) the site is classified as no risk of actual or potential acid sulphate soils (ASS) within 3m of natural surface.

3.3 Environment

According to Department of Biodiversity Conservation and Attractions (DBCA), Geomorphic Wetlands Leeuwin Naturaliste Ridge and Donnybrook to Nannup dataset (DBCA-043) the site does not include any categorised wetlands or their buffers (Figure 5). The nearest mapped site is a Palusplain wetland approximately 1 km east of the site adjacent to Gunyulgup Brook.

According to the Department of Water and Environmental Regulation (DWER) Environmentally Sensitive Areas (ESA) Database (2020), the site borders an ESA along its western, northern, and southern boundaries.

Strategen (2020) confirmed the two Priority Ecological Communities (PEC) within the site:

- Low shrublands on acidic grey-brown sands of the Gracetown soil-landscape
- Melaleuca lanceolata forests, Leeuwin Naturaliste Ridge

Mapping of these areas is shown in Figure 5. Both areas are located outside of the proposed development area of the site. Given there is no proposed impact to the PEC by the development, Strategen (2020) considered the extent of regional survey adequate to provide context to the minimal impact on the community.

3.4 Contaminated Sites

According to the DWER Contaminated Sites Database (2021), the site and surrounding areas contain no known contamination.

3.5 Surface Water

Gunyulgup Brook is a seasonally flowing watercourse located approximately 200m northeast of the site, which flows in a north westerly direction to Smiths Beach. The site itself contains no designated watercourses or waterways with rainfall from most events infiltrated on site. During major events any runoff generated from the site would occur as diffuse overland flow.

An old waterhole is present within the proposed development area, in the northern part of the site. The waterhole is approximately 10m in diameter and approximately 1m deep. It is understood the depression in which the waterhole is located is man-made, having been excavated in around 1962 to provide water for livestock (ATA Environmental, 2007). The waterhole is set in granitic bedrock and is likely it receives water by seepage of rainwater along the interface between soil and bedrock. Based on field observations no external drainage to the site flows into this area.

Figure 6 shows the extent of the main surface water catchment relevant to the site. The total contributing catchment area is approximately 55.7 ha of which the site comprises 28.2 ha and 27.5 ha is located upstream.

With respect to the existing Canal Rocks Apartments and Smiths Beach Resort along the northern boundary of the site, both these sites are considered responsible for management of their own stormwater which Hyd2o understand is infiltrated on site consistent with City of Busselton stormwater management guidelines (City of Busselton, 2021). A review of historical aerial photography and site field observations support this position.

Estimates of the predevelopment (existing) flow for the site were undertaken based on application of the Australian Rainfall & Runoff Regional Flood Frequency Estimation (RFFE) method (Ball et al, 2016) and XP-Storm modelling. Modelling results using the two methods are summarised in Table 4, with various technique outputs presented in Appendix E.

Modelling results were also compared to previous Australian Rainfall & Runoff 1987 techniques including the Rational and Flood Index Methods. These estimates are also detailed in Table 4 and Appendix E. It should be noted that in the application of the XP-Storm model, runoff rates and Mannings coefficients for the site were estimated and applied based on the finding of the geotechnical investigation and consider the various soil regions (eg gneiss, clayey sand, and sand) as detailed in Section 3.2.

The methods detailed in Table 4 provide broadly similar estimates of predevelopment flows for the site for various annual exceedance probability (AEP) events providing confidence in the estimates. All this flow occurs as diffuse overland flow toward the coast. Modelling results and parameters via the XP-Storm model are used to inform post development modelling in Section 5.

The XP-Storm model was then modified to estimate flows entering the site at its southern boundary via the catchment upstream of the site with results detailed in Table 4 and Appendix E. This flow also occurs as diffuse flow with no clear evidence of a watercourse entering the site at its southern boundary.

Note that due to the diffuse nature of existing site flows and the site containing no identifiable watercourses, no predevelopment surface water monitoring was able to be undertaken.

Event	20% AEP Event (m³/s)	1% AEP Event (m ³ /s)
Whole Catchment : 55.7 ha		
Method A : ARR 2016 Regional Flood Frequency Estimation	0.08	0.43
Method 8 XP –Storm Modelling	0.21	0.45
Method C : ARR 1987 Rational Method Flood Index Method	0.26 0.10	0.65 0.34
Upstream Catchment : 27.5 ha		
Method 8 XP –Storm Modelling	0.05	0.11

Table 4: Pre Development Flow Estimates

3.6 Groundwater

3.6.1 Groundwater Levels

The site is located west of the Dunsborough Fault and within the area known as the Leeuwin Complex which is classified as a fractured rock aquifer, where groundwater is restricted to fractures in the crystalline basement rocks (bedrock) and to thin weathered zone sand overlying surficial deposits.

Groundwater levels at the site are also controlled by its proximity to the coast and are therefore located generally well below natural surface in permeable areas.

Figure 7 summarises groundwater data for the site.

There are no long term monitoring bores within the site or its proximity and no nearby regional DWER bores or mapping of groundwater levels for the area. ATA Environmental (2007) reported 35 holes previously drilled over the site for geotechnical mapping and groundwater being encountered at only two locations. This was reported as occurring in sands overlying bedrock at depths greater than 7m below natural surface.

Golder Associates (2021) similarly reported no groundwater encountered during their December 2020 field investigations in any of their 32 hand augered boreholes, although groundwater was considered to be close to the base of the hole at hand auger HA31 at a depth of 3m (inferred as ~5 mAHD based on topographic data). Given groundwater was not encountered in any of the 8 drilled boreholes at depths ranging from 6 to 16.5m below natural surface, including BA4 to 16.5m in proximity to HA31, the groundwater at HA3 is considered to be perched above less permeable strata.

Golder Associates (2010) also reports during previous Douglas Partners investigations in March 2001, groundwater was not encountered in any of their test pits.

A groundwater level was however recorded by Douglas Partners in the excavated waterhole at about 2.5 m below the natural surface level (inferred as ~3.5 mAHD based on topographic data). MP Rogers & Associates in May 2000 also measured a groundwater level of 4.1 m AHD near the waterhole, and noted this to be similar to the waterhole.

The location of the excavated waterhole is shown in Figure 7. The waterhole is approximately 10m in diameter and ATA Environmental (2007) report the waterhole to have been man-made in around 1962 to provide water for livestock, with water being received via the seepage of perched water.

A Hyd2o field investigation on 14 March 2021 provided an estimated level of approximately 3 mAHD at the waterhole based on correlating the observed water level to other known surveyed levels in proximity. This lower level is consistent with the previous Douglas Partners and MP Rogers & Associates recordings, and likely representative of the drying climate of the last 20 years in the area. Based on the extent of reeds and vegetation relative to the observed water level Hyd2o estimate the perched levels in the waterhole would vary around 1 m seasonally.

Based on their investigations, Golders Associates (2021) reported that stormwater will infiltrate into the surficial higher permeability materials (sandy soil and highly fractured rock) and more slowly into the underlying lower permeability materials (clayey soil and

relatively unfractured rock). Depending upon the amount of rainfall, this may result in perching on the lower permeability soil, at relatively shallow depth over parts of the site.

With respect to potential perching, Golder Associates (2021) contains inferred subsurface sections across the site, which show the boundary between the higher and lower permeability soils and the potential flow path for perched water.

These sections indicate that any perched water will be towards the centre of the site from the east, west and south. In the centre of the site any perched water will then move into the deep sand. In the northern parts of the site where lower permeability materials occur at shallower depth, the perched water will move towards the ocean through the area around the waterhole.

3.6.2 Groundwater Quality

Typically predevelopment monitoring is only required by DWER where regional groundwater is within 4 m of natural surface. Notwithstanding, sampling was taken by Hyd2o on 14 March 2021 at the waterhole as a representative expression of the perched water quality at the site.

The sample was sent to a NATA approved laboratory and analysed for physical parameters (electrical conductivity (EC) and pH), nutrients, and heavy metals. The following suite of analyses was performed:

- Total nitrogen (TN), as well as total Kjedahl nitrogen (TKN), ammonia (NH3), nitrate (NO3) and nitrite(NO2);
- Total phosphorus (TP), as well as filterable reactive phosphorus (FRP); and
- Heavy metals including arsenic, cadmium, chromium, copper, nickel, lead, mercury and zinc.

Laboratory reports are contained in Appendix F, and summarised in Table 5 in relation to various guideline values of the Australian and New Zealand Environment and Conservation Council's National Water Quality Management Strategy: Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000).

Summarising the results:

- pH is slightly basic (alkaline) but falls within the ANZECC guideline range of 6.5 8.0 for wetand ecosystems in south western Australia.
- The EC of 3.6 ms/cm was above the ANZECC guideline range of 0.30 1.50. This EC equates to a salinity of approximately 1800 mg/L.
- TN of 6.6 mg/L was relatively high exceeding the ANZECC guideline value of 0.75 mg/L.
- TP of 0.08 was above the ANZECC guideline value of 0.06 mg/L.
- In relation to metals, Cadmium, Chromium, Lead, Mercury, and Nickel concentrations were all below the level of detection. Arsenic, Copper, and Zinc were below the recreational waters guideline values, and only Copper and Zinc were above the 95% target for 95% protection of freshwater species (Zinc within 90% protection level).

With respect to nutrient concentrations, TN and TP concentrations are typical of the expected water quality range in previously rural areas.

Parameter	Waterhole Sample 14/2/2021	ANZECC (2000) Guideline
рН	8.1	7.0 – 8.5 ¹
EC (mS/cm)	3.6	0.13 – 1.50 ¹
Total Nitrogen (mg/L)	6.6	0.751
TKN (mg/L)	6.6	-
Ammonia (mg/L)	0.093	0.902
Nitrate (mg/L)	<0.005	0.702
Nitrite (mg/L)	<0.005	0.101
Total Phosphorus (mg/L)	0.08	0.061
Phosphate as P / FRP (mg/L)	< 0.005	0.031
Arsenic (mg/L)	0.002	0.024 ² 0.05 ³
Cadmium (mg/L)	<0.0001	0.0002 ² 0.005 ³
Chromium (mg/L)	<0.001	0.001 ² 0.05 ³
Copper (mg/L)	0.017	0.0014 ² 1.0 ³
Lead (mg/L)	<0.001	0.034 ² 0.05 ³
Mercury (mg/L)	<0.00005	0.0006 ² 0.001 ³
Nickel (mg/L)	<0.001	0.011 ² 0.1 ³
Zinc (mg/L)	0.011	0.008 ² 5 ³

Table 5: Perched Groundwater Quality

Default trigger values for wetland ecosystems in south-west Australia
 Trigger values of the 95% of freshwater species
 Water quality guidelines for recreational purposes

4. Water Use Sustainability Initiatives

4.1 Water Conservation Strategy

The reduction of scheme water use within the site will be consistent with Water Corporation's Waterwise land development criteria. Conservation measures will include:

- Promotion of use of waterwise practices including water efficient fixtures and fittings.
- Encourage waterwise landscaping at lot scale.
- Consumption target for water of 100 kL/person/year.
- Waterwise POS design and native plantings and irrigation systems.
- Maximising distributed infiltration and retention of stormwater on site.
- Retention of existing natural vegetation and landforms.
- Use of treated wastewater for irrigation at lot scale, and also throughout restricted public open spaces (hotel effluent).

4.2 Fit for Purpose Water Strategy

4.2.1 Domestic Water Supply

Water supply for the site is proposed by an extension of the existing Water Corporation water supply scheme. This decision was based on a detailed assessment of various water supply options for the site conducted by Stantec.

DA Appendix O contains a copy of the Engineering Report (Stantec, 2021) providing further details of the proposed water supply infrastructure.

The use of rainwater tanks to supplement potable water will be encouraged by the developer for incorporation in the design of various elements within the site. Individual builders will manage the incorporation of rainwater tanks for those who wish to use this method to supplement scheme water supply and reduce runoff.

4.2.2 Landscape Areas

DWER's Water Register indicates the site is located in the Busselton-Capel Groundwater Area and Cape to Cape North Sub Area. The aquifer in the area is the Combined Leeuwin Surficial/ Fractured Rock aquifer, which the register reports as having limited information regarding available allocation.

Water Register extracts are contained as Appendix H. It is noted Canal Rocks Apartments and Smiths Beach Resort have an allocation of 27,700 kl/yr from the aquifer, and obtain this water from a bore located on Hemsley Rd, Yallingup (Appendix H).

Based on investigations by Stantec (2021), a number of landscape areas are proposed to be irrigated via the use of recycled wastewater.

Areas are identified in DA Appendix O.

4.3 Wastewater Management

Based on a detailed assessment of alternative wastewater solutions, it was determined there is suitable land area within the site to cater for on-site wastewater treatment and disposal. The most effective on-site solution from a capital, ongoing maintenance and management perspective was found to be low risk secondary treatment systems.

It is therefore proposed that the site will be serviced via onsite wastewater treatment and land application systems, undertaken in accordance with the Government Sewerage Policy (Government of Western Australia, 2019). The site wastewater loading has been assessed based on the uses throughout the development in a conservative nature based on the level of detail provided at this stage of the development.

Further details of the proposed system are contained in DA Appendix O.

A Site and Soil Evaluation for Onsite Wastewater Management for the site is currently being prepared as a separate process to this UWMP in accordance with Department of Health guidelines and the Australian and New Zealand standard: Onsite Domestic Wastewater Management – AS/NZS 1547:2012. This evaluation will confirm site and soil conditions are suitable for installation of an on-site wastewater system, the size of the land application areas, and any physical features requiring setbacks to prevent possible contamination

ATA Environmental (2007) reported Phosphorus Retention Ability (PRI) testing of soil being conducted at eight locations within the site during the drilling program of 2001. The four soil samples taken from the Tamala Limestone soils recorded PRI values of 9, 10, 21, and 52. These values indicate that this soil unit has a moderate ability to retain phosphorus.

The duplex soils reported higher PRI values ranging from 30 for the sandier soils of this unit to a maximum of 180 for clayey soils. The four soil samples returned PRI values of 30, 115, 131 and 180. The PRI value of 180 represents very high phosphorus retention ability.

5. Stormwater Management

Stormwater management has been designed consistent with DWER and City of Busselton water sensitive design practices, and has been based on consideration of the sites environmental setting, and the constraints and opportunities detailed in Section 3. The key elements of the stormwater management strategy are shown in Figure 8 and summarised as follows:

- Retention/management of the first 15 mm of rainfall on holiday home lots. This is assumed to be conducted primarily through the use of soakwells in permeable deep sandy soil areas, and conveyance to road scale retention areas in any areas of rock and/or less permeable materials. Individual lots may also use rainwater tanks to achieve this retention and reduce runoff.
- The provision of swales through the site to manage, convey and infiltrate stormwater runoff from roads. Swales are proposed to be established as biofiltration areas and retain and infiltrate the first 15mm of runoff in situ within the road reserve areas, and convey larger events (20% and 1% AEP) to additional storage areas for infiltration. Note that in areas of less permeable underlying soils, swales would still be provided for conveyance purposes. In areas where slopes mean swales are not feasible a pit/pipe network is to be installed to convey events to storage areas.
- Where swales are not able to retain and treat the first 15mm event, stormwater is to be conveyed to bioretention areas which are to be placed where considered most ideal along the drainage route. Spill over of these areas in to subsurface infiltration cells to sized retain the 20% AEP will occur where considered appropriate.
- The use of underground storage units in the northern carpark area to manage both carpark runoff and any stormwater runoff in excess of swale capacity in the 20% and 1% AEP event. Opportunities for temporary flooding to an acceptable level in this area will also be considered at UWMP stage to optimise the overall storage configuration.
- Management of the upstream predevelopment catchment flow via cut-off swales in the upgraded southern road. Swales are to be established as bioretention areas to treat the first 15mm with flow from major events directed to underground storage sized to retain up to the 1% AEP event.
- With respect to the Community Hub, it is proposed to manage all its own stormwater on site via infiltration using underground storage. This can readily be achieved outside of the foreshore reserve.
- Given the hotel complex is located predominately in an area of shallow rock, a stormwater management principle of maintaining post development flow from this area to the coastal foreshore as diffuse overland flow is proposed. It is important to note that given all other areas of the site are to be fully infiltrated, the flow rates from this area to the coastal foreshore will therefore be less than the predevelopment condition during major events.
- For events greater that the 1% AEP designated flow paths and easements will allow safe conveyance of stormwater to the foreshore.

The above approach has been adopted for the site to minimise the stormwater management impacts on the natural landscape and landform, and reflects best management practice. Figure 8 details the above approach and the key catchments and land use breakdown used for modelling. Note that all swales are proposed to be located on the downgradient side of roads.

Run-off coefficients for various land uses within the site have been applied based on application of Hyd2o's CURRV runoff rate calculator, with consideration of recommended natural catchment runoff rates detailed in the ARR 2016 Data Hub and ARR 1987 Rainfall Loss Models for South West WA. Runoff rates used for modelling are detailed in Appendix I.

Note that the modelling in this report is based on ultimate development requirements. Based on staging, temporary storages may be required. These will be detailed in engineering drawing at the appropriate time if required.

5.1 Stormwater Modelling

Stormwater modelling for the site was undertaken by Hyd2o using XP-Storm and PONDS to determine flood storage requirements and provide an assessment of areas required within the site to manage stormwater post development. PONDS is a program specifically designed for modelling groundwater/surface water interactions for the design of stormwater infiltration areas, based on the finite difference computer program MODFLOW, development by the U.S. Geological Survey.

The design storms modelled by XP-Storm and PONDS were calculated with reference to the methodology in Australian Rainfall and Runoff (AR&R) and the Bureau of Meteorology Computerised Design IFD Rainfall System (CDIRS). The rainfall temporal pattern was assumed to be spatially uniform across the catchment. Storm durations modelled ranged from 10 minutes to 72 hours.

Permeability rates were adopted for different site areas based on the various test results detailed in Section 3.2.1, ranging from 5 m/day adopted for design in sand areas to 1 m/day in areas of silty sand. Areas of shallow rock were considered impermeable for modelling purposes. These rates are considered conservative and are inclusive of any long term clogging effects.

Modelling results are shown in Figure 8 and Tables 6 to 8, with more detailed modelling outputs contained in Appendix J. Overall stormwater management is able to be readily accommodated within the available spaces of the development without using retained vegetation areas.

Given the storage sizes and functional permeability rates, modelling indicates all stormwater on site will be readily infiltrated within the 96 hours to reduce health risks from mosquitos and other nuisance insects.

Consistent with DWER's Stormwater Management Manual (DoW, 2007) minimum habitable floor levels will be set in accordance with the following:

- 0.5 m above the 1% AEP event flood storage area levels and
- 0.3 m above the 1% AEP event flood level in local drainage network.

Sample cross sections for proposed swales are provided in Appendix K to inform design.

hyd<mark>2</mark>0

Table 6: Post Development Stormwater Management - Holiday Home & Camping Area

Catchment Land Use Summary	
Holiday Home & Camping Area (ha)	7.97
Holiday Home & Camping Area – Shallow Rock & Clay (ha)	3.25
Private Roads (ha)	3.01
Carpark (ha)	0.88
Retained Vegetation (ha)	7.23
Retained Vegetation – Shallow Rock & Clay (ha)	2.53
Total Area (ha)	24.88
Equivalent Impervious Area (15mm event) – Roads & Carpark Only (ha)	2.33
Equivalent Impervious Area (1% AEP) (ha)	9.11
15 mm Event Water Quality Management	
Roadside Swales – Bioretention Section/Portion (1m base, 0.35m deep)	
Side Slopes (v:h)	1:3 & 1:4
K Adopted for Design (m/day)	2.5
Approximate Total Length of Swales (m)	660
TWL – Infiltration Area (m ²)	2280
Storage per Linear Metre (m³/m) @ 0.35m depth	0.78
Total Swale Storage (m ³) @ 0.35m depth	515
Other Bioretention Areas (0.3m deep)	
Side Slopes (v:h)	1:3
K Adopted for Design (m/day)	2.5 m/day
TWL – Infiltration Area (m ²)	833
Total Storage (m ³)	190
20% AEP Flood Management (in addition to bioretention areas along on North-South road)	
Subsurface Infiltration Cells (Assumed 1m Deep Cells)	
Side Slopes (v:h)	1:0
K Adopted for Design (m/day)	5
TWL – Infiltration Area (m ²)	50
Total Storage (m ³)	50
1% AEP Flood Management (in addition to roadside swales, bioretention areas and subsurface infiltration ce	5)
Underground Storage (Assumed 1m Deep Cells)	,
Side Slopes (v:h)	1:0
K Adopted for Design(m/day)	5 m/day
TWL Area (m²)	2750
Volume (m ³)	2750
Critical Duration (hr)	3

Table 7: Post Development Stormwater Management - Hotel

Catchment Land Use Summary		
Hotel : Impervious (ha)	0.83	
Hotel : Landscape/Vegetation (ha)	2.03	
Total Area (ha)	2.86	
Equiv Imp Area (1% AEP) (ha)	1.84	
1% AEP Flood Management		
Diffuse Overland Flow (less than predevelopment)		
Peak Discharge (m³/s)	0.28	
Critical Duration (hr)	1	

Table 8: Post Development Stormwater Management - Community Hub

Catchment Land Use Summary				
Community Hub: Impervious (ha)	0.51			
Community Hub: Landscape/Vegetation (ha)	0.15			
Total Area (ha)	0.66			
Equiv Imp Area (1% AEP) (ha)	0.36			
1% AEP Flood Management				
Underground Storage (1m depth cells)				
K Adopted for Design(m/day)	1			
TWL Area (m ²)	280			
Volume (m ³)	280			
Critical Duration (hr)	3			

hyd<mark>2</mark>0

Table 9: Post Development Stormwater Management - Upstream Catchment

Catchment Land Use Summary				
Upstream Road (ha)	0.97			
Upstream Vegetation (ha)	23.45			
Total Area (ha)	24.42			
Equiv Imp Area (1% AEP) (ha)	4.30			
15 mm Event Water Quality Management				
Roadside Swales - Bioretention Section (1m base, 0.35m deep)				
Side Slopes (v:h)	1:3 & 1:4			
K Adopted for Design (m/day)	2.5			
Approximate Total Length of Swales (m)	325			
TWL - Infiltration Area (m ²)	1121			
Storage per Linear Metre (m³/m)	0.78			
Swale Retention Storage (m ³)	253			
1% AEP Flood Management				
Underground Storage (Assumed 1m Deep Cells)				
Side Slopes (v:h)	1:0			
K Adopted for Design(m/day)	5			
TWL Area (m²)	760			
Volume (m ³)	760			
Critical Duration (hr)	3			

6. Groundwater Management

The earthworks concept plan for the site is detailed in DA Appendix O.

Due to the clearance to groundwater, relatively high infiltration over the majority of the site, and a desire to maintain as much of the existing vegetation on site as possible, no imported fill or subsoil drainage to control groundwater will be required.

This outcome is assisted by the stormwater management strategy for the site which has considered the variable surface geology of the site in developing its approach.

7. Management of Subdivision Works

7.1 Dewatering and Acid Sulphate Soil

According to Planning Bulletin 64 Acid Sulphate Soils (WAPC, 2009) the site is classified as having no risk of actual or potential acid sulphate soils (ASS) occurring within 3m of natural surface.

No dewatering is likely to be required for services installation.

7.2 Dust, Sediment and Erosion Control

The construction contractor will be responsible for preparing and implementing appropriate best management practices for the construction of the subdivision. Construction management will be undertaken consistent with the Local Government Guidelines for Subdivision Development (Institute of Public Works Engineering Australia 2011).

Water for construction purposes will be the responsibility of the site contractor, and will likely be undertaken via water cartage. Should a groundwater bore be proposed for this purpose, licencing and associated construction will similarly be the responsibility of the site contractor.

Earthworks at the site will be carried out in accordance with AS 3798-2007 Earthworks for Residential and Commercial Developments. Temporary measures such as sedimentation basins and/or fences to locally control sediment and erosion during the construction phases of the project may require implementation.

8. Monitoring Program

8.1 Pre Development Monitoring

As outlined in Department of Water (2012), groundwater monitoring should be undertaken where regional groundwater has a close interaction with the surface. No further predevelopment monitoring is necessary for the site in relation to this requirement.

Notwithstanding the above, additional site perched water modelling and geotechnical investigations for winter permeability are currently being developed to further support and refine the design as a part of the detailed design process.

8.2 Post Development Monitoring

Given the clearance to groundwater at the site, no post development groundwater monitoring is proposed.

Similarly, as all surface flows are proposed to be retained and infiltrated via distributed biofiltration areas during frequently occurring storm events, monitoring of surface water quality is also not considered relevant.

On this basis, an alternative monitoring program of stormwater system performance is recommended for the site against a standardised proforma which would assess the performance of the system against its design. The program will consider processes such as vegetation health, scour, erosion, deposition, and water levels and retention periods within the bioretention area.

This monitoring is designed to operate for the first two years following construction and be undertaken a minimum of four times during winter.

The program may need to be modified as data is collected, to increase or decrease the monitoring effort in a particular area, or to alter the scope of the program itself. Any modification to the program would be identified through review of the collected data and would require the agreement of all parties – DWER, City of Busselton, and developer.

A brief letter report will be prepared on completion of the monitoring program.

9. Implementation Plan

9.1 Roles, Responsibilities, and Funding for Implementation

Roles and responsibilities for implementation are detailed in Table 10 below.

The development will be delivered through a Community Title Scheme, with a Community Development Statement submitted to WAPC to seek approval to facilitate the application of a Community Scheme following the determination of the development application. The Community Development Statement will detail how the site will be subdivided and developed, including staging, management and implementation.

This approach will facilitate a coordinated management approach across all aspects of the development, including stormwater infrastructure.

Long term maintenance of stormwater infrastructure will be the responsibility of the Community Scheme. Maintenance will include but not be limited to street sweeping to reduce particulate build up, removal of sediment and rubbish in manholes and storage area, removal of debris to prevent stormwater blockages, checks on drainage function, and replacement of water quality treatment vegetation.

	Responsibility			
Action	Lot Owner/ Community Scheme	Developer	Department of Water and Environmental Regulation	City of Busselton
Preparation of UWMP (this document)		✓		
Review and Assessment of UWMP			\checkmark	✓
Implementation of water supply, water efficiency, and wastewater measures		✓		
Construction of stormwater system and WSUD measures		~		
Stormwater system maintenance post construction until handover		~		
Long-term stormwater system operation and maintenance	4			
Wastewater system operation & maintenance	V			

Table 10: Actions and Responsibilities

10. References

Australian and New Zealand Environment and Conservation Council (ANZECC) (2000), National Water Quality Management Strategy: Australian and New Zealand Guidelines for Fresh and Marine Water Quality, October 2000.

ATA Environmental (2007), Sussex Location 413 Yallingup - Smiths Beach Strategic Environmental Assessment (EPA Assessment No. 1597) Volume I

Ball J, Babister M, Nathan R, Weeks W, Weinmann E, Retallick M, Testoni I, (Editors), 2016, Australian Rainfall and Runoff: A Guide to Flood Estimation, Commonwealth of Australia

Bureau of Meteorology (2020), Rainfall IFD Data System, accessed online February 2020

City of Busselton (2021) Local Planning Policy No. 6.1 Stormwater Management

City of Busselton (2014) Water Sensitive Urban Design Guidelines for Individual Lots, Infill Development and Subdivision

City of Busselton (2004) Sussex Location 413 Combined Methodologies, February 2004

Department of Biodiversity Conservation and Attractions (2018), Geomorphic Wetlands on the Swan Coastal Plain, accessed February 2020

Department of Water and Environmental Regulation (2020), Contaminated Sites Database, accessed March 2020.

Department of Water and Environmental Regulation (2017), Decision Process for Stormwater Management in Western Australia.

Department of Water and Environmental Regulation (2020), Environmentally Sensitive Areas Database, accessed March 2020.

Department of Water and Environmental Regulation (2018), Perth Groundwater Map, accessed online February 2020.

Department of Water and Environmental Regulation (2020), Water Register, accessed online December 2019.

Department of Water (2004), Stormwater Management Manual for Western Australia.

Department of Water (2008), Urban Water Management Plan: Guidelines for Preparing Plans and for Complying with Subdivision Conditions. Government of Western Australia.

Department of Water (2009), South West Groundwater Areas Allocation Plan, May 2009.

Department of Water (2012), Water Monitoring Guidelines for Better Urban Water Management Strategies/Plans.

Engineers Australia (2006) Australian Runoff Quality - A Guide to Water Sensitive Urban Design

GBG MAPS (2019) Smiths Beach Geophysical Investigation, Yallingup Western Australia.

Golder Associates (2021), Smiths Beach Development, Preliminary Geotechnical and Pavement Investigation, October 2021

Government of Western Australia (2019) Government Sewerage Policy, September 2019.

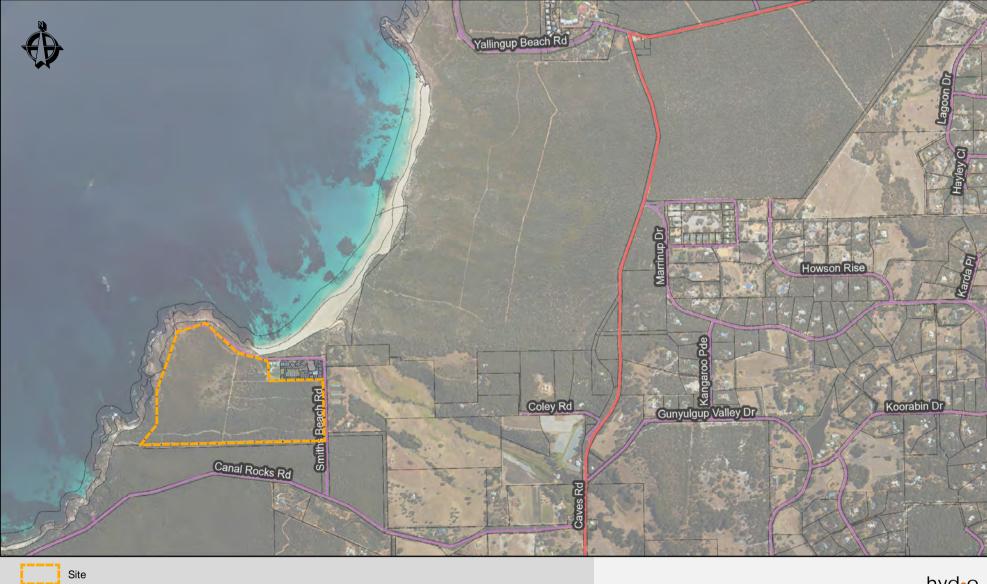
Institute of Public Works Engineering Australia (2011). Local Government Guidelines for Subdivision Development. Edition 2.1

Institute of Public Works Engineering Australia (2016), Specification Separation Distances for Groundwater Controlled Urban Development, Version 2, February 2016

Leonard, E.L. (1991) Yallingup Sheet 1930 IV and Part Sheet 1830 I, 1:50,000 Environmental Geology Series. Geological Survey of Western Australia

Stantec (2021), Smiths Beach, Engineering Report for Development Application, August 2021

Strategen JBS&G (2020), Smiths Beach Stage 2 Approvals – Vegetation Site Visit, October 2020


Planning Report Western Australian Planning Commission (2008). Better Urban Water Management, October 2008

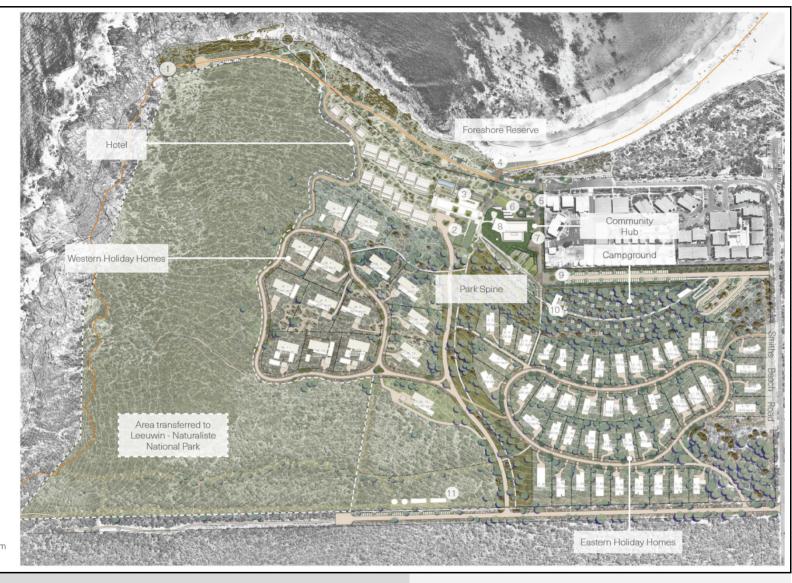
Western Australian Planning Commission (2003). Planning Bulleting No. 64: Acid Sulphate Soils. Western Australian Planning Commission, November 2003.

Wood & Grieve Engineers (2011a), Loc 413 Smiths Beach Site Servicing Strategy Report, April 2011

Wood & Grieve Engineers (2011b), Proposed Development on Loc 413 Smiths Beach Report on Stormwater Management, April 2011

FIGURES

hyd₂O Smiths Beach Urban Water Management Plan Location Plan Figure 1


0 250 500 750 1,000 Meters

Date: 31/05/2021 Job No. H20045

LEGEND

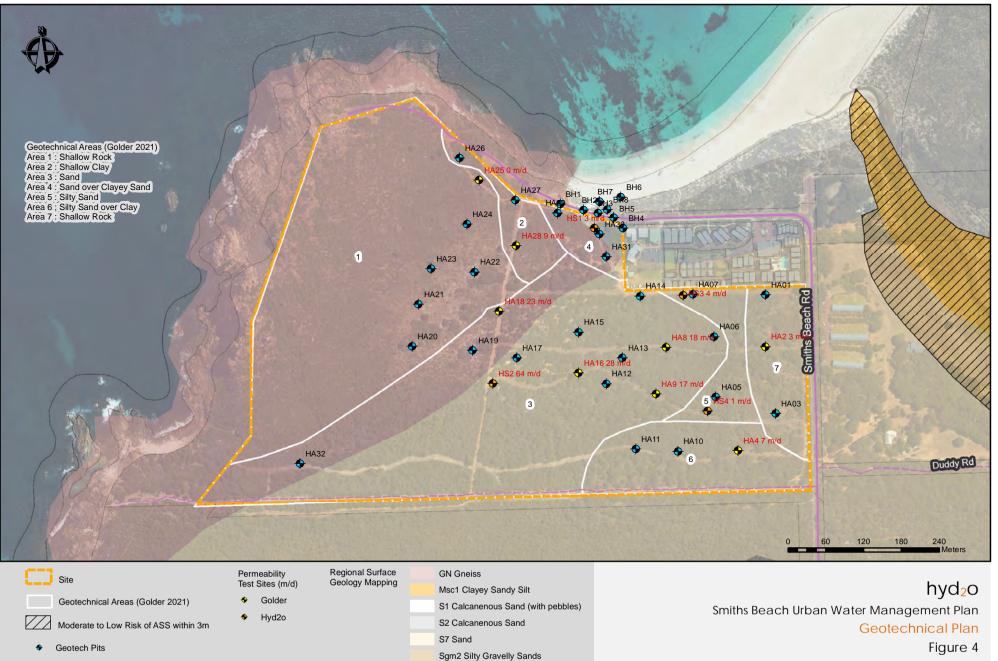
- 1. Cape to Cape Track
- 2. Hotel Arrival
- 3. Restaurant
- 4. Universal Beach Access
- 5. Yarning Circle
- 6. Cape to Cape Welcome Centre
- Surf Life Saving Club
 Café & General Store
- 9. Smiths Lane Public Parking
- 10. Campground Facilities
- 11. Service Infrastructure

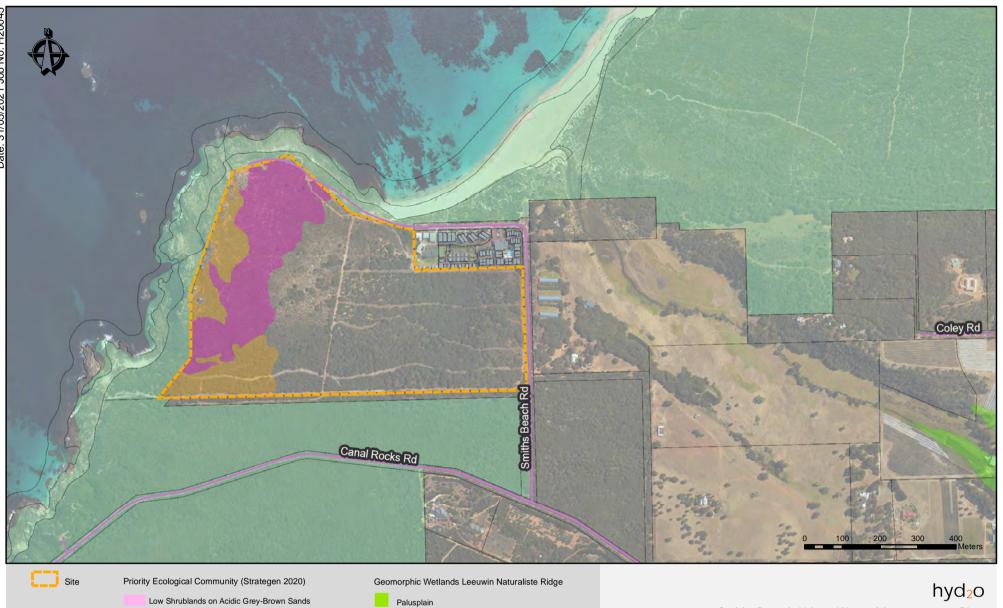
0 100m 200m

hyd₂O Smiths Beach Urban Water Management Plan Site Masterplan

Figure 2

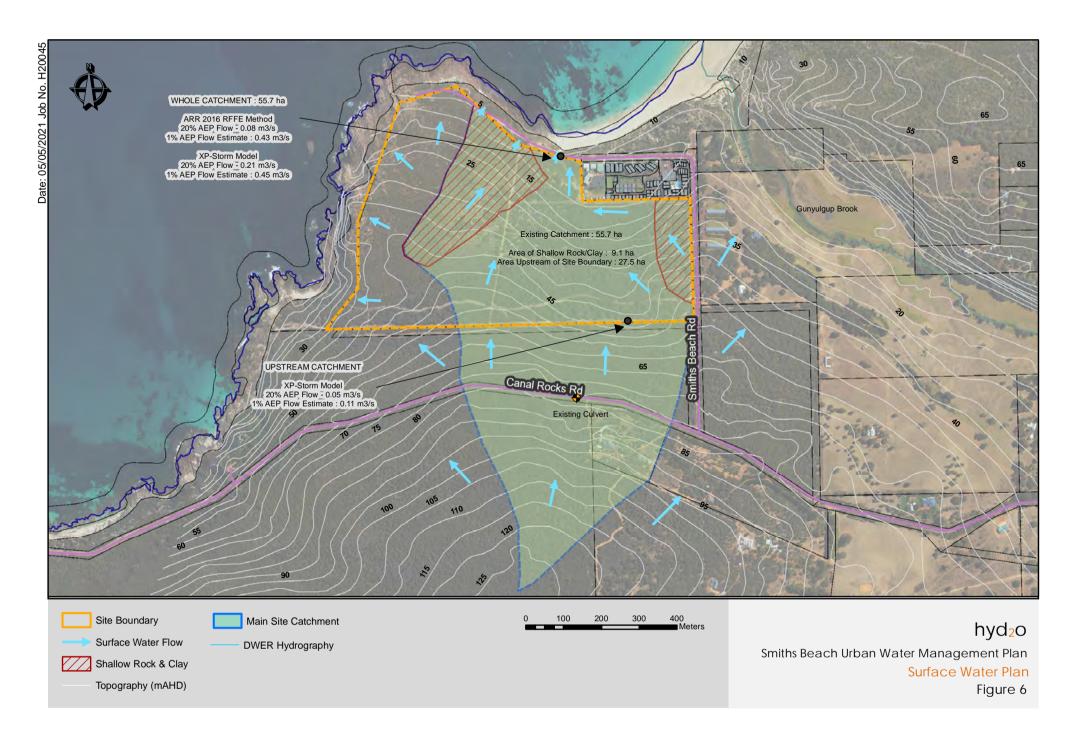
240 Meters

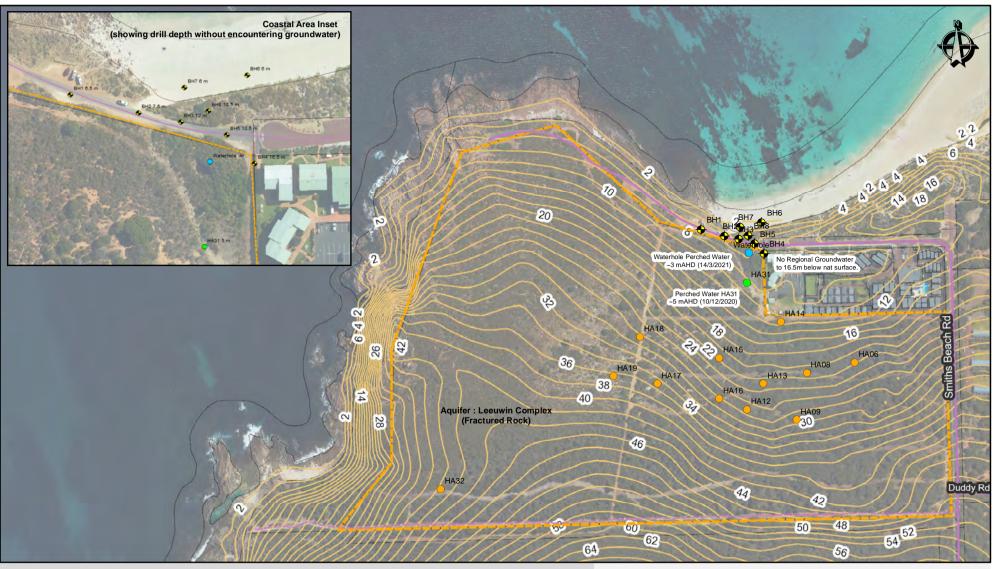

120


60

180

Figure 3

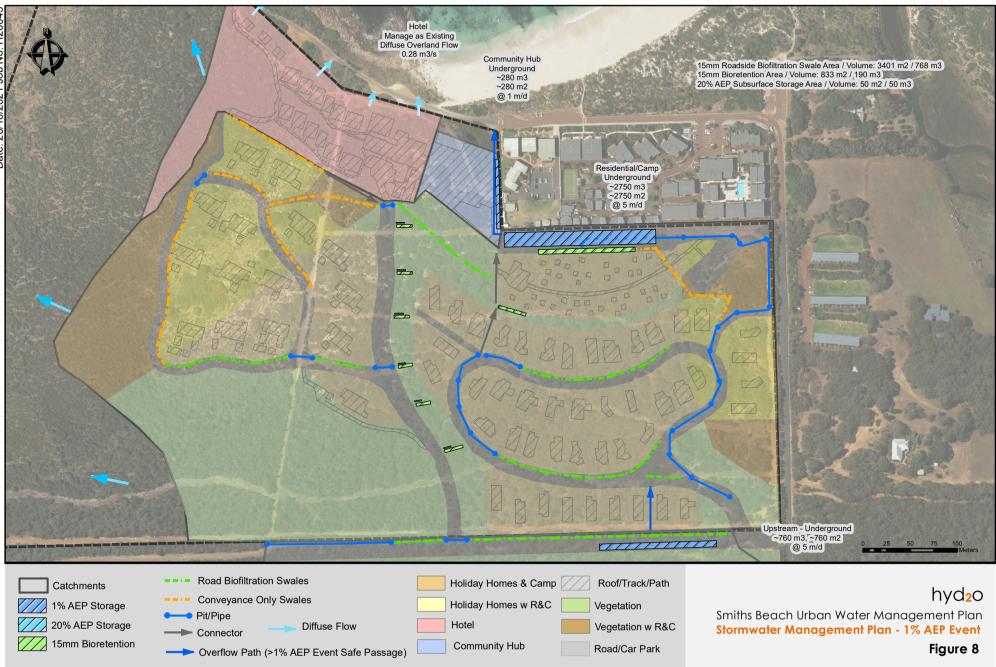




Malaleuca Lanceolata Forests, Leeuwin Naturaliste Ridge

Clearing Regulations - Environmentally Sensitive Areas

Smiths Beach Urban Water Management Plan Environmental Plan Figure 5



- Installed Bores (Name, Total drill depth)
- Manmade Waterhole
- Test Pit HA31 (Perched Water)
- Test Pits to 3m Depth without Groundwater

Note : Groundwater not encountered in any test pits. Deeper pits to 3m shown on plan as indicator of minimum groundwater depth in areas not subject to shallow perching.

0 60 120 180 240 Meters hyd₂O Smiths Beach Urban Water Management Plan Groundwater Plan Figure 7

APPENDIX A UWMP Checklist

Checklist for integrated water cycle management assessment of application for subdivision or urban water management plan

- 1. Tick the status column for items for which information is provided.
- 2. Enter N/A in the status column if the item is not appropriate and enter the reason in the comments column.
- 3. Provide brief comments on any relevant issues.
- 4. Provide brief description of any proposed best management practices, eg. multi-use corridors, community based-social marketing, water re-use proposals.

UWMP Item	Deliverable		Comments	
Executive summary				
Development design elements and compliance with design objectives	Table 1: Design elements and compliance		Executive Summary Section 2	
Key design requirements for detailed design – critical control points and elements	Table 2: Design requirements for critical control points		Section 2	
Introduction and planning approval				
Location plan, adjoining lots, key landscape features and roads. Local Water Management Strategy. Structure plan, zoning and land use. Subdivision plan and/or approval	Location plan Site context plan Subdivision layout plan Or combination of above	Section 1 Introduction Figs. 1, 2		
Design objectives				
Agreed design objectives and demonstration of compliance		\checkmark	Executive Summary Section 2	
Site characteristics				
Existing information and more detailed assessments (monitoring). How do the site characteristics affect the design?		V	Section 3 Site Characteristics	
Site Conditions - existing topography/contours, aerial photo underlay, major physical features	Site condition plan		Section 3.1 Site Conditions, Fig. 3	
Geotechnical - topography, test pit locations, soil zones and descriptions, site classification zones, proposed earthworks and approximate finished contour levels	Geotechnical plan	V	Section 3.2 Geotechnical, Fig. 4 Appendix B,C,D	
Environmental - sensitive or significant vegetation areas, wetlands and buffers, waterways and buffers, contaminated sites			Section 3.3 Environment Fig.5	
Surface Water – topography, 100 year floodways and flood fringe areas, 100 year proposed flow paths, water quality of flows entering and leaving (if applicable)			Section 3.4 Surface Water Fig 6 , Appendix E,F	
Groundwater – topography, test bore locations, groundwater pre development, groundwater post development, water quality details, groundwater variation hydrograph	Groundwater Plan		Section 3.5 Groundwater, Fig.7	
Landscape - proposed public open space areas, water source, bore(s), lake details (if applicable), approx watering requirements and water balance, indicative irrigation schedule. Demonstrate compliance with DoW Constructed Lakes Position Statement if applicable			Section 4.2.2 Appendix G	
Water use sustainability initiatives				
Water supply and efficiency measures		\checkmark	Section 4.1 Water Conservation Strategy	
Fit-for-purpose strategy and agreed actions. If non-potable supply, support with water balance			Section 4.2 Fit-For- Purpose Water Strategy	
Wastewater management			Section 4.3 Wastewater Appendix G	

UWMP Item	Deliverable		Comments
Stormwater and groundwater management design			Section 5 and Section 6
Flood protection - peak flow rates, top water levels at control points,100 year flow paths - floodways and flood fringe zones and/or along roads and reserves, 100 year inundation areas and volumes	100yr event plan	✓	Section 5 Stormwater Management Figure 8
Stormwater management system - storage areas, flows and hydraulic grade lines for both major and minor events including controlling inverts (critical control points). Locations and arrangements for agreed structural and non-structural best management practices and treatment trains supported by sizing criteria, areas of inundation, flow paths and cross sections. Show integration with landscaping	Section 5, Appendix D	2 2 2	Section 5 Stormwater Management Figure 8, Appendix I,J,K
Post development groundwater levels and fill requirements (including existing and final surface levels), outlet controls, and any subsoils (showing drawdown/impacts near sensitive environments). Describe modelling assumptions.		V	Section 6 Groundwater Management
Actions to address acid sulfate soils or contamination		\checkmark	Section 7 Subdivision Works Management
Protection of waterways, wetlands (and their buffers), remnant vegetation and ecological linkages			Section 3.3, Section 5
Management of disease vector and nuisance insects		\checkmark	Section 5
Management of subdivisional works	<u>.</u>		
Management of construction activities including dewatering, acid sulfate soils, constructed best management practices, and dust, sediment and erosion control – timing and possible staging			Section 7 Subdivisional Works Management
Monitoring program			
Sampling and assessment plan including duration and arrangements for ongoing actions		V	Section 8 Monitoring Program
Implementation plan			
Roles, responsibilities, funding for implementation			Section 9 Implementation, Table 10
Maintenance arrangements as agreed		\checkmark	Section 9 Implementation
Assessment and review		\checkmark	Section 9 Implementation

APPENDIX B Geotechnical Report

REPORT **Smiths Beach Development**

Preliminary Geotechnical and Pavement Investigation

Submitted to:

Smiths 2014 Pty Ltd Level 3/338 Barker Road SUBIACO WA 6008

Submitted by:

Golder Associates Pty Ltd Level 4, 45 Francis Street, Northbridge Western Australia 6003, Australia

+61 8 9213 7600

20435097-001-R-Rev0

October 2021

Distribution List

Electronic copy – Smiths 2014 Pty Ltd

Electronic copy - Golder Associates Pty Ltd

Table of Contents

1.0	INTR	ODUCTION1
2.0	OBJE	ECTIVES1
3.0	PRE\	/IOUS INVESTIGATIONS2
4.0	FIELI	DWORK2
	4.1	Geotechnical Investigation2
	4.2	Pavement Investigation4
5.0	LABO	DRATORY TESTING
6.0	SITE	CONDITIONS
	6.1	Geological Setting7
	6.2	Subsurface Conditions – Development Area7
	6.2.1	Area 1 – Shallow Rock8
	6.2.2	Area 2 – Shallow Clay8
	6.2.3	Area 3 – Sand8
	6.2.4	Area 4 – Sand over Clayey Sand8
	6.2.5	Area 5 – Silty Sand8
	6.2.6	Area 6 – Silty Sand over Clay8
	6.2.7	Area 7 – Shallow Rock9
	6.3	Subsurface Conditions – Foreshore Area9
	6.4	Existing Pavement Condition9
	6.5	Groundwater10
7.0	DEVE	ELOPMENT AREA DISCUSSION10
	7.1	Main Geotechnical Issues10
	7.2	Preliminary Site Classification11
	7.3	Site Preparation Procedures12
	7.4	Compaction13
	7.5	Structural Fill13
	7.5.1	Imported Fill13
	7.5.2	In Situ Soils13
	7.6	Excavations

	7.7	Earthwork Bulking Factors	.14
	7.8	Stormwater Disposal	.14
	7.9	Pavements	.14
	7.10	Effluent Disposal	.15
	7.11	Retaining Structures	.15
8.0	PAVE	MENT DISCUSSION	.16
	8.1	Visual Assessment	.16
	8.2	Design Traffic	.17
	8.3	Subgrade Design CBR	.17
	8.4	Falling Weight Deflectometer	.17
	8.5	Pavement Design (New and Existing Pavements)	.18
	8.6	Sealing	.19
	8.7	Pavement Joints	.20
	8.8	Pavement Rehabilitation	.20
	8.8.1	Pothole and Small Defect Repair	.20
	8.8.2	Crack Sealing	.21
	8.8.3	Edge and Shoulder Maintenance	.21
9.0	PAVE	MENT SPECIFICATIONS AND CONSTRUCTION	.21
	9.1	Specifications	.21
	9.2	Compaction and Dryback	.21
	9.3	Asphalt	.22
	9.4	Construction Advice	.22
	9.5	Pavement Drainage	.22
10.0	ROCI	C DURABILITY DISCUSSION	.22
11.0	IMPO	RTANT INFORMATION	.23

TABLES

Table 1: Summary of Geotechnical Investigation Test Locations	2
Table 2: Permeability Test Results	4
Table 3: Summary of Pavement Dipping Locations	4
Table 4: Summary of Laboratory Test Results – Soil	6
Table 5: Summary of Laboratory Test Results – Rock Strength Testing	7
Table 6: Bulking Factors	14
Table 7: Retaining Structure Parameters	15
Table 8: Falling Weight Deflectometer Results (566 kPa Drop Stress)	17
Table 9: Summary of Assumed Material Properties	18
Table 10: Summary of Granular Pavement Requirements	19
Table 11: Preliminary Bituminous Surfacing Application Rates	19
Table 12: Compaction and Dryback Requirements	22

FIGURES (AFTER REPORT)

Figure 1: Location Plan Figure 2: Site Plan Figure 3: Site Plan – North East Corner Figure 4: Geology Map Figure 5: Preliminary Geotechnical Areas Figure 6: Inferred Subsurface Section A Figure 7: Inferred Subsurface Section B Figure 8: Inferred Subsurface Section C Figure 9: Inferred Subsurface Section D Figure 10: Inferred Subsurface Section E

Figure 11: Inferred Subsurface Section F

APPENDICES

APPENDIX A Previous Investigation Results – Douglas Partners

APPENDIX B Hand Auger Borehole Report

APPENDIX C Borehole Report

APPENDIX D Pavement Dipping Report

APPENDIX E Falling Weight Deflectometer Test Report

APPENDIX F Laboratory Test Certificates

APPENDIX G Pavement Visual Assessment

APPENDIX H Design Traffic Calculation

APPENDIX I Pavement Design

APPENDIX J Pavement Work Tip – Treatment of Cracks

APPENDIX K Important Information

1.0 INTRODUCTION

This report presents the results of a preliminary geotechnical and pavement investigation carried out by Golder Associates Pty Ltd (Golder) for the proposed development at Smiths Beach, Yallingup. The approximate location of the site in relation to the surrounding area is presented on Figure 1. The scope of work was outlined in Golder proposal P20435097-001-L-Rev1 and P20435097-002-L-Rev0, and authorised by Smiths 2014 Pty Ltd.

The proposed development will comprise tourism, community infrastructure and holiday homes. The development area is about 20 hectares in size and presently covered with variably dense remnant bushland, with firebreaks around the perimeter and on various alignments through the site. Regular rock outcrops occur near the western and eastern extents of the site (Area 1 and Area 7 as discussed in Section 6.2). Figure 2 provides aerial imagery of the site.

The ground surface level varies from about 5 m AHD close to the coast, to a maximum of about 60 m AHD near the southern extent.

2.0 **OBJECTIVES**

The objectives of the investigation were as follows:

Development Area

- Assess surface and subsurface conditions and soil profile, subsurface soil layer thicknesses, strength, and other geotechnical characteristics.
- Assess the preliminary site classification for the development.
- Provide earthworks recommendations working with in situ materials and imported material as appropriate.
- Assess suitability of excavated material for fill.
- Assess areas and depths of unsuitable material and possible reuse of this unsuitable material on site.
- Assess groundwater levels and any perched water table levels, including sub-surface flow paths.
- Assess soil permeability and potential for stormwater disposal by soakage.
- Provide earth pressure coefficients for granular backfill to earth retaining structures.
- Assess the pavement design CBR for the development.
- Assess the site suitability and foundation requirements for residential and commercial type development (noting building pad requirements) and recommendations of disposal of roof stormwater.
- Assess soil permeability and soil classification for design loading rate calculations, in accordance with AS/ANZ 1547, suitable for supporting approvals for on-site disposal of effluent generated from on-site ATU's.
- Provide recommendations for further work based on the outcomes of the investigation.

Smiths Beach Road Pavement

- Assess the existing pavement condition, profile, and deflection characteristics along Smiths Beach Road between Canal Rocks Road and the road termination.
- Provide pavement rehabilitation requirements if the existing pavement is considered inadequate for the expected traffic loading.

- Provide a design subgrade California Bearing Ratio (CBR) and pavement design for Smiths Beach Road.
- Provide comment on any other factors that may influence pavement construction or performance.

Rock Durability near the Coast Line

Assess the surface level of the rock near the coastline that is considered to have sufficient durability to withstand the action of the ocean in the coming century.

3.0 PREVIOUS INVESTIGATIONS

Various reports containing relevant information have previously been undertaken at the site. The relevant test locations from these investigations are shown on Figure 2 and Figure 3.

The previous investigations comprise:

- Rock Exploration Drilling by MP Rogers & Associates (MRA) in May 2000.
- A geotechnical investigation by Douglas Partners in March 2001. The results are provided in report Ref: Project 22180 dated May 2001. The relevant work comprised excavation of ten test pits and associated laboratory testing. The test pit locations are shown on Figure 2 and Figure 3. Test pit reports and laboratory test results are provided in Appendix A.
- Permeability testing completed by hyd2o at four locations. The test locations and results are shown on Figure 2 and Figure 3.
- A Geophysical Investigation by GBG Maps in March 2019. The results are provided in report Ref: 70492 Rev1 dated 24 September 2020.

4.0 FIELDWORK

4.1 Geotechnical Investigation

The geotechnical investigation was completed between 10 December 2020 and 12 March 2021 and comprised:

- Drilling of hand auger boreholes at 32 locations, HA01 to HA32, extending to depths between 0.2 m and 3.0 m.
- Perth sand penetrometer (PSP) or dynamic cone penetrometer (DCP) testing adjacent to each hand auger borehole, extending to a depth of 2 m or shallower refusal.
- Diamond core boreholes at eight locations, BH1 to BH8, extending to depths of between 6.0 m and 16.5 m.
- In situ permeability testing at eight hand auger locations.
- Collection of samples for geotechnical laboratory testing.

The test positions were located using a hand-held GPS, typically accurate to within about 5 m. The test locations are shown on Figure 2 and Figure 3. A summary of the test locations is provided in Table 1.

Table 1: Summary of Geotechnical Investigation Test Locations

Test ID	Approximate Coo	rdinates (GDA94)	Termination Depth	Termination	Inferred Refusal Material
Testib	Easting (m)	Northing (m)	(m)	Remark	
Current C	Solder Investigation				
HA01	315991 6273479		6273479 0.50 Refusal		Gneiss
HA02	315991 6273397		0.65	Refusal	Gneiss

Test ID	Approximate Coo	ordinates (GDA94)	Termination Depth	Termination	Inferred Refusal Material			
Test ID	Easting (m)	Northing (m)	(m)	Remark	interieu Kerusar Materiai			
HA03	316007	6273291	0.30	Refusal	Gneiss			
HA04	315947	6273232	2.60	Refusal	Hard Clay			
HA05	315912	6273317	1.30	Refusal	Gneiss			
HA06	315909	6273413	3.0	Target Depth	-			
HA07	315876	6273480			Very dense Silty Sand			
HA08	315833 6273396		3.00	Target Depth	-			
HA09	315817	6273322	3.00	Target Depth	-			
HA10	315852	6273231	1.30	Refusal	Hard Clay			
HA11	315785	6273235	1.50	Refusal	Hard Clay			
HA12	315738	6273338	3.00	Target Depth	-			
HA13	315764	6273379	3.00	Target Depth	-			
HA14	315792	6273477			-			
HA15	315694	6273420	v		-			
HA16	315694	6273355	3.00	Target Depth	-			
HA17	315596	6273379	3.00	Target Depth	-			
HA18	315568	6273453	3.00	Target Depth				
HA19	315526	6273391	3.00	Target Depth				
HA20	315430	6273397	1.90	Refusal	Gneiss			
HA21	315440	6273464	1.10	Refusal	Gneiss			
HA22	315529	6273515	1.00	Refusal	Gneiss			
HA23	315460	6273520	0.90	Refusal	Gneiss			
HA24	315517	6273591	0.40	Refusal	Gneiss			
HA25	315536	6273661	0.20	Refusal	Gneiss			
HA26	315505	6273696	0.20	Refusal	Hard Clay			
HA27	315594	6273629	0.70	Refusal	Hard Clay			
HA28	315595	6273557	1.00	Refusal	Hard Clay			
HA29	315661	6273609	1.90	Refusal	Very dense Clayey Sand			
HA30	315727	6273575	2.20	Refusal	Very dense Clayey Sand			
HA31	315738	6273539	3.00	Target Depth	Very delise Clayey Saild			
HA32	315252	6273212	3.00	Target Depth				
BH1	315665	6273623	6.50	Target Depth				
3H2	315702	6273613	7.50	Target Depth				
BH3	315725	6273608	12.00	Target Depth				
BH3 BH4	315765	6273585	16.50	Target Depth				
BH5	315750	6273601	10.50	Target Depth				
BH6	315750	6273634	6.0	Target Depth				
BH7	315761	6273634	6.0	Target Depth	-			
BH8	315727	6273614	10.5	Target Depth				
	Douglas Partners		10.5	raiget Depth	-			
TP1	Douglas Failliers	Investigation	1 1	Refusal	Granite boulders			
TP1 TP2	-	- 1.1 - 1.2			Granite boulders			
TP2	-			Refusal Target Depth	Grafille			
TP3 TP4			2.2	• .	-			
			- 2.0 Target Depth		- Cronito			
TP5	-	-	1.3	Refusal	Granite			
TP6	-	-	1.4	Refusal	Granite			
TP7	-	-	2.5	Target Depth	- Colonerite			
TP7A	-	-	0.6	Refusal Target Depth	Calcarenite			
TP8			2.0					

The hand auger borehole reports are provided in Appendix B along with a list of the notes and abbreviations used on the reports, and the method of soil description adopted.

PSP/DCP testing was conducted in accordance with AS 1289.6.2-1997 and 1289.6.3-1997. The results of the PSP/DCP tests are provided on the hand auger reports included in Appendix B.

The boreholes were drilled using HQ3 diamond core techniques by a GDR 650 truck mounted drill rig owned and operated by OzDrill. The borehole reports are presented in Appendix C along with a list of notes and abbreviations, and a method of soil description used on the reports.

The *in situ* permeability testing was carried out using the 'Talsma Hallam' method described in AS 1547:2012, Appendix G. In accordance with the standard, the test was conducted at 0.5 m depth. The test results are provided in Table 2.

Table 2: Permeability Test Results

Location	Area	Material Type	Permeability (m/day)
Current Gol	der Investigati	on	
HA2	Area 7	Silty Sand	3
HA4	Area 6	Sand/Silty Sand	7
HA8	Area 3	Sand	18
HA9	Area 3	Sand	17
HA16	Area 3	Sand	28
HA18	Area 3	Sand	23
HA25	Area 1	Rock – Gneiss	Shallow rock – unable to perform test
HA28	Area 2	Sandy Gravel over Sandy Clay	9
Previous hy	d2o Investigat	ion	
-	Area 5	Silty Sand	4
-	Area 5	Silty Sand	1
-	Area 3	Sand	64
-	Area 4	Sand/Silty Sand	3

Personnel from Golder selected the borehole locations, advanced the hand auger boreholes, carried out the DCP/PSP and permeability testing, logged the materials encountered, and collected samples for laboratory testing.

4.2 **Pavement Investigation**

The pavement investigation was completed between 18 and 22 December 2020 and comprised:

- Visual assessment of the pavement and surfacing condition.
- Pavement dippings at six locations, PD01 to PD06, extending to depths of between 0.41 m and 1.00 m.
- PSP/DCP testing at subgrade level within each dipping.
- Collection of samples for geotechnical laboratory testing.
- Falling Weight Deflectometer (FWD) testing on both lanes at intervals of 25 m along Smiths Beach Road between Canal Rocks Road and the road termination.

The pavement dipping positions were located using a hand-held GPS, typically accurate to within about 5 m. The test locations are shown on Figure 3. A summary of the test location is provided in Table 3.

Table 3:	Summarv	of Pavement	Dipping Lo	cations
1 4010 01	• anna y			outionio

	Approximate Coo	rdinates (GDA94)	Termination Depth
Test ID	Easting (m)	Northing (m)	(m)
PD01	316075	6273013	0.52
PD02	316075	6273130	0.41

	Approximate Coo	ordinates (GDA94)	Termination Depth
Test ID	Easting (m)	Northing (m)	(m)
PD03	316074	6273292	0.49
PD04	316065	6273444	0.87
PD05	316063	6273536	1.00
PD06	315906	6273603	0.75

The visual assessment of the existing pavement and surfacing condition was undertaken during a walkover and is further discussed in Section 8.1.

The pavement dippings were excavated using a 150 m diameter corer and jackhammer operated by Qualcon Laboratory. Pavement dipping logs are presented in Appendix D.

FWD testing was carried out by Specialist Testing and Technical Services (STATS). The results of the FWD testing are presented in Appendix E. The outcomes of the testing are further discussed in Section 8.3.

A geotechnical engineer from Golder undertook the visual assessment of the pavement condition, positioned the test locations, supervised the pavement dippings, conducted the PSP/DCP testing, logged the materials encountered, and collected the samples for laboratory testing. The pavement dipping holes were backfilled with basecourse material and the pavement surfacing was reinstated with compacted cold mix asphalt and the site left in a tidy condition.

5.0 LABORATORY TESTING

Samples were submitted for laboratory testing at Golder's NATA-accredited laboratory and Qualcon's NATA-accredited laboratory. The laboratory testing comprised:

- Moisture content on 13 samples
- Particle size distribution on 13 samples
- Atterberg limits and linear shrinkage on 13 samples
- Dry density/moisture content relationship on three samples
- Soaked CBR on three samples
- Point Load Index on 11 rock core samples.

The geotechnical laboratory test certificates are presented in Appendix F. The test methods followed are shown on the test reports. A summary of the laboratory test results is presented in Table 4 and Table 5.

October 2021

Test ID	Material Description	Depth (m)	Particle	Size Distrik passing)	oution (%	LL (%)	PI (%)			MC (%)	MMDD (t/m³)	OMC (%)	CBR (%)	Swell (%)
	Description	(***)	Gravel	Sand	Fines	(/0)	(70)	(70)		(0111)	(/0)	(/0)	(70)	
HA04	Sandy CLAY	1.4-1.8	0.7	62	37	75	58	12.0	19.1	-	-	-	-	
HA05	Silty SAND	0.5-0.7	0.0	80	20	SIB	ND	NO	4.8	1.98	10.5	50	0.0	
HA07	Silty SAND	1.8-2.0	4.3	79	16	SIB	ND	NO	6.9	-	-	-	-	
HA19	SAND	1.8-2.0	0.0	95	5	SIB	ND	NO	2.6	-	-	-	-	
HA21	Silty SAND	0.8-1.0	0.8	84	15	SIB	ND	NO	4.4	-	-	-	-	
HA28	Sandy CLAY	0.6-1.0	6	52	42	50	29	9.5	25.4	-	-	-	-	
HA30	Clayey SAND	2.0-2.2	0.0	82	18	27	15	3.0	12.5	-	-	-	-	
PD01	Sandy GRAVEL	0.04-0.16	59	35	6	NO	NP	NO	5.6	-	-	-	-	
PD02	Gravelly SAND	0.2-0.4	33	64	3	NO	NP	NO	6.9	1.93	11.0	13	0.0	
PD03	Clayey Gravelly SAND	0.30-0.49	28	52	20	20	4	1.0	3.3	-	-	-	-	
PD04	Clayey SAND	0.49-0.99	12	62	26	30	12	5.0	11.9	-	-	-	-	
PD06	Clayey Sandy GRAVEL	0.03-0.29	54	31	15	21	5	2.5	8.0	-	-	-	-	
PD06	SAND	0.1-0.3	2	95	3	NO	NP	NO	2.5	1.64	16.5	17	0.0	

Table 4: Summary of Laboratory Test Results - Soil

Notes: Gravel – material passing the 63 mm sieve and retained on the 2.36 mm sieve, Sand – material passing the 2.36 mm sieve and retained on the 0.075 mm sieve, Fines – material passing the 0.075 mm sieve, LL – liquid limit, PI – plasticity index, LS – linear shrinkage, MC – moisture content, OMC – optimum moisture content, MMDD – modified maximum dry density, CBR – soaked California bearing ratio, Swell – swell measured in CBR test, NP – non-plastic, ND – not determined, NO – not obtainable

Test Location	Sample Depth	Test Direction	Point Load Test Results Is50 (MPa)	Inferred Strength (Approx.)
BH1	2.75	Axial	1.7	High
BH1	4.50	Diametral	9.8	Very High to Extremely High
BH2	3.40	Diametral	1.9	High
BH2	4.60	Axial	0.65	Medium
BH3	4.60	Axial	0.25	Low
BH3	6.15	Axial	0.47	Medium
BH3	8.60	Diametral	1.1	Medium to High
BH3	10.40	Axial	0.67	Medium
BH5	6.40	Diametral	0.2	Low
BH5	7.65	Axial	0.42	Medium
BH5	8.15	Diametral	4.8	Very High
BH6	4.80	Diametral	0.34	Medium
BH6	5.15	Axial	0.89	Medium
BH6	5.85	Axial	3.3	Very High
BH7	2.10	Diametral	0.87	Medium
BH7	3.25	Diametral	3.4	Very High
BH7	4.50	Diametral	2.1	High
BH8	6.05	Diametral	0.07	Very Low
BH8	7.45	Diametral	0.14	Low
BH8	8.55	Diametral	0.55	Medium
BH8	9.20	Diametral	0.18	Low
BH8	9.80	Axial	0.21	Low
BH8	10.10	Diametral	0.64	Medium

Table 5: Summary of Laboratory Test Results - Rock Strength Testing

6.0 SITE CONDITIONS

6.1 Geological Setting

The Geological Survey of Western Australia 1:50,000 scale Geological Map of Yallingup is reproduced on Figure 4. The map indicates that the site is in an area underlain by the following geological units:

- SAND derived from Tamala Limestone white to pale and olive-yellow, medium to coarse grained, sub-angular quartz; moderately sorted.
- GNEISS medium grained mesocratic gneiss.

The results of the investigation suggest the geology map broadly represents conditions at the site, except that Gneiss also occurs along the eastern boundary of the site.

6.2 Subsurface Conditions – Development Area

The subsurface conditions across the area are relatively variable. Based on the investigation results and the site walkover, the site has been divided into areas of inferred similar subsurface conditions, as shown on Figure 5. The area boundaries must be considered preliminary and indicative only due to the variability of the conditions and the limitations of an investigation using hand techniques only.

The subsurface conditions in each area are discussed in the following sections.

6.2.1 Area 1 – Shallow Rock

The subsurface conditions encountered in this area may be generalised as comprising:

- Silty SAND (SM), fine to medium grained, generally about 15% low plasticity fines, generally loose becoming medium dense to dense with depth, brown becoming pale brown orange and pale brown grey, extending to depths of between about 0 m (rock outcrops) and 1.9 m, overlying
- Inferred GNEISS/GRANITE cobbles, boulders, or bedrock, causing refusal at depths between 0.2 m and 1.9 m.

6.2.2 Area 2 – Shallow Clay

The subsurface conditions encountered in this area may be generalised as comprising:

- Silty SAND (SM) or Sandy GRAVEL (GP), fine to medium grained sand, fine to coarse lateritised gneiss gravel, generally about 15% low plasticity fines, medium dense to dense with depth, brown, extending to depths of between about 0.4 m and 0.5 m, overlying
- Sandy CLAY(CI/CH), medium to high plasticity, very stiff to hard, brown, orange, and red, extending to the maximum depth investigated of 1.0 m.

6.2.3 Area 3 – Sand

The subsurface conditions encountered in this area may be generalised as comprising:

SAND (SP), fine to medium grained, with silt in parts, loose becoming medium dense to dense with depth, orange brown to red brown, extending to the maximum depth investigated of 3.0 m.

6.2.4 Area 4 – Sand over Clayey Sand

The subsurface conditions encountered in this area may be generalised as comprising:

- SAND (SP), fine to medium grained, with silt, loose becoming medium dense to dense with depth, orange brown to grey brown, extending to depths of between about 1.5 m and 2.1 m, overlying
- Clayey SAND (SC), fine to coarse grained, about 15% to 25% low plasticity fines, dense to very dense, orange brown, orange yellow and yellow grey, containing a sand layer between 2.5 m and 3.0 m at HA31, extending to the maximum depth investigated of 3.0 m.

6.2.5 Area 5 – Silty Sand

The subsurface conditions encountered in this area may be generalised as comprising:

Silty SAND (SP), fine to medium grained, about 10% to 20% low plasticity fines, loose becoming medium dense to dense with depth, red brown to brown, extending to the maximum depth investigated of 2.0 m.

6.2.6 Area 6 – Silty Sand over Clay

The subsurface conditions encountered in this area may be generalised as comprising:

- SAND/Silty SAND (SP/SM), fine to medium grained, about 10% to 15% low plasticity fines, loose becoming medium dense to dense with depth, brown, extending to depths of between about 0.8 m and 1.4 m, overlying
- Clayey SAND/Sandy CLAY(SC/CI/CH), medium to high plasticity, very stiff to hard, brown, orange brown and grey, extremely weathered rock, extending to the maximum depth investigated of 2.6 m.

Area 7 – Shallow Rock 6.2.7

The subsurface conditions encountered in this area may be generalised as comprising:

- SAND/Silty SAND/Silty Gravelly SAND (SM), fine to medium grained, generally about 15% to 20% low plasticity fines, generally loose becoming medium dense to dense with depth, brown and red brown, fine to coarse gneiss gravel and cobbles, extending to depths of between about 0 m (rock outcrops) and 1.1 m, overlying
- Inferred GNEISS/GRANITE cobbles, boulders, or bedrock, causing refusal at depths between 0.3 m and 1.3 m.

Subsurface Conditions – Foreshore Area 6.3

Figure 6 and Figure 7 provide a section showing the inferred subsurface conditions encountered within the boreholes located near the coastline on the northern edge of the proposed development. The subsurface conditions may be summarised as follows:

- SAND/Silty SAND/Clayey SAND (SP/SM/SC), fine to coarse grained sand, with some Gneiss boulders, extending to depths of between about 1.5 m and 7.2 m, overlying
- Clayey SAND/Sandy CLAY/CLAY (SC/CI), medium plasticity, very stiff to hard, variably cemented with iron cementation, encountered at BH4 and BH6 only, extending to a depth of 4.5 m at BH6 and the depth investigated of 16.5 m at BH4, overlying
- GNEISS, medium to coarse grained, mottled pale red, brown, grey, and pale blue, distinctly weathered and very low to low strength in parts near the surface of the unit, becoming slightly weathered to fresh and medium to very high strength, extending to the depths investigated of between 6.5 m and 12.0 m.

6.4 **Existing Pavement Condition**

The pavement profile encountered along Smiths Beach Road can be generalised as follows:

- Asphalt thickness varies from 25 mm to 40 mm, overlying
- Basecourse Sandy GRAVEL/Gravelly SAND (GP-SP), fine to medium grained, sub-rounded to sub-angular gravel, brown, fine to coarse grained sand, trace non plastic fines, thickness ranging from 120 mm to 270 mm, overlying
- Subgrade SAND/Gravelly SAND (SP), fine to coarse grained, pale brown to brown, fine to medium gravel, trace non plastic fines.

A variation to the above profile was observed in pavement dipping PD01 located approximately 180 m south of Duddy Road where a gravelly sand limestone sub-base layer was encountered. Another variation was observed at pavement dipping PD05 located approximately 50 m north of the transition from granite to laterite asphalt surfacing, as follows:

- Asphalt 30 mm thickness.
- **Basecourse** Sandy GRAVEL (GP), fine to medium grained, sub-rounded to sub-angular gravel, brown, fine to coarse grained sand, trace fines, 190 mm thickness, overlying
- Sub-base Sandy GRAVEL (GP), fine to medium grained, sub-rounded to sub-angular gravel, grey-brown, fine to coarse grained sand, trace fines, 70 mm thickness, overlying
- Subgrade Silty SAND (SM), fine to medium grained, dark brown, trace fine to medium gravel. At 800 mm depth, the material transitions into a red brown Silty Clayey SAND (SM/SC) with low to medium plasticity fines.

6.5 Groundwater

During our investigation in December, groundwater was not encountered in the hand auger boreholes, although the groundwater level was considered to be close to the base of the hole at hand auger HA31.

During the previous investigation conducted by Douglas Partners in March 2001, groundwater was not encountered in any of the test pits. However, the groundwater level in the soak was about 2.5 m below the natural surface level.

During the previous investigation conducted by MRA in May 2000, groundwater was measured at about RL 4.1 m AHD near the soak, which was noted to be similar to the level in the soak.

Perched water may occur during wet periods. Stormwater will readily infiltrate into the surficial higher permeability materials (sandy soil and highly fractured rock) and more slowly into the underlying lower permeability materials (clayey soil and relatively unfractured rock). Depending upon the amount of rainfall, this may result in some water perching on the lower permeability soil, at relatively shallow depth over parts of the site.

Figure 8 to Figure 11 present inferred subsurface sections across the site, which show the boundary between the higher and lower permeability soils and the potential flow path for any perched water. They indicate that if present, any perched water will move towards the centre of the site from the east, west and south. In the centre of the site any perched water will move into the deep sand. In the northern parts of the site where lower permeability materials occur at shallower depth, any perched water will be directed towards the ocean through the area around the wetland. The artificial soak is considered to be a surface expression of perched water flowing towards the ocean.

7.0 DEVELOPMENT AREA DISCUSSION

7.1 Main Geotechnical Issues

The geotechnical issues requiring consideration include:

- The variability in subsurface conditions. Relatively variable subsurface conditions occur at the site due to:
 - the transition between geological units (sand derived from Tamala Limestone and Gneiss)
 - the presence of varying thicknesses of colluvial soil including large boulders
 - variable weathering of the bedrock, which sometimes occurs as extremely weathered rock (soil comprising medium to high plasticity sandy clay) and sometimes as shallow relatively fresh rock.
- The shrink swell potential of the clayey soils within the zone of significant moisture fluctuation. The presence of relatively shallow clayey soil in some areas will result in seasonal surface movement. Although the movement may be mitigated by placement of imported granular soil, this may not be appropriate at this site as sand pads may be undesirable.
- Near surface soils with a relatively low permeability. Although much of the site is overlain by a significant thickness of highly permeable sand, where shallow clayey soil or rock is present these will have a relatively low permeability and act as a barrier to stormwater and effluent infiltration. In addition, whilst not as impermeable as the clayey soil and rock discussed above, at some locations the silty sand will have a lower permeability compared to the free draining sand present over much of the site.

- The presence of shallow rock in some areas. Where shallow massive rock or large boulders occur, the material is often relatively fresh and will be difficult to excavate.
- Relatively loose near-surface sand over parts of the site. As for many typical sand sites, conventional proof rolling using a heavy vibratory roller is required to improve the density of the near surface sand/silty sand.

7.2 Preliminary Site Classification

AS 2870-2011 defines site classification on the basis of a characteristic surface movement associated with the surface movements of soils. At this site, the site classification is primarily influenced by:

- The presence of clayey soil within the depth of seasonal moisture variation over parts of the site.
- The shrink swell characteristics of the clayey soil.
- The thickness of inert in situ sand/silty sand, or imported fill sand (inert soil) overlying clayey soil.

We have assessed the classification for the site and consider that provided the site preparation measures provided in Section 7.3 are adopted, the preliminary site classifications discussed below are applicable:

- Area 1 and Area 7 'Class S' While a 'Class A' may be applicable for much of these areas where silty sand overlies relatively shallow rock, a preliminary classification of 'Class S' is recommended due to the variable weathering characteristics of the rock and the presence of boulders which may appear as massive rock in the hand auger boreholes. These factors may result in relatively shallow medium to high plasticity clay being present in some areas. Should this occur a 'Class M' classification may be appropriate for isolated areas.
- Area 2 'Class M' Based on the presence of relatively shallow medium to high plasticity sandy clay a 'Class M' is considered appropriate. The sandy clay may have varying shrink swell potential; however, based on the currently available information, a 'Class H1' may be appropriate if no inert soil is present over the clay, and where about 1.0 m of inert soil is present over clay a 'Class S' may be appropriate.
- Area 3 'Class A' Based on the presence of deep sand a 'Class A' is considered appropriate.
- Area 4 'Class S' Based on the presence of clayey sand within the depth of seasonal moisture variation, a 'Class S' is considered appropriate.
- Area 5 'Class S' While a 'Class A' may be applicable for parts of this area where silty sand overlies relatively shallow rock, a preliminary classification of 'Class S' is recommended due to the variable ground conditions and the possible presence of clayey soil within the depth of seasonal moisture variation.
- Area 6 'Class M' Based on the presence of relatively shallow high plasticity sandy clay a 'Class M' is considered appropriate, although other classifications may be applicable in some areas. The sandy clay may have varying shrink swell potential; however, based on the currently available information, if less than about 0.5 m of inert soil is present over the clay a 'Class H1' may be appropriate, and where about 1.2 m of inert soil is present over clay a 'Class S' may be appropriate.

7.3 Site Preparation Procedures

The site preparation requirements identified below are directed towards:

- Densification of loose surficial sand and silty sand zones that may occur across the site.
- Removal of rock relatively close to finished level to create a uniform bearing layer at least 0.3 m thick under footings and ground slabs. The presence of a variable mix of rock and soil below footings and ground slabs could otherwise create alternate 'hard' and 'soft' points below footings and ground slabs, which may lead to significant differential settlement and cracking or distortion of masonry structures. It may also be prudent to provide a blanket of soil, free of rock to improve drainage and into which footing excavations and service excavations can be made.
- Providing good drainage to reduce the risk of excessive seasonal movement associated with wetting of clayey soil.

The following site preparation procedures will be required to prepare the site for development:

- Remove any other trees not being retained as part of the development, including grubbing out roots.
- Remove all topsoil, roots and other unsuitable or deleterious material from the area. These materials should be stockpiled separately and are not suitable for re-use as structural fill in their current condition. Based on the findings of the site investigation, an average topsoil thickness of about 200 mm is present.
- If required, excavate to the required depth. Granular soils removed during this process should be stockpiled for later re-use as structural fill (refer Section 7.5).
- Where rock may be present within 0.3 m of footings and ground slabs, over-excavate to remove the rock within this zone. Deeper excavation of rock, or placement of structural fill may be desirable for non-geotechnical reasons.
- Proof-compact the exposed surface by moisture conditioning the soil well and applying at least eight overlapping passes with a minimum 10 tonne vibratory roller. Wetting of silty sand will be important prior to compaction to break soil bonds and allow re-orientation of the sand particles and densification of the soil.
- If clayey soils are present following excavation, measures must be undertaken to minimise any exposure of clayey soils to changes in moisture (rain, surface water run-off etc.) to reduce the risk of softening of the clayey soils during construction. Therefore, if excavations are proposed, earthworks should preferably be undertaken during dry periods, as the clayey soils present will be difficult to work when wet. Should the clayey soil become wet and soften it must be removed and replaced with compacted structural fill.
- Where clayey soils are present near surface below structures, the surface of the clayey soil will need to be graded to allow drainage to appropriately designed drains. The drains must be designed to collect water permeating through the granular fill and discharge it clear of the site.
- Where fill is required to achieve the required levels, place and compact approved free draining granular fill, as outlined in Section 7.5, in layers of no greater than 0.3 m loose thickness to the level of compaction specified in Section 7.4. The amount of granular fill required will be dependent on the desired site classification and drainage design.
- Confirm that the specified level of compaction has been achieved to a depth of 0.9 m by testing to the quantities required in AS 3798-2007.

Although the coverage of the site is reasonable on the basis of accepted field investigation practices, the occurrence of undetected unsuitable fill cannot be dismissed. Any deleterious material must be removed from beneath the site and replaced with compacted structural fill.

7.4 Compaction

The required level of compaction for fill and *in situ* soils is outlined below:

- Structural sand fill and *in situ* sand with less than about 5% fines should be compacted to achieve a Perth sand penetrometer (PSP) blow count of at least 8 blows per 300 mm in accordance with AS 1289 6.3.3. If difficulties are experienced with achieving this blow count, then *in situ* density testing may be required to confirm the correlation between Perth sand penetrometer blow count and relative density.
- Materials other than sand should be moisture conditioned and compacted to achieve a Modified dry density ratio of at least 95% in accordance with AS 1289 5.2.1. This is likely to apply where sandy/silty sand contains more than about 5% fines or where fill material comprising both sand and gravel to cobble size pieces is used.

Over excavation and replacement of loose or weak materials may be required where the minimum density cannot be achieved.

Care will need to be taken when compacting in the vicinity of existing buildings, roads, and underground services. This is particularly important if vibratory compaction is being carried out. Tynan (1973)¹ provides assistance with the selection of compaction equipment for use adjacent to structures.

7.5 Structural Fill

7.5.1 Imported Fill

Imported granular fill must comply with the material requirements as stated in AS 3798-2007, "Guidelines on Earthworks for Commercial and Residential Developments". The fill should comprise clean sand, with less than about 5% fines, that is free of deleterious materials and organic matter.

7.5.2 In Situ Soils

The *in situ* sand (other than the topsoil encountered at the surface) present across Area 3 is considered generally suitable for re-use as fill provided that any roots, organic matter and deleterious materials are removed.

The silty sand and gravelly silty sand present over the remainder of the site are considered suitable for re-use as fill provided it is recognised that these materials may not be free draining and the materials may be more difficult to compact as they may be more sensitive to moisture. These materials must not be used where free draining soil is required.

7.6 Excavations

Excavation above the hand auger borehole and test pit refusal depths (refer Table 1) should generally be achieved using standard earthmoving equipment such as a 20-tonne excavator. This is likely to be the case for excavations over most of the site, except in Area 1 and Area 7, and to a lesser extent Area 2, Area 5, and Area 6. Excavation of the relatively shallow granite/gneiss in these areas is expected to generally require a hydraulic rock breaker.

¹ Tynan (1973) Ground Vibration and Damage Effects on Buildings, Australia Road Research Board, Special Report No. 11.

It is not possible to infer whether the rock is massive or a cobble/boulder from hand auger refusal, however at this stage it is recommended that where refusal has occurred it is assumed that massive rock, or large boulders requiring use of a rock breaker for excavation are present.

Excavations in sand and silty sand are particularly prone to instability. Care must be exercised in such excavations and appropriate safety measures adopted where necessary. A short-term excavation slope angle of 1V:1.5H is recommended provided there are no structures or surcharges located behind the slope crest.

Excavations along or close to boundaries may require installation of temporary retention structures to support the ground. It has been our experience that noticeable ground movements nearly always occur behind temporary and permanent retention structures, and care must be taken to ensure adjacent infrastructure or buried services are not damaged.

7.7 Earthwork Bulking Factors

Once excavated, the *in situ* materials are anticipated to bulk up and increase in volume. When placed and compacted the loose volume is anticipated to reduce. Indicative bulking factors are provided in Table 6.

Soil Type	Bank (<i>In Situ</i> Soil)	Stockpiled Materials (Loose Condition)	Compacted Materials
Cohesive Soils	1.0	1.4	0.9
Silty Sand/Sand	1.0	1.2	0.8
Gravel	1.0	1.4	1.0
Rock	1.0	1.6	1.3

Table 6: Bulking Factors

The bulking factors are approximate and will depend on the method of excavation and variations of grading of the materials.

Stormwater Disposal 7.8

In situ permeability testing was carried out at the site. The results are summarised in Table 2.

The results of the investigation indicate that across Area 3 the sand present is free draining and suitable for on-site disposal via soakwells or similar. The measured permeability varied between 17 m/day and 64 m/day, which will reduce following compaction due to earthworks or trafficking. For drainage design a permeability of 5 m/day to 10 m/day is considered appropriate for the sand in this area.

Across the remainder of site, the near surface sand/silty sand has a measured permeability of about 3 m/day to 7 m/day, which will reduce where trafficking or compaction occurs. For drainage design a permeability of 1 m/day is considered appropriate for the silty sand. The permeability of the underlying rock and clayey soil may be variable but should be considered to be relatively impermeable for stormwater disposal design, particularly for relatively small drainage features such as soakwells. Suitably designed on-site drainage may be appropriate depending upon the depth of sand/silty sand overlying rock or clayey soil.

Drainage design must allow for clogging of sands with fine particles through ongoing infiltration.

7.9 **Pavements**

Across Area 3, and also where at least 200 mm of imported sand fill forms the subgrade, a design CBR of 12% is considered appropriate. The sand subgrade in these areas should be compacted to a modified dry density ratio of at least 96% in accordance with AS 1289 5.2.1.

Across the remainder of the site where the in situ silty sand forms the subgrade a design CBR of 10% may be adopted. The silty sand subgrade should be compacted to a modified dry density ratio of at least 92% in accordance with AS 1289.5.2.1.

7.10 **Effluent Disposal**

In situ permeability testing in accordance with AS/ANZ 1547, was carried out at the site. The results are summarised in Table 2.

The results of the investigation indicate the following in accordance with Table 5.1 of AS/NZS 1547:2012:

- Area 3 The soil in this area extends to significant depth and is considered to be 'Category 1 Gravels and sands - Structureless (Massive)'.
- Remainder of site The near surface silty sand/sand across the remainder of the site is considered to be 'Category 2 – Sandy loams – Massive'. The soil extends to varying depth as follows:
 - Area 1 and Area 7 Rock outcrops occur regularly and at the test locations the silty sand extended to depths of between 0.2 m and 1.9 m. Design will need to consider the presence of relatively shallow rock in some areas that may be relatively impermeable.
 - Area 2 - Relatively shallow sandy clay occurs in this area. At the test locations the silty sand or sandy gravel extended to depths of between 0.4 m and 0.5 m. Design will need to consider the presence of relatively shallow sandy clay that is considered to be 'Category 6 - Medium to heavy clays - Moderately structured'.
 - Area 4 Relatively deep sand/silty sand occurs in this area. At the test locations the sand/silty sand extended to depths of between 1.5 m and 2.1 m. The underlying clayey sand is considered to be 'Category 4 - Clay loam - Massive'.
 - Area 5 At the test locations in this area the silty sand extended to depths of at least 1.3 m and 2.0 m.
 - Area 6 – At the test locations in this area the sand/silty sand extended to depths of between 0.8 m and 1.4 m. The underlying clayey sand/sandy clay is considered to be 'Category 5 - Light clays -Massive'.

7.11 **Retaining Structures**

Retaining structures should be designed in accordance with AS 4678-2002 "Earth-Retaining Structures". Backfill behind retaining structures should be free draining with a fines content of less than 5%. Where retaining structures are required at the site, the parameters provided in Table 7 can be used.

Material	Unfactored Friction	Coefficient of Earth	Active	Coefficient of Drained Active Earth Pressure, Ka		Coefficient of Drained Passive Earth Pressure, K _P	
Туре	Angle φ	Pressure at Rest, K₀	Wall Friction = 0	Wall Friction = 0.5¢'	Wall Friction = 0	WallDensityFriction= 0.56'	
Medium dense SAND/Compacted SAND FILL	35°	0.43	0.27	0.24	3.7	6.1	18

Table 7: Retaining Structure Parameters

Earth pressure coefficients are provided for conditions of zero friction between the wall and the soil. The retaining wall designer should make an independent assessment of the parameters appropriate to the construction method to be used, including alternative values of wall friction. A horizontal ground surface behind the wall has been assumed.

Compaction plant can increase the lateral earth pressures acting on retaining walls. Handheld compaction equipment is recommended within 2 m of any such walls to minimise compaction pressures.

PAVEMENT DISCUSSION **8.0**

8.1 Visual Assessment

The existing pavement surfacing along Smiths Beach Road is observed to comprise two types:

- 10 mm laterite Dense Graded Asphalt (DGA) extending from the termination of the road to approximately 100 m south of the eastern carpark, transitioning to,
- 14 mm DGA thereafter until the intersection with Canal Rocks Road.

Deformation of the pavement surface is an important element of pavement condition due to the direct influence it has on the riding quality of a pavement and is often indicative of a pavement's underlying structural inadequacies. As such, surface shape typically governs the nature of the remediation required for a pavement, depending on the magnitude and frequency of estimated future traffic volumes. The shape of pavement along Smiths Beach Road was noted to be in satisfactory condition and no noticeable deformation or structural defects were recorded during the visual assessment.

Although the pavement appears structurally sound, defects relating to the surface texture of the pavement were observed during the visual assessment. Minor to moderate ravelling was recorded in both lanes, mainly outside the wheel paths and at proximity to joints, with a higher frequency of ravelling observed along the northbound lane. Pinhole sized defects are also generally widespread throughout the pavement, which suggests that aggregate has been plucked out of the asphalt surfacing by the traffic movement. The asphalt mix appears to be segregated, which indicates a lack of adhesion and insufficient mix temperature during the original construction. As the asphalt is observed to be relatively new (inferred around two years of age), the early ravelling and pinhole surface defects may also be associated with construction during wet or cold weather.

Other localised defects were noted as follows:

- Minor ravelling observed at the intersection stub of Canal Rocks Road and Smiths Beach Road, on the wheel path of the left turning northbound lane.
- Minor pumping of fines at the joint along the sprayed seal widened edge of the intersection stub. Pumping of fines are generally associated with moisture ingress through cracking or poor joint sealing. No cracking was observed; however, waterproofing was not evident along the joints.
- Minor edge break/drop off on the spray sealed widened section of the intersection stub (northbound side). It was inferred that water drains towards the direction of the sealed section and as it sheds off the edge of pavement, a gradual erosion of the basecourse material causes the observed edge defects, particularly if the basecourse contains non plastic to low plasticity fines.
- Minor potholes on the outer wheel path and adjacent to the inner wheel path of the northbound lane approximately 210 north of the intersection with Canal Rocks Road, and on the edge of the northbound lane pavement approximately 270 m north of the intersection.
- Minor cracking at various locations (longitudinal, transverse, and meandering cracks).
- Minor flushing observed in the wheel paths, predominantly on the southbound lane along the bend of Smiths Beach Road. Despite the tendency for laterite asphalt to crack early during the design life (as the mix is generally stiffer than granite asphalt), minimal to no cracking was noted along the laterite asphalt section of Smiths Beach Road. This suggests that a higher binder content mix may have been used to compensate for the risk of early cracking. As such, the pavement is more prone to flushing, especially in sections of high traffic volume or high turning stresses such as that observed.

Selected photographs and a description of the observed defects are presented in Appendix G.

8.2 **Design Traffic**

The design traffic for Smiths Beach Road has been assessed using traffic count data supplied by Cardno. The data was collected by Matrix using tube counters installed at six locations along the road. It is noted that the data was collected during the peak holiday season between 16 December 2020 and 6 January 2021 when traffic volumes are higher than normal, and as such the traffic calculated is conservative.

The parameters used in the assessment are as follows:

- Percentage of heavy vehicle using the design lane 100% (one lane each direction)
- Assumed linear traffic growth rate of 1%
- Pavement design life of 40 years for permanent subgrade deformation and 15 years for fatigue in thin asphalt surfacing in accordance with ERN9.

An axle equivalency factor for commercial vehicle by class was assumed based on available MRWA information for rural main and secondary roads and calculated against the distribution of heavy vehicles (Austroads Class 3 to Class 12 inclusive) provided with the traffic count data. The design traffic calculation can be referred to in Appendix H. We have not considered the carpark access data due to the anomaly in the heavy vehicle count, which may have been caused by an error in the classification of the larger vehicles accessing the carpark. The design traffic calculated from the supplied data has been adopted as follows:

- 1.22 × 10⁵ ESAs for a 15-year design life
- 3.70 × 10⁵ ESAs for a 40-year design life.

8.3 Subgrade Design CBR

Based on the geotechnical laboratory information and our experience with similar material, we consider that a subgrade design CBR value of 12% is appropriate for the existing road.

8.4 Falling Weight Deflectometer

Falling Weight Deflectometer (FWD) testing was carried out by Specialist Testing and Technical Services (STATS) using a trailer-mounted FWD at a target drop stress of 566 kPa. The results of the FWD testing are provided in Appendix E.

Deflection values were assessed using the method outlined in Austroads Guide to Pavement Technology Part 5: Pavement Evaluation and Treatment Design (AGPT05). Due to the variance in the data and in accordance with the Austroads Guide, a selection of homogenous sections was conducted and summarised in Table 8.

Section	No. Tests	Deflection ⁽¹⁾ (mm)				
		Mean	Std. Deviation	Characteristic		
Northbound						
CH 0.0 – CH 0.527	22	0.398	0.09	0.521		
CH 0.527 – CH 0.677	4	0.687	0.17	0.875 ⁽²⁾		
CH 0.677 – CH 0.993	14	0.420	0.10	0.555		
Southbound						
CH 0.990 – CH 0.665	13	0.286	0.07	0.376		
CH 0.665 – CH 0.465	5	0.727	0.18	0.969 ⁽²⁾		
CH 0.465 – CH 0.015	15	0.355	0.09	0.472		

Table 8: Falling Weight Deflectometer Results (566 kPa Drop Stress)

Notes: Chainage reference commences at CH 0.0 at the intersection of Smiths Beach Road and Canal Rocks Road

⁽¹⁾ Values include FWD deflection standardisation factor of 1.1. Outliers have been excluded from the assessment.

⁽²⁾ Characteristic deflection equals to maximum deflection as the section has less than 10 test points.

Based on the assessed design traffic volume in Section 8.2 and the Austroads criteria, a design deflection of 1.32 mm has been calculated. As the characteristic deflections within each section and lanes are less than the design deflection, an overlay is not required to strengthen the existing pavement.

8.5 Pavement Design (New and Existing Pavements)

An empirical and mechanistic assessment of the required pavement thickness for the design traffic loading has been conducted. The empirical design method followed Austroads Guidelines and assesses the required cover over the subgrade. The mechanistic design assesses the fatigue life of the asphalt surfacing. The mechanistic design was undertaken using the pavement design program CIRCLY 6.0. A posted speed of 40 km/h (design speed of 30 km/h) was assumed for the site. The asphalt fatigue life was assessed with the 15-year design traffic loading for the following surfacing type:

- 30 mm thickness 10 mm Dense Graded Asphalt with C170 binder
- 40 mm thickness 10 mm Dense Graded Asphalt with C170 binder.

The assumed flexible pavement and subgrade material properties are summarised in Table 9.

Table 9: Summary of Assumed Material Properties

Material	Vertical Modulus of Elasticity (MPa) at 29°C	Poisson's Ratio (v)	Degree of Anisotropy
Dense graded asphalt ⁽¹⁾ (C170, 10 mm, 30 km/h)	2,310	0.40	1.0
Granular Basecourse	500	0.35	2.0
Granular Sub-base	250	0.35	2.0
Subgrade (CBR 12%)	120 (10 × CBR)	0.35	2.0

Notes: CBR – California Bearing Ratio

⁽¹⁾ to match the existing pavement, dense graded laterite asphalt may be used if preferred.

The mechanistic assessment indicated that a minimum granular pavement thickness of 140 mm is required to satisfy the asphalt fatigue requirements for the 30 mm thick surfacing option, which is already achieved by the existing pavement thickness. Where a 40 mm thick surfacing may be required to match existing pavement levels, a minimum granular thickness of 165 mm will be required, which is achieved at all pavement dipping locations except for PD02. The pavement design outputs are included in Appendix I.

The empirical design requires a minimum pavement thickness of 205 mm for the design traffic. The pavement dipping PD02 indicated a deficiency in the granular thickness of 55 mm (pavement thickness 150 mm). The empirical assessment was conducted using a subgrade design CBR of 12% and the soaked subgrade CBR measured during the laboratory testing varied between 13% to 17%, which indicates that the subgrade strength is higher than the design assumption. There is also a level of conservatism in the design traffic due to the availability of data and the expected significantly lower traffic outside of peak holiday season. On this basis and supported by the observed condition of the existing pavement, the deficiency in pavement thickness observed at pavement dipping PD02 is not considered to require remediation at this stage. It should be noted however that there is a higher risk of shape loss at this location especially if there is an increase in future traffic loading (such as during construction of the redevelopment).

As the existing pavement is observed to be structurally sound, a resurfacing design is presented as an option if a new pavement surfacing is preferred for the proposed development. It may also be necessary to provide new pavements to accommodate possible geometry changes during the proposed development. Due to the proposed development plan, we have not provided a design for the intersection of Smiths Beach Road and Canal Rocks Road. The recommended midblock granular pavement design is shown in Table 10.

Table 10: Summary of Granular Pavement Requirements

Layer	Pavement and Surfacing Requirement (mm)
New Pavement (In areas of new pavement and widening)	
10 mm dense graded asphalt ⁽²⁾ with C170 binder	30
Prime, 2 coat bitumen emulsion seal (CRS170/60, 10 mm/5 mm) or 7 mm emulsion seal	Nominal thickness
Granular Basecourse (Crushed Rock ⁽¹⁾ , Laterite Gravel or Bitumen Stabilised Limestone)	205
Resurfacing (Existing Pavements)	
10 mm dense graded asphalt ⁽²⁾ with C170 binder	30 or 40
Prime, 2 coat bitumen emulsion seal (CRS170/60, 10 mm/5 mm) or 7 mm emulsion seal (Where basecourse is exposed).	Nominal thickness
<u>or</u>	
SAMI (where existing asphalt surfacing remains)	
Existing Pavement	150 to greater than 480

Notes: ⁽¹⁾ It may be difficult to achieve the compaction requirements for placement of crushed rock directly on the subgrade. A subbase layer may be required.

⁽²⁾ to match the existing pavement, dense graded laterite asphalt may be used if preferred.

8.6 Sealing

Preliminary seal application rates for the new pavement design are presented in Table 11. The preliminary rates will need to be adjusted to suit the aggregate used and site conditions. The seal should be applied in warm and dry weather with no cutter used in the binder. A 10/5 mm emulsion seal is recommended below asphalt. A 7 mm single coat emulsion seal could also be considered; however, a single coat seal will be more prone to damage from the paver during application of the asphalt. Any damage to the seal must be repaired during construction.

If due to traffic management requirements a cut back prime is not preferred, an emulsion prime such as Bioprime/Ecoprime or omission of the prime could be considered. The following should be noted however:

- Our experience is that emulsion primes may not penetrate as well as cut-back primes and the level of penetration will be highly dependent upon the basecourse material finish and basecourse type. Further information should be sought from the supplier on the selected emulsion prime's expected performance for the basecourse material proposed.
- The omission of the prime does increase the risk of an inadequate bond forming between the seal and basecourse. If this option is preferred the basecourse should be adequately swept to expose the gravel particles and the applied seal must be an emulsion seal. Each seal coat should receive a minimum of 15 roller passes to assist in bedding down the aggregate.

Emulsion primes should be cured in accordance with the manufacturer's instructions. We understand a curing period of about 24 hours is typical, depending on weather conditions. A cutback prime should be allowed to cure for a minimum period of three days of warm, dry weather prior to application of the seal.

Treatment Type	Binder Type	Aggregate Size	BAR/EAR (L/m² at 15°C)	ASR ⁽²⁾ (m²/m³)
Prime	40/60 Bitumen (C170)/ Medium curing cutter <u>or</u> Bioprime/Ecoprime	Not Applicable	0.6 ⁽¹⁾ (total application rate)	Not Applicable
Single coat seal	CRS 170/60	7 mm	1.4	160-180
Double/double bitumen emulsion	CRS 170/60	1 st coat 10 mm 0.9 2 nd coat 5 mm 1.1		120-140
seal				200-250

Table 11: Preliminary Bituminous Surfacing Application Rates

Treatment Type	Binder Type	Aggregate Size	BAR/EAR (L/m² at 15°C)	ASR ⁽²⁾ (m²/m³)
Strain Alleviating Membrane Interlayer	S20E	10 mm	1.5	120-160

Notes: BAR – binder application rate, ASR – aggregate spread rate, EAR – emulsion application rate (CRS170/60)

⁽¹⁾ The emulsion prime application rate should be confirmed with the supplier

⁽²⁾ Preliminary aggregate spread rates will need to be adjusted to suit aggregate properties

8.7 Pavement Joints

Pavement joints should be in accordance with standard MRWA joint drawings where applicable.

8.8 **Pavement Rehabilitation**

The pavement and surfacing condition on Smiths Beach Road were generally observed to be in satisfactory condition and relatively early in its design life. Based on the visual and FWD assessment, we anticipate the pavement to be in serviceable condition for about another five to ten years (or possibly longer with routine maintenance) under the current traffic loading. However, the pavement and surfacing will need to be monitored due to the anticipated increase in traffic loading during the construction of the development and provision for localised repairs should be made.

As discussed in Section 8.5, a section approximately 70 m south of Duddy Road is inferred to have insufficient granular thickness, as indicated by pavement dipping PD02. Monitoring of this section is recommended as there is a risk that the pavement will develop shape loss.

We further recommend that the observed surface defects such as cracking and potholes be repaired under the methods outlined in the following sub-sections. As discussed in Section 8.1, the observed edge break and drop-off along the sealed widening of the intersection is inferred to have occurred due to concentrated stormwater flow and the non-plastic to low plasticity of the basecourse gravel. We recommend a top up and rework of the unsealed basecourse in this section to prevent further erosion of the material.

8.8.1 Pothole and Small Defect Repair

It is our experience that potholes can deteriorate rapidly, requiring further repairs. As such, localised repairs may be required where potholes and small defects are observed.

The following methodology is recommended for potholes, particularly in areas subject to heavy vehicle movements:

- Cut the pavement outside the edges of the pothole to form a rectangular area with vertical sides.
- Remove loose material from the sides and base of the pothole to leave a flat base.
- Clean the pothole by sweeping, blowing with air or another suitable method to remove loose material that may affect adhesion of the asphalt.
- Apply a tack coat of bitumen emulsion to the base and sides of the pothole and allow to break (turn black).
- Backfill with hot mix (preferred) or high-quality cold-mix asphalt (such as Fulton Hogan EZ Street) and compact with appropriate plant. Our experience is that hand compacted asphalt can settle under traffic and therefore the repaired area should be left proud of the surrounding pavement to allow for this.

Thin layers of asphalt should not be used to make up minor level differences as they can delaminate, particularly if the surface is dusty.

8.8.2 Crack Sealing

A pavement work tip produced by Austroads outlines the recommended treatment for cracking and is included in Appendix J.

8.8.3 Edge and Shoulder Maintenance

The following methodology is recommended for the remediation of the observed edge defect at the Canal Rocks Road and Smiths Beach Road intersection stub.

- Clear vegetation from the existing shoulder if required.
- Scarify the existing shoulder material to at least 50 mm depth to facilitate bonding with the top-up material.
- Add basecourse material as required, and using a grader blade or similar, redistribute the shoulder material towards the existing seal and leave slightly proud of the existing seal level.
- Moisture condition and compact the shoulder. The final level of the shoulder should be approximately level with the existing seal level and provide crossfall for drainage. If the shoulder is proud of the seal it may restrict drainage or promote channelisation, leading to scour. In this case it should be graded flush with the seal, taking care not to damage the existing seal.

Our experience is that shoulder material with low fines content or low plasticity fines may be more susceptible to erosion. If available, a slightly higher-plasticity material should be used for these works.

9.0 PAVEMENT SPECIFICATIONS AND CONSTRUCTION

9.1 Specifications

The following MRWA specifications may be relevant for the design and rehabilitation options provided in this report. Alternatively, the City of Busselton may have specifications (such as WALGA Specifications) preferred for this project.

- Specification 501 Pavements
- Specification 503 Bituminous Surfacing
- Specification 504 Asphalt Wearing Course
- Specification 508 Cold Planing
- Specification 509 Polymer Modified Bituminous Surfacing
- Specification 511 Materials for Bituminous Treatments.

9.2 Compaction and Dryback

In areas of new pavement, it is essential that all granular pavement layers are well compacted and dried back prior to priming and sealing. It should be noted that failure to allow pavement layers to adequately dry back is a significant cause of pavement defects.

Minimum compaction and dryback requirements are presented in Table 12.

Table 12: Compaction and Dryback Requirements

Material Type	Density Specification Limit (%)*	Dry Back Moisture Ratio (%)*
Sub-base – Crushed Limestone	94	85
Granular Basecourse – Bitumen Stabilised Limestone or Natural Gravel	98	70
Granular Basecourse – Crushed Rock	99	60

Note: * Modified Compactive Effort

9.3 Asphalt

A nominal 30 mm thickness of 10 mm dense graded asphalt with C170 binder is recommended for Smiths Beach Road. Localised sections of the road more frequently exposed to turning vehicle movements (such as the bend, south of the public carpark) may experience earlier pavement defects compared to the remaining sections of the road. However, due to the relatively low heavy vehicle traffic and climate conditions at the site, we do not consider the use of a polymer modified binder such as A15E as necessary.

It is recommended that the MRWA Specification 504 be used as a basis for asphalt mix design. It is also recommended that approved asphalt mixes registered by MRWA be used if practicable.

9.4 Construction Advice

If it is anticipated that construction vehicles will be allowed to traffic Smiths Beach Road throughout the proposed development of the site, we highly recommend scheduling the pavement repairs and upgrades towards the end of construction. Excessive heavy vehicle use of the road must be avoided due to the high risk of shoving and rutting on a newly constructed or resurfaced pavement.

It is further recommended that pavement works be conducted in dry conditions to avoid complications with dry back and compaction. In situations where construction takes place over several days or if inclement weather is forecasted during construction, the construction should be staged as to minimise exposure to external moisture conditions.

9.5 Pavement Drainage

Performance of granular pavements is highly sensitive to the in-service moisture content. It is essential that adequate crossfall and drainage is provided to remove water from pavements, particularly in low-lying areas of the site.

10.0 ROCK DURABILITY DISCUSSION

The subsurface conditions encountered along the coastline on the northern edge of the proposed development are summarised in Section 6.3, and Figures 6 and 7 provide sections showing the inferred profile.

The section shows the thickness of soil and very low to low strength (weak) rock, overlying medium to high strength rock. The soil and weak rock are considered to be susceptible to erosion by the action of the ocean in the coming century, while the underlying medium to high strength rock is considered to have sufficient durability to withstand erosion.

As shown on Figure 6, the thickness of the soil and weak rock increases gradually towards the south-east, extending to between about RL 4.5 m AHD at BH1 and about RL -1 m AHD at BH5. Between BH5 and BH4 the underlying rock surface falls away significantly and soil extends to below RL -10 m AHD at BH4.

11.0 IMPORTANT INFORMATION

Your attention is drawn to the document titled – "Important Information Relating to this Report", which is included in Appendix K of this report. The statements presented in that document are intended to inform a reader of the report about its proper use. There are important limitations as to who can use the report and how it can be used. It is important that a reader of the report understands and has realistic expectations about those matters. The Important Information document does not alter the obligations Golder has under the contract between it and its client.

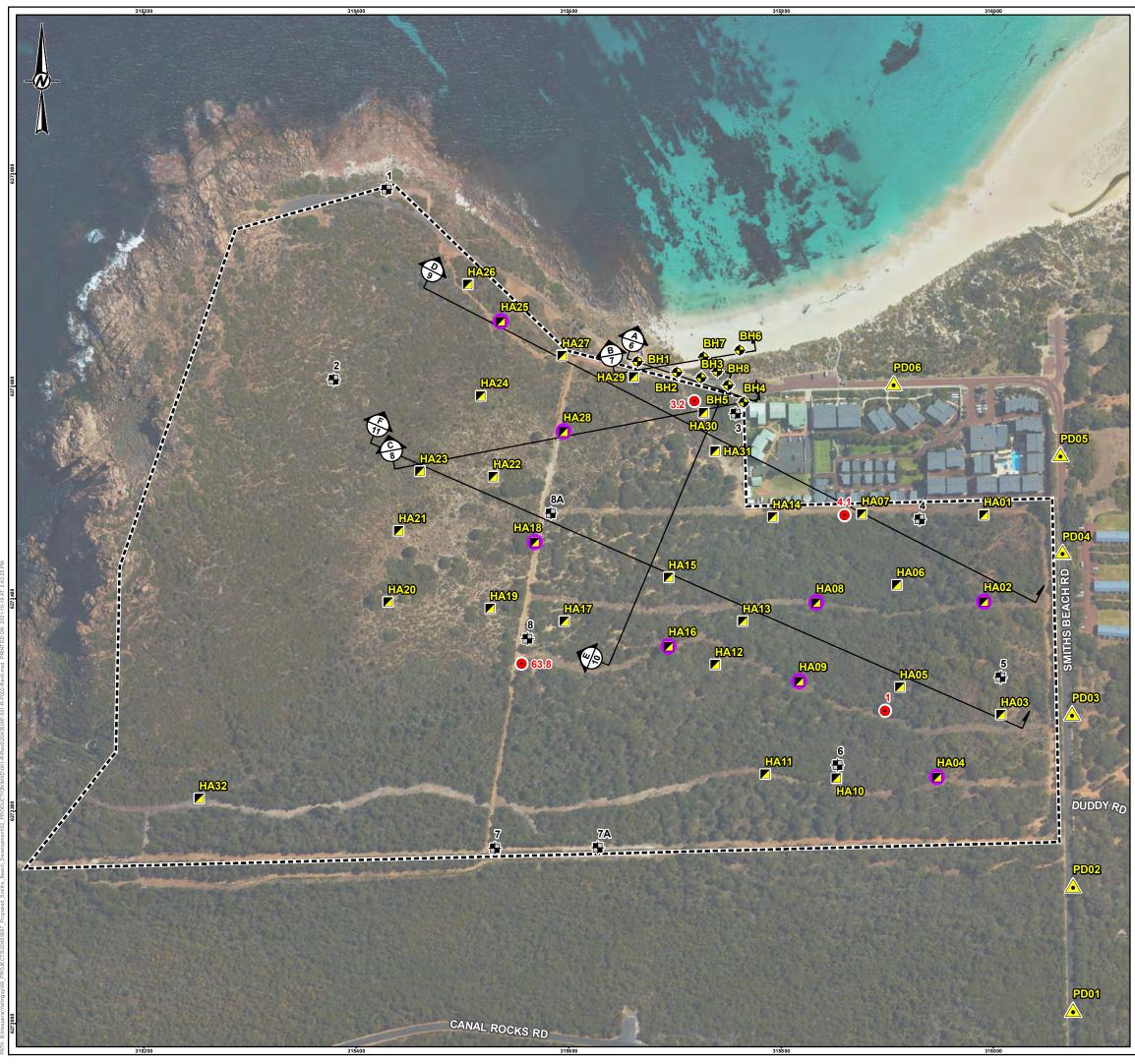
Signature Page

Golder Associates Pty Ltd

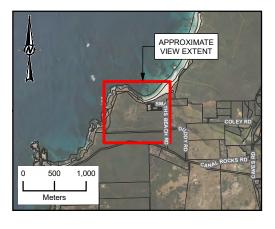
Devina Gee Geotechnical Engineer

DG-DJK/DMS/hn

Daniel Kain Principal Geotechnical Engineer


A.B.N. 64 006 107 857

Golder and the G logo are trademarks of Golder Associates Corporation


https://golderassociates.sharepoint.com/sites/137165/project files/6 deliverables/20435097-001-r-rev0-preliminary geotechnical and pavement investigation.docx

LEGEND	
	CADASTRE
	APPROXIMATE SITE BOUNDARY
TEST IN	VESTIGATION
<₽	BOREHOLE LOCATION
	HAND AUGER LOCATION
	HAND AUGER AND PERMEABILITY TEST LOCATION
	PAVEMENT DIPPING LOCATION
PREVIO	US INVESTIGATION
#	TEST PIT - DOUGLAS PARTNERS 2009
•	PERMEABILITY TEST LOCATION - hyd2o
4.1	PERMEABILITY (m/DAY)

0	100	200
1:3,500		METRES

NOTE: 1. COORDINATE SYSTEM: GDA 1994 MGA ZONE 50

REFERENCE: 1. CADASTRE AND AERIAL IMAGERY BASED ON INFORMATION PROVIDED BY AND WITH THE PERMISSION OF THE WESTERN AUSTRALIAN LAND INFORMATION AUTHORITY TRADING AS LANDGATE (2020).

CLIENT SMITHS 2014 PTY LTD

PROJECT

PROPOSED SMITHS BEACH DEVELOPMENT

TITLE SITE PLAN

CONSULTANT		YYYY-MM-DD	2021-10-19	
		DESIGNED	TC	
R (GOLDER	PREPARED	AM	
	JOLDER	REVIEWED	DJK	
		APPROVED	DJK	
PROJECT NO.	CONTROL	REV.		FIGURE
20435097	001 R	0		2

CONSULTANT		YYYY-MM-DD	2021-10-19	
		DESIGNED	TC	
GOLDER		PREPARED	AM / JRP	
	GOLDER	REVIEWED	DJK	
		APPROVED	DJK	
PROJECT NO.	CONTROL	REV.		FIGURE
20435097	001 R	0		3

TITI F SITE PLAN – NORTH EAST CORNER

PROJECT PROPOSED SMITHS BEACH DEVELOPMENT

SMITHS 2014 PTY LTD

CLIENT

REFERENCES: 1. CADASTRE AND AERIAL IMAGERY BASED ON INFORMATION PROVIDED BY AND WITH THE PERMISSION OF THE WESTERN AUSTRALIAN LAND INFORMATION AUTHORITY TRADING AS LANDGATE (2021). 2. SITE LAYOUT OVERLAY PROVIDED BY CLIENT (PDF FORMAT). DRAWING FILE: SMITHS DRAFT MASTERPLAN DECEMBER 2020.PDF

METRE

1. COORDINATE SYSTEM: GDA 1994 MGA ZONE 50

1.000	
NOTE:	

$ \rangle$			
- N -	· ·	APPROX	
A		VIEW EX	TENT
Д	4		
	55	5	F
10 0 10	\$1	SM/	THINK
	and l	BA	COLEY RD
	5	CH RD	76
84	-	- Contraction of the second se	E CONTRACTOR
3 Part	55		CANAL ROCKS RD
0 500	1,000		Car
Meters	~	- S.P. 8	
			21 Carl

HAND AUGER LOCATION HAND AUGER AND PERMEABILITY TEST LOCATION

CADASTRE

TEST INVESTIGATION

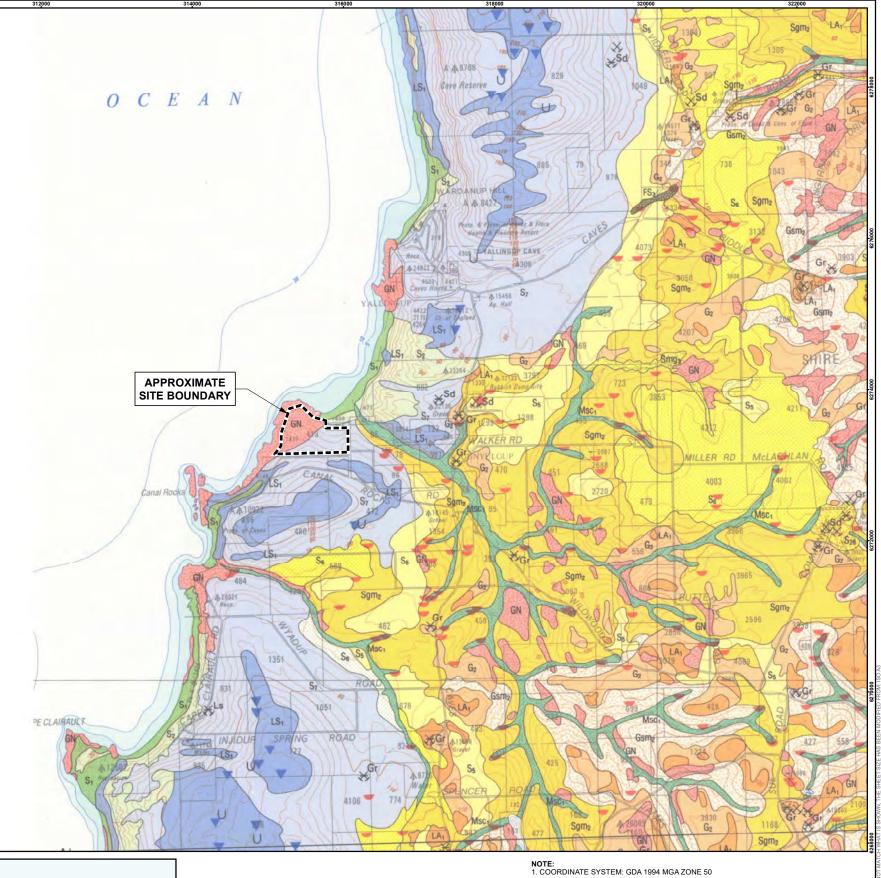
LEGEND

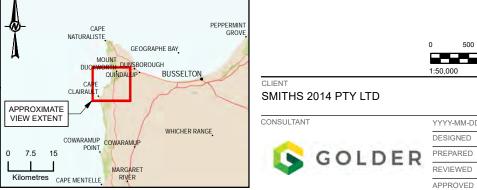
+

• INFILTRATION TEST

BOREHOLE LOCATION

PAVEMENT DIPPING LOCATION


PREVIOUS INVESTIGATION


TEST PIT - DOUGLAS PARTNERS 2009

• PERMEABILITY TEST LOCATION - hyd2o

4.1 PERMEABILITY (m/DAY)

	FEATUR	E9:	I
Map u onsolidated	Rock ₂	Description	
Spci		CLAYEY PEATY SAND — grey to black quartz sand with variable organic content; minor clays	
S ₁		CALCAREOUS SAND — white, fine- to coarse-grained, sub-rounded quartz and shell debris; also sub-rounded lithic pebbles	
S ₂		CALCAREOUS SAND — white, fine- to medium-grained, sub-rounded quartz and shell debris	
S ₁₃		CALCAREOUS SAND — white, medium-grained, rounded quartz and shell debris; well sorted	
S ₂₆		CALCAREOUS SAND — as S ₁₃ , modified by estuarine and marine processes	
S ₂₇		SAND — as S ₂₆ as a relatively thin layer of quartz and calcareous sand over variably thick estuarine silts and gley clays	
Ma		SILT — brownish grey, calcareous in part, soft; some fine sand and shell debris in places, minor clay content	
M ₅		CALCAREOUS SILT — dark greyish brown silts and minor clays; some organic matter, shells and shell fragments and limestone are locally common	
Sm,		SILTY SAND — strong brown to reddish brown, fine- to medium-grained quartz; variable silt content	
Msc ₁		CLAYEY SANDY SILT — pale brown, angular to rounded sand; low cohesion; of alluvial origin	
Smga		GRAVELLY SILTY SAND - very pale vellow to vellowish grey, mottled, fine- to medium-grained, quartz; locally high	
100000		concentrations of pisoliths, variable silt content GRAVEL — red-brown gravels set in silty matrix overlying ironstones, cemented limonitic gravels, and coarse sands	
G1			
	FSji	IRONSTONE — red-brown limonitic gravel cemented in a limonite quartz-sand matrix	
Sm12		SILTY SAND — yellowish brown to reddish brown, fine- to medium-grained quartz; some pisolithic gravels, variable silt content	
Smg ₄		GRAVELLY SILTY SAND — moderate brown to dark yellowish brown, fine - to coarse-grained, poorly sorted quartz variable silt content	
S7		SAND white to pale and olive-yellow, medium- to coarse-grained, sub-angular quartz; moderately sorted	
	LST	LIMESTONE — light yellowish brown, fine- to coarse-grained, sub-angular to well-rounded quartz with shell, coral and , less commonly, crinoid debris; often overlain by S_7	
	LS ₁	LIMESTONE — light yellowish brown, fine- to coarse-grained, sub-angular to well-rounded quartz, with shell debris and a trace of feldspar; kankar at surface common	
Se		SAND — very light grey at surface, yellow at depth, fine- to medium-grained, sub-rounded guartz; moderately well sorted; local concentrations of heavy minerals, local development of coffee rock	
S10		SAND over SILT and SANDY SILT — sand as S_8 overlying Ms_2	
MS ₂		SANDY SILT — strong brown to mid-grey, mottled, blocky, disseminated fine sand, hard when dry	
Smg		SILTY SAND — brown to yellow-grey, fine- to medium-grained quartz sand with variable silt content	
S12		SAND — white, medium- to very coarse-grained, sub-rounded to rounded quartz; well sorted; local concentrations of heavy minerals	
S5		SAND very pale brown, medium- to coarse-grained, well sorted, sub-angular to rounded quartz and feldspar	
S ₆		SAND — light grey, fine- to coarse-grained, angular to sub-rounded quartz with some feldspar; moderately sorted, loose	
S ₂₈		SAND white, coarse- to very coarse-grained, rounded guartz, occasional pebble and cobble beds	
Sgm ₂		SILTY GRAVELLY SANDS - moderate brown to reddish brown, mottled, fine- to coarse-grained quartz; trace feldspar,	
Gsm ₂		pisolithic gravels, variable silt content SILTY SANDY GRAVELS — moderate brown, mottled, pisolithic gravels and quartz; variable silt content, often thinly overlying gneiss (GN)	
Smg ₅		GRAVELLY SILTY SAND — dark reddish brown, mottled fine- to coarse-grained, quartz and feldspar and gneiss gravels;	
Gz		thinly developed over gneiss (GN) GRAVEL — brown to reddish brown, ferruginous, pisolithic; occasionally cemented in a clay-silt matrix, moderately sorted	
-	LA	LATERITE massive and cemented, occasionally vesicular, up to 4m in thickness; overlies mottled and/or pallid clays.	
		sometimes overlain by a ferruginous gravel set in a clay-sand matrix LATERITE — massive, indurated, nodular and vesicular, iron-cemented . contains abundant fine- to medium-grained	
	LA3	sub-angular quartz; developed over Leederville Formation SANDY SILTY CLAY — pale yellow to red, mottled; grades into weathered gneissic rock (GN) at depth, often overlain by	
Cms ₁		pisolithic gravels	
Smc3	Contraction of the	CLAYEY SILTY SAND — off-white to brown, mottled, fine- to coarse-grained, sub-rounded sand with local concentrations of clay; variable silt content	
	GN	GNEISS — medium-grained mesocratic gneiss	

(N)

GOLDER	PREPARED	AM / JRP
	DESIGNED	тс
	YYYY-MM-DD	2021-10-19
)14 PTY LTD		
	1:50,000	METRES

APPROVED

1.000

DJK

DJK

2.000

1.500

REFERENCE: YALLINGUP SHEET 1930 IV AND PART SHEET 1830 I 1:50000 ENVIRONMENTAL GEOLOGY SERIES © WESTERN AUSTRALIA 1991

PROJECT PROPOSED SMITHS BEACH DEVELOPMENT

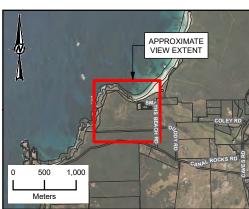
TITLE GEOLOGY MAP

PROJECT NO.	CONTROL	REV.	FIGURE
20435097	001 R	0	4

CONSULTANT		YYYY-MM-DD	2021-10-19	
		DESIGNED	TC	
N	GOLDER	PREPARED	AM	
N	JOLDLI	REVIEWED	DJK	
		APPROVED	DJK	
PROJECT NO.	CONTROL	REV.		FIGURE
20435097	001 R	0		5

PRELIMINARY GEOTECHNICAL AREAS

TITLE


PROJECT PROPOSED SMITHS BEACH DEVELOPMENT

CLIENT SMITHS 2014 PTY LTD

:3.500

NOTE: 1. COORDINATE SYSTEM: GDA 1994 MGA ZONE 50

REFERENCES: 1. CADASTRE AND AERIAL IMAGERY BASED ON INFORMATION PROVIDED BY AND WITH THE PERMISSION OF THE WESTERN AUSTRALIAN LAND INFORMATION AUTHORITY TRADING AS LANDGATE (2020). 2. SITE LAYOUT OVERLAY PROVIDED BY CLIENT (PDF FORMAT). DRAWING FILE: SMITHS DRAFT MASTERPLAN DECEMBER 2020.PDF

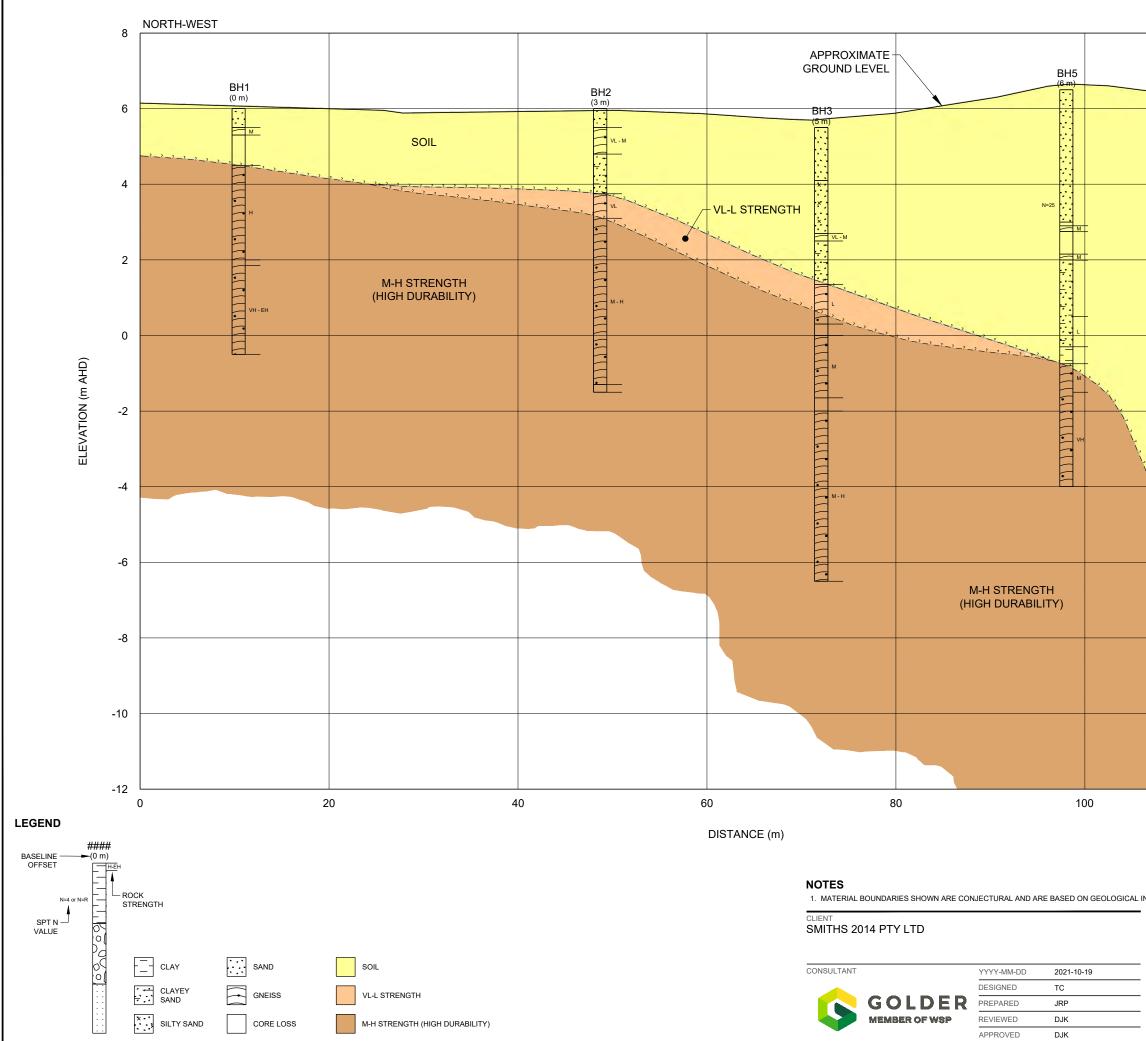
CADASTRE

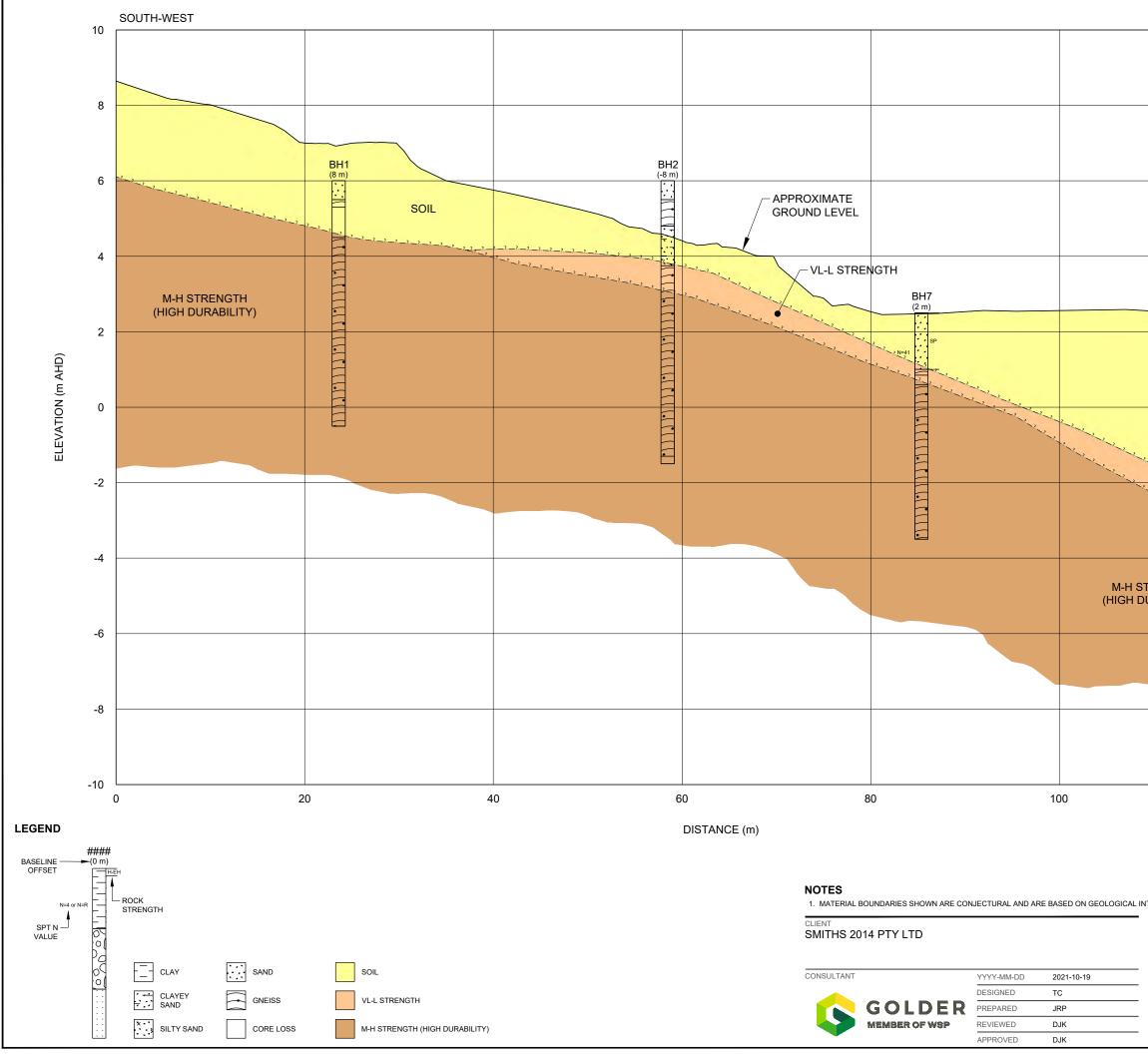
LEGEND

÷ BOREHOLE LOCATION

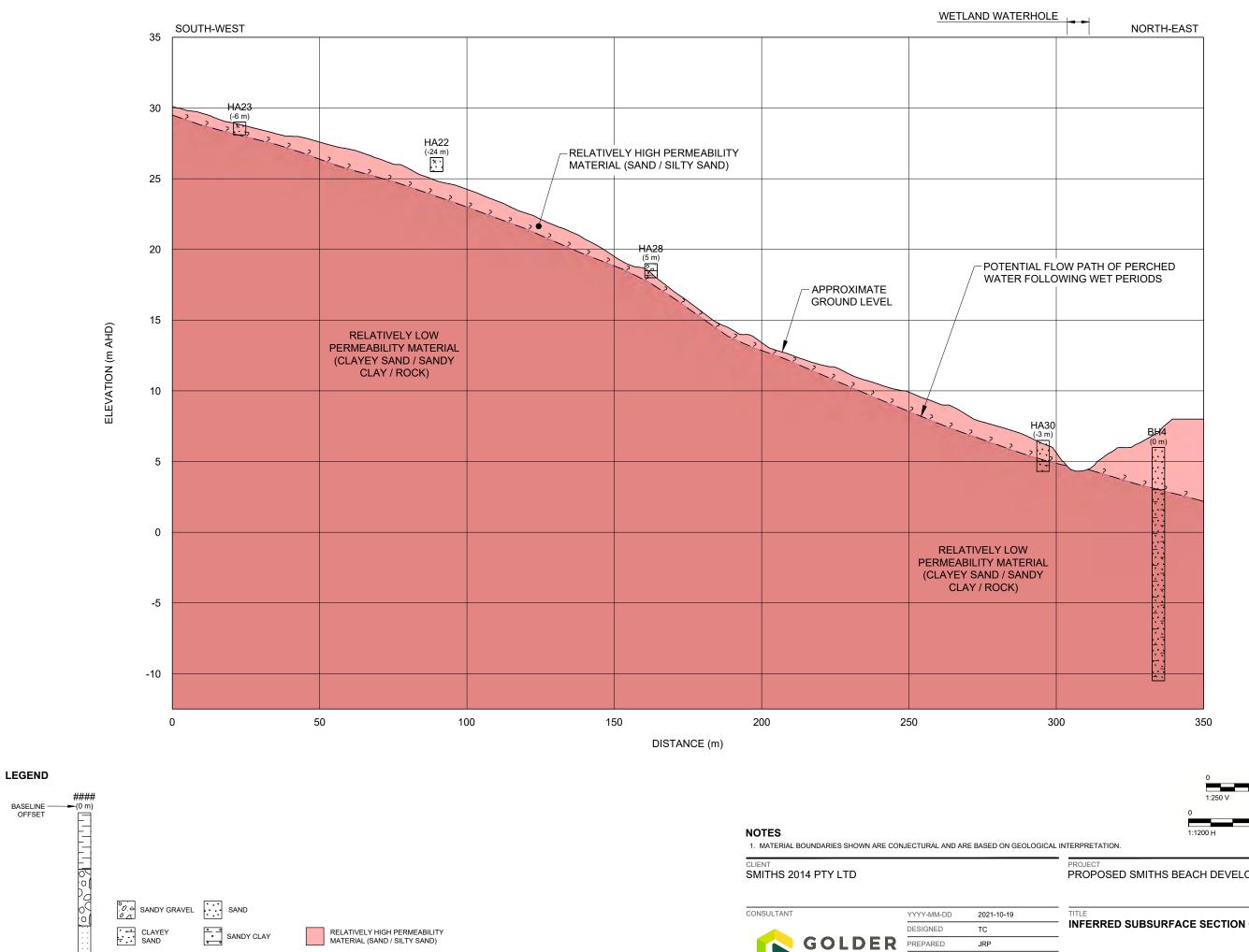
- HAND AUGER LOCATION
- HAND AUGER AND PERMEABILITY TEST LOCATION

- PREVIOUS INVESTIGATION


PAVEMENT DIPPING LOCATION



- TEST PIT DOUGLAS PARTNERS 2009
- PERMEABILITY TEST LOCATION hyd2o


4.1 PERMEABILITY (m/DAY)

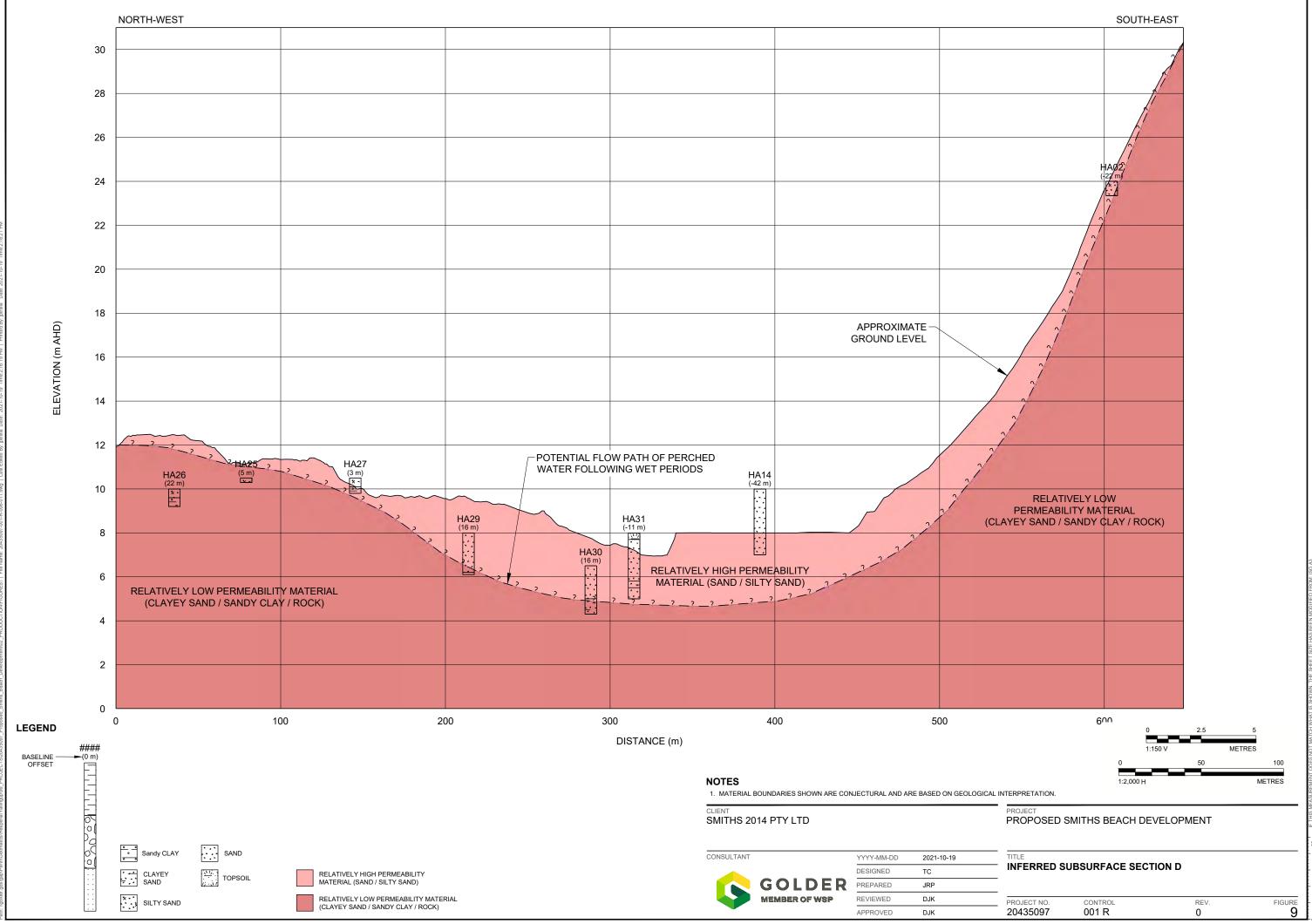
		SOUTH-EA	ST			
	3H4 4 m)					
N=12						
SOIL						
N=38						
دا ب ا						
\ <u>.</u>						
د. د.						
ľ.						
<u>دا</u> دا						
ب ب						
<u> </u>						
k k	ت					
i i i i i i i i i i i i i i i i i i i	2					
	11	20				
	14	0	2.5	5	5	
		1:100 V			METRES	
		0	10		20	
TERPRETATION.		1:400 H			METRES	
PROJECT PROPOSED SMIT						-
						-
INFERRED SUBS	UKFA		N A			
PROJECT NO.		-	RE	V.	FIGURE	-
20435097	001 R		0		6)

		NORTH-EAST		
		_		
	BH6 (3 m)			
	sp •			
		SOIL		
No and a second				
	2			
	· · · · · · · · · ·	2-		
STRENGTH DURABILITY)				
,				
				DM: ISO A3
				DIFIED FRO
				S BEEN MOL
				ET SIZE HAS
				I, THE SHEE
	120			NMOHS SI.
	0	2.5	5	95 mm je this Measurement does not match what is shown, the sheet size has been modified From: ISO A3
	1:100 V 0	10	METRES 20	IES NOT M
	1:400 H		METRES	REMENT DC
PROJECT				S MEASUR
PROPOSED SMI	THS BEACH DI	EVELOPMENT		E THIS
INFERRED SUB	SURFACE SEC			
PROJECT NO. 20435097	CONTROL 001 R	REV. 0	FIGL	JRE 7
				c

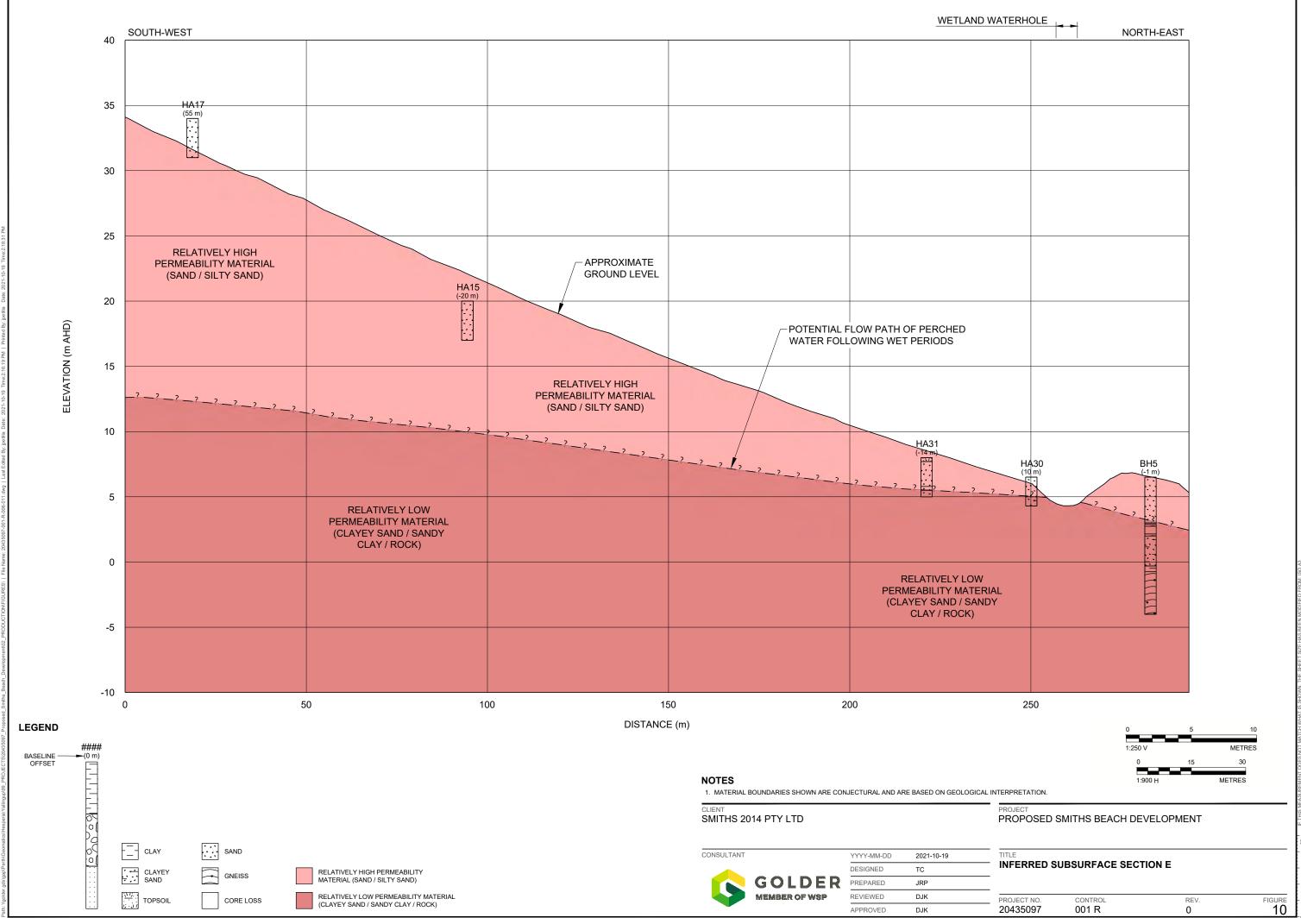
MEMBER OF WSP

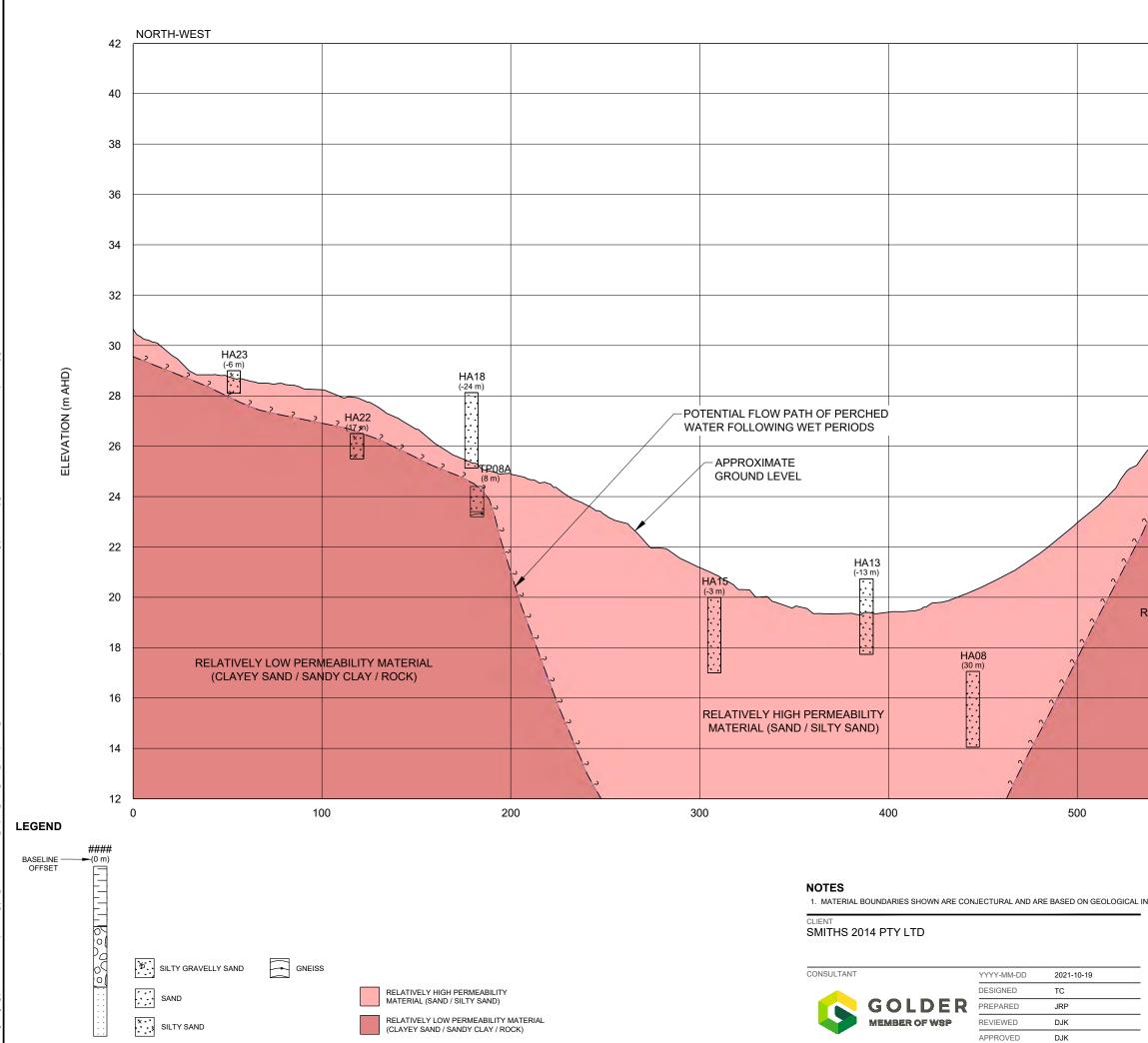
REVIEWED

APPROVED


DJK

DJK


SILTY SAND


RELATIVELY LOW PERMEABILITY MATERIAL (CLAYEY SAND / SANDY CLAY / ROCK)

		_			
	BH4 (0 m)				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 · · · · · · · · · · · · · · · · · · ·				
	4 • • • • • • • • • • •	_			
		350			
	0	0 1:250 V	5	10 METRES	60
ERPRETATION.	E	1200 H	30	METF	60 RES
ROPOSED S	MITHS BEA	CH DEVELOPMI	ENT		
ITLE NFERRED SI	JBSURFACE	E SECTION C			
ROJECT NO.	CONTROL		REV.		FIGURE



PROJECT NO.	CONTROL	REV.	FIGURE
20435097	001 R	0	9





	SO	UTH-EAST		
		2		
	Н	A03 7		
	2			
	1			
	$\gamma$			
	7			
2				
7				
17				
HA05				
4				
7				
7				
(CLAYEY SAND / SAN				ISO A3
				D FROM:
				MODIFIEI
				AS BEEN
				ET SIZE H
				THE SHEE
				SHOWN,
6	00	·	_	IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROM: ISO A3
		2.5	5	T MATCH
	1:150 V 0	50	METRES	DOES NO
	1:2,000 H		METRES	REMENT I
PROJECT				S MEASU.
PROPOSED SMITHS E	BEACH DEVEL	OPMENT		m IF THI
TITLE				. 1 1 25 mm
INFERRED SUBSURF	ACE SECTION	F		ŀ
PROJECT NO. CONTR	01	REV.	FIGURE	Ē
20435097 001 F		0	11	Ŀ

**APPENDIX A** 

Previous Investigation Results – Douglas Partners



CLIENT:Canal Rocks Pty LtdPROJECT:Smith's Beach DevelopmentLOCATION:Yallingup, WA

DATE: 15 March 2001 PROJECT No.: 22180 SURFACE LEVEL: 5.3m PIT No: 1

**Douglas Partners** 

Geotechnics · Environment · Groundwater

SHEET 1 of 1

		1	Log		Sampling &	G Testing	ļ.
Cepth (m)	Description of Strata	RL	Grephic Log	Туре	Depth (m)	Results	
	BOULDERS & SANDY GRAVEL - high strength granite boulders (30%) ranging from 200-500mm in a matrix of medium dense, dark brown, fine to medium grained, rounded sandy gravel (70%), containing roots to 0.15m.						
0.7	BOULDERS AND SILTY SAND – high strength granite boulders (30%) in a matrix of medium dense, light grey, fine to coarse grained silty sand.	4.6	00000000		0.7	%Fines = 17	
. Li	TEST PIT DISCONTINUED @ 1.1m due to refusal on granite boulders.	4.2		á			
-2	ı		4				
			3-				
			-				

EQUIPMENT: Case Turbo 580SK (600mm Bucket)

LOGGED: A GANE

CHECKED

Initials: QC

Date: 1/5/01

GROUND WATER OBSERVATIONS: No free ground water encountered.

REMARKS: Surface level interpolated from contour plan supplied by Wood & Grieve, Location of soakage area B.

#### SAMPLING & IN SITU TESTING LEGEND

D disturbed soil sample

8 bulk sample M moisture content

U_x tube sample (x mm dia.)

Ip plasticity index w_ liquid limit LS linear shrinkage pp pocket penetrometer

Canal Rocks Pty Ltd CLIENT: Smith's Beach Development PROJECT: LOCATION Yallinguo, WA

DATE: 15 March 2001 PROJECT No.: 22180 SURFACE LEVEL: 25.7m PIT No: 2

SHEET 1 of 1

			2		Sampling &	[esting	
epth (m)	Description of Strata	RL	Graphic Log	Туре	Depth (m)	Results	
	TOPSOIL – loose, dark grey, fine grained sand containing shallow, minor roots.	25,5					
0.2	GRANITE – extremely low to very low strength, extremely weathered, mottled grey, white and brown, fine to coarse grained weathered <i>in situ</i> granite with zones of material excavated as sandy gravel.	23.3	┥╴┙╖╶╖┑┙╖┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙	0	0.5		Ì
1.7	TEST PIT DISCONTINUED @ 1.2m due to refusal.	24.5					
			24-				
2			-				
			23-				
Form No. 106-4							

EQUIPMENT: Case Turbo 5805K (600mm Bucket)

LOGGED: A GANE

GROUND WATER OBSERVATIONS: No free groundwater encountered.

REMARKS: Surface level interpolated from contour plan supplied by Wood & Grieve. Location of soakage area A.

### SAMPLING & IN SITU TESTING LEGEND

D disturbed soil sample

- 8 bulk sample
- M moisture content  $U_x$  tube sample (x mm dia.)

Ip plasticity index Higuid limit LS linear shrinkage

pp_pocket penetrometer

Initials: CAL Date: 1/5/0(

CHECKED



#### Canal Rocks Pty Ltd CLIENT: Smith's Beach Development PROJECT: INCATION: Yallingup, WA

DATE: 15 March 2001 PROJECT No.: 22180 SURFACE LEVEL: 6.0m PIT No: 3

SHEET 1 of 1

		8		Sampling &	Testing	4,
epth (m)	Description of Strata	BL Uppare	Туре	Depth (m)	Results	
0.1	FILL – loose, yellow, fine to medium grained sand with some gravel to 20mm.	5.9	×			
	SAND - loose to medium dense, light grey, fine to medium grained calcareous sand, containing minor roots. Decoming grey from 0.2m.					
	becoming light brown, damp and free of roots from 0.6m.		D	0.6		
		с. с. 				,
	L7 CLAYEY SAND — medium dense, greenish brown, fine to medium grained, moist clayey sand.	4.3				
-2		4		2.0 D 2.1	%Fines = 20	
	2.2 TEST PIT DISCONTINUED @ 2.2m	3.8				
- 0111 NO. 1.00-4						

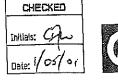
#### EQUIPMENT: Case Turbo 580SK (600mm Bucket)

LOGGED; A GANE

### GROUND WATER OBSERVATIONS: No free groundwater encountered.

REMARKS: Surface level interploated from contour plan supplied by Wood & Grieve. Location of soakage area C.

### SAMPLING & IN SITU TESTING LEGEND


D disturbed soil sample

B bulk sample

M moisture content

U_x tube sample (x mm dia.)

Ip plasticity index will liquid limit LS linear shrinkage pp pocket penetrometer





# CLIENT:Canal Rocks Pty LtdPROJECT:Smith's Beach DevelopmentLOCATION:Yallingup, WA

#### DATE: 15 March 2001 PROJECT No.: 22180 SURFACE LEVEL: 11.2m

PIT No: 4

SHEET 1 of 1

		2	]		Sampling &	Testing	
epth (m)	Description of Strata	RL 20	Ту	pe	Depth (m)	Results	
	TOPSOIL — loose to medium dense, dark brown, fine grained silty sand containing roots to 30mm.	AN NAVAN WANT	North Marken Marken				
0.4	SLIGHTLY CLAYEY SAND — medium dense, reddish brown, fine to coarse grained, damp, slightly clayey sand containing some fine gravel.						
					1.1	%Fines = 13	
-2 2		9.2			1.2		
-2 2	TEST PIT DISCONTINUED @ 2.0m	9- 1					
-0							
Form No. LOU-4							

#### EQUIPMENT: Case Turbo 5805K (600mm Bucket)

LOGGED: A GANE

GROUND WATER OBSERVATIONS: No free groundwater encountered.

REMARKS: Surface level interpolated from contour plan supplied by Wood  ${\mathbb S}$  Grieve,

#### SAMPLING & IN SITU TESTING LEGEND

D disturbed soil sample

B bulk sample

M moisture content  $U_x$  tube sample (x mm dia.) Ip plasticity index H liquid limit LS linear shrinkage pp pocket penetrometer CHECKED



Canal Rocks Pty Ltd CLIENT: Smith's Beach Development PROJECT: Vallingun WA . .

DATE: 15 March 2001 PROJECT No.: 22180 SURFACE LEVEL: 33.5m PIT No: 5

SHEET 1 of 1

			Ľo		Sampling &	Testing	
th )	Description of Strata	RL	Graphic Log	Туре	Depth (m)	Results	-
	TOPSOIL – medium dense, grey, fine grained sand, containing minor roots.		AN AN AN AN AN				
).25-	SAND — medium dense to dense, brown, fine to coarse grained sand containing some fine gravel	33.2					
	becoming reddish brown from 0.7m.						
1. 1.	GRANITE — very low strength, extremely weathered, mottled white, yellow brown, and grey, fine to coarse grained weathered <i>in situ</i> granite, 7 with zones of material excavated as sandy gravel.	32.4		2011 2011 2011 2011 2011 2011 2011 2011			
_	TEST PIT DISCONTINUED @ 1.3m due to refusal		32-				
-2 [ [							
			31-				
Form No. 106-4							

EQUIPMENT: Case Turbo 580SK (600mm Bucket)

LOGGED: A GANE

GROUND WATER OBSERVATIONS: No free ground water encountered.

REMARKS: Surface level interpolated from contour plan supplied by Wood & Grleve.

#### SAMPLING & IN SITU TESTING LEGEND Ip plasticity index

D cesturbed soil sample

- B bulk sample H moisture content
- U_x tube sample (x mm dia.)
- will liquid limit LS linear shrinkage pp pocket penetrometer

CHECKED 9 Initials: Date: 1/1/0



DATE: 15 March 2001

PROJECT No.: 22180 SURFACE LEVEL: 33.7m SHEET 1 of 1

PIT No: 6

PROJECT: Smith's Beach Development

CLIENT:

Canal Rocks Pty Ltd

		1-00		Sampling &	Testing	÷
Description of Strata	RL	Grephic	Тура	Depth (m)	Results	
TOPSOIL - loose, dark brown, fine to medium grained sand containing roots ranging from 10-100mm.	33.1	A MAN AN A				
SAND – medium dense, reddish brown, fine to coarse grained sand containing a trace of gravel.		13-				
GRANITE/SANDY CLAY – extremely weathered granite excavated as a stiff to hard, brown with grey, yellow and white mottling, sandy clay of medium plasticity and with fine to coarse grained sand.				1.1 1.3	I _D = 38% LS = 14%	
4 TEST PIT DISCONTINUED @ 1.4m due to refusal	32.3	32-				
		31-				
	TOPSOIL - loose, dark brown, fine to medium grained sand containing roots ranging from 10-100mm. SAND - medium dense, reddish brown, fine to coarse grained sand containing a trace of gravel. GRANITE/SANDY CLAY - extremely weathered granite excavated as a stiff to hard, brown with grey, yellow and white mottling, sandy clay of medium plasticity and with fine to coarse grained sand.	TOPSOIL - loose, dark brown, fine to medium         grained sand containing roots ranging from         10-100mm.         SAND - medium dense, reddish brown, fine to         coarse grained sand containing a trace of gravel.         32.8         GRANITE/SANDY CLAY - extremely weathered         granite excavated as a stiff to hard, brown with         grey, yellow and white mottling, sandy clay of         medium plasticity and with fine to coarse grained         sand.	TOPSOIL - loose, dark brown, fine to medium         grained sand containing roots ranging from         ID-IDOmm.         SAND - medium dense, reddish brown, fine to         coarse grained sand containing a trace of gravel.         SI         GRANITE/SANDY CLAY - extremely weathered         granite excavated as a stiff to hard, brown with         grey, yellow and white mottling, sandy clay of         medium plasticity and with fine to coarse grained         sand.         TEST PIT DISCONTINUED @ 1.4m due to refusal         32.8	TOPSOIL - loose, dark brown, fine to medium         grained sand containing roots ranging from         D-100mm.         SAND - medium dense, reddish brown, fine to         coarse grained sand containing a trace of gravel.         SRANITE/SANDY CLAY - extremely weathered         granite excavated as a stiff to hard, brown with         grey, yellow and white mottling, sendy clay of         medium plasticity and with fine to coarse grained         sand.         D         TEST PIT DISCONTINUED @ 1.4m due to refusal         32.3	Description of Strata     PL     Type     Depth (m)       TDPSOIL - loose, dark brown, fine to medium grained sand containing roots ranging from 10-100mm.     331     331       SAND - medium dense, reddish brown, fine to coarse grained sand containing a trace of gravel.     331     333       SAND - medium dense, reddish brown, fine to coarse grained sand containing a trace of gravel.     328     328       GRANITE/SANDY CLAY - extremely weathered graitle excavated as a stiff to hard, brown with grey, yellow and white mottling, sandy clay of medium plasticity and with fine to coarse grained sand.     328     11       TEST PIT DISCONTINUED @ 1.4m due to refusal     323     32     13	TOPSOL - loose, dark brown, fine to medium grained sand containing roots ranging from 10-DOma. SAND - medium dense, reddish brown, fine to coarse grained sand containing a trace of gravel. SRANITE/SANDY CLAY - extremely weathered grante excavated as a stiff to hard, brown with gray, yellow and white mottling, sandy clay of medium plasticity and with fine to coarse grained sand. TEST PIT DISCONTINUED @ 1.4m due to refusal 32.8 1.1 TEST PIT DISCONTINUED @ 1.4m due to refusal 32.8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

GROUND WATER OBSERVATIONS: No free groundwater encountered.

REMARKS: Surface level interpolated from contour plan supplied by Wood & Grieve.

### SAMPLING & IN SITU TESTING LEGEND Ip plasticity index

O disturbed soil sample

8 bulk sample

1.

M moisture content U_x tube sample (x mm dia.) wij liquid limit LS linear shrinkage pp pocket penetrometer

CHECKED Initials: Or **Douglas Partners** Geotechnics · Environment · Groundwater Date: 1/5/01

CLIENT: Canal Rocks Pty Ltd PROJECT: Smith's Beach Development

LOCATION: Yallingup, WA

DATE:	15 Mar	ch 2001
PROJE(	CT No.:	22180

SURFACE LEVEL: 58.5m

PIT No: 7

SHEET 1 of 1

		ļ	Bol	<u></u>	Sampling &	Testing	
∋pth (m)	Description of Strata	RL	Graphic Log	Туре	Depth (m)	Results	
	TOPSOIL - loose, grey, fine to medium grained sand containing some minor roots.		Land and an and an and an				
0.5	SAND - medium dense, yellow brown, fine to medium grained sand.						
-2	becoming yellow at 1.8m.						
	limestone cobbles from 2.3m.		1 56				
	2.5 TEST PIT DISCONTINUED @ 2.5m						

EQUIPMENT: Case Turbo 580SK (600mm Bucket)

LOGGED: A GANE

GROUND WATER OBSERVATIONS: No free groundwater encountered.

REMARKS: Surface level interpolated from countour plan supplied by Wood & Grieve.

#### SAMPLING & IN SITU TESTING LEGEND

D disturbed soil sample

- 8 bulk sample
- M moisture content U_x tube sample (x mm dia.)
- I_p plasticity Index ¥L iiquid limit LS linear shrinkage pp pocket penetrometer







DATE: 15 March 2001 PROJECT No.: 22180

# SURFACE LEVEL: 55.0m

PIT No: 7 A

Douglas Partners

Geotechnics · Environment · Groundwater

	ION: Yallingup, WA				LEVEL: 55.0m	SHEET 1 of 1	
<u> </u>			Log	 	Sampling &	Testing	_
pth m)	. Description of Strata	BL.	Graphic Log	Туре	Depth (m)	Results	
	TOPSOIL — loose, dark brown, fine to medium grained sand and gravel, containing some cobbles of limestone.		A MAN WANNA				
Q.3-	CALCARENITE – very low to low strength, fine to medium grained, light brown calcarenite.						
0,6	TEST PIT DISCONTINUED @ 0.6m	54.4					
			54-				
			53-				
2							
		-					
-							

EQUIPMENT: Case Turbo 580SK (600mm Bucket)

Canal Rocks Pty Ltd

Smith's Beach Development

LOGGED: A GANE

CHECKED

Initials: Ch

Date:

### GROUND WATER OBSERVATIONS: No free groundwater encountered.

REMARKS: Surface level interpolated from contour plan supplied by Wood & Grieve.

### SAMPLING & IN SITU TESTING LEGEND

D disturbed soil sample

8 bulk sample

55

CLIENT:

PROJECT:

M moisture content U_x tube sample (x mm dia.) Ip plasticity index w_L liquid limit LS linear shrinkage pp pocket penetrometer

PIT No: 8

CLIENT: Canal Rocks Pty Ltd PROJECT: Smith's Beach Development

LOCATION: Yallingup, WA

[			۲o ۲o	Sampling & Testing			
epth (m)	Description of Strata	RL	Grephic Log	Туре	Depth (m)	Results	
	TOPSOIL — loose, grey, fine to medium grained sand.	39					
0.2	SAND - loose to medium dense, yellow, fine to medium grained sand.	37.8					
-2 2	2.0 TEST PIT DISCONTINUED @ 2.0m		36				

EQUIPMENT: Case Turbo 580SK (600mm Bucket)

LOGGED: A GANE

GROUND WATER OBSERVATIONS: No free groundwater encountered.

REMARKS: Surface level interpolated from countour plan supplied by Wood & Grieve.

#### SAMPLING & IN SITU TESTING LEGEND

- D disturbed soll sample 8 bulk sample
- M moisture content V_x tube sample (x mm dia.)

į

I_p plasticity index W_L liquid Umit LS linear shrinkage pp pocket penetrometer CHECKED Initials:  $C_{f}$ Date:  $1/5/c_{f}$ 





DATE: 15 March 2001 PROJECT No.: 22180 SURFACE LEVEL: 38.0m

SHEET 1 of 1

DATE: 15 March 2001 PROJECT No .: 22180

SURFACE LEVEL: 24.5m

PIT No: 8A

SHEET 1 of 1

Douglas Partners

Geotechnics · Environment · Groundwater

ION: Yallingup, WA		SUF			5HEET 1011	
		; Log	····· ·- ·-	Sampling 6	Testing	a
Description of Strata	RL.	Graphic	Туре	Depth (m)	Results	Mater
TOPSOIL - loose to medium dense, grey, fine to medium grained sand.						
light grey from 0.3m.	24.2	222				
SAND & GRAVEL – medium dense; brown, fine to medium grained sand and fine to coarse grained sub-rounded gravel.	23.9	0.0.0.0.0.0.0.0	0.0.0.0.0.0.0			
GRANITE – low strength, extremely weathered, mottled reddish brown, yellow brown, grey and white, fine to medium grained weathered <i>in situ</i> granite.	23.5					
TEST PIT DISCONTINUED @ 1.2m due to refusal.		23-				-
		22-				
	Description of Strata TOPSOIL - loose to medium dense, grey, fine to medium grained sand. light grey from 0.3m. SAND & GRAVEL - medium dense; brown, fine to medium grained sand and fine to coarse grained sub-rounded gravel. GRANITE - low strength, extremely weathered, motiled reddish brown, yellow brown, grey and	Description of Strata       RL         TOPSOIL - loose to medium dense, grey, fine to medium grained sand.       24.2         light grey from 0.3m.       24.2         SAND & GRAVEL - medium dense, brown, fine to medium grained sand and fine to coarse grained sub-rounded gravel.       23.9         GRANITE - low strength, extremely weathered, mottled reddish brown, yellow brown, grey and white, fine to medium grained weathered <i>in situ</i> granite.       23.3         TEST PIT DISCONTINUED @ 1.2m due to refusal.       23.3	Description of Strata       RL         TOPSOIL - loose to medium dense, grey, fine to medium grained sand.       24.2         light grey from 0.3m.       24.2         SAND & GRAVEL - medium dense, brown, fine to medium grained sand and fine to coarse grained sub-rounded gravel.       23.9         GRANITE - low strength, extremely weathered, mottled reddish brown, yellow brown, grey and white, fine to medium grained weathered in situ       23.5         GRANITE - low strength, extremely weathered, mottled reddish brown, yellow brown, grey and white, fine to medium grained weathered in situ       23.3	Description of Strata     RL     9       TOPSOIL - loose to medium dense, grey, fine to medium grained sand.     24.2       light grey from 0.3m.     24.2       SAND & GRAVEL - medium dense, brown, fine to medium grained sand and fine to coarse grained sub-rounded gravel.     23.9       GRANITE - low strength, extremely weathered, motiled reddish brown, yellow brown, grey and white, fine to medium grained weathered in situ granite.     23.5       TEST PIT DISCONTINUED @ 1.2m due to refusal.     23.3	Description of Strsta     RL     Sampling S       TOPSDIL - loose to medium dense, grey, fine to medium grained sand.     242     242       light grey from 0.3m.     242       SAND & GRAVEL - medium dense, brown, fine to medium grained sand and fine to coarse grained sub-rounded gravel.     233       GRANITE - low strength, extremely weathered, mottled reddish brown, yellow brown, grey and white, fine to medium grained weathered in situ granite.     233       TEST PIT DISCONTINUED @ 12m due to refusal.     233	Description of Strata     RL     grad     Sampling & Testing       TOPSDIL - loose to medium dense, grey, fine to medium grained sand.     Results     Results       Iight grey from 0.3m.     242     Results       SAND & GRAVEL - medium dense, brown, fine to medium grained sand and fine to coarse grained sub-rounded gravet.     239     Results       GRANITE - low strength, extremely weathered, motiled reddish brown, grey and white, fine to medium grained weathered in situ     233     Results       TEST PIT DISCONTINUED @ 1.2m due to refusal.     23     Results     234

EQUIPMENT: Case Turbo 580SK (600mm Bucket)

Canal Rocks Pty Ltd

PROJECT: Smith's Beach Development

CLIENT:

LOGGED: A GANE

GROUND WATER OBSERVATIONS: No free groundwater encountered.

REMARKS: Steep Inclination. Outcropping granite encountered 30m to north. Surface level interpolated from contour plan supplied by Wood & Greive.

CHECKED

510

Initials: Ohe

Date: /

.

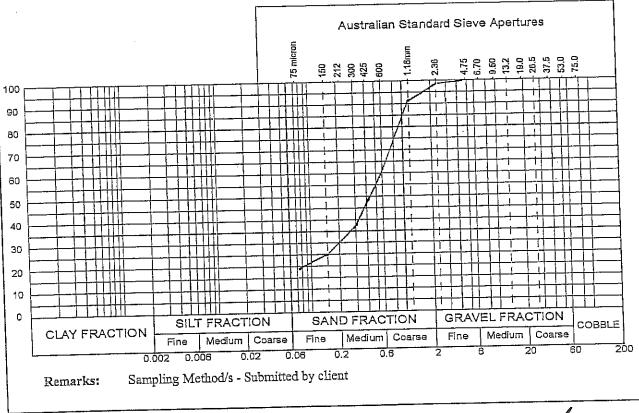
#### SAMPLING & IN SITU TESTING LEGEND Ip plasticity index

D disturbed soil sample

- B bulk sample
- M moisture content U, tube sample (x mm dia.)
- w llquid limit LS linear shrinkage pp pocket penetrometer



A Division of AMEC Engineering Pty Limited ABN 73 003 066 715 34 Walters Drive, Osborne Park WA 6017 Telephone: (08) 9244 1199 Facsimile: (08) 9244 1457 E-mail: src@amecaust.com.au


# TEST CERTIFICATE

# Client: DOUGLAS PARTNERS PTY LTD

Project: SMITH'S BEACH, YALLINGUP WA - PROJECT NO. 22180 Sample ID: 1, 0.7-0.9 Sheet No.: 2 OF 6 Job No.: S8170 Date Tested: 07.04.01

### Particle Size Distribution of a Soil

······································	Sie	ving		is by Sieving: AS 1289.3.6.1 Sieving					
				Sieve Size	% Passing	Sieve Size	% Passing		
150.0mm		1.18 mm	91						
75.0mm		600 micron	62		<u></u>				
37.5 mm		425 micron	49						
19.0 mm		300 micron	38						
9.50 mm		150 micron	25			<u> .</u>			
4.75 mm	100	75 micron	19			<u>.</u>			
2.36mm	99								





This laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full. Approved:

W Rozmianiec

EE SRC

A Division of AMEC Engineering Pty Limited ABN 73 003 066 715

34 Walters Drive, Osborne Park WA 6017

Telephone: (08) 9244 1199 Facsimile: (08) 9244 1457

E-mail: src@amecaust.com.au

# TEST CERTIFICATE

#### Client: DOUGLAS PARTNERS PTY LTD

Project: SMITH'S BEACH, YALLINGUP WA - PROJECT NO. 22180

300 micron

150 micron

75 micron

Sheet No.: 3 OF 6 Job No.: S8170 Date Tested: 07.04.01

% Passing

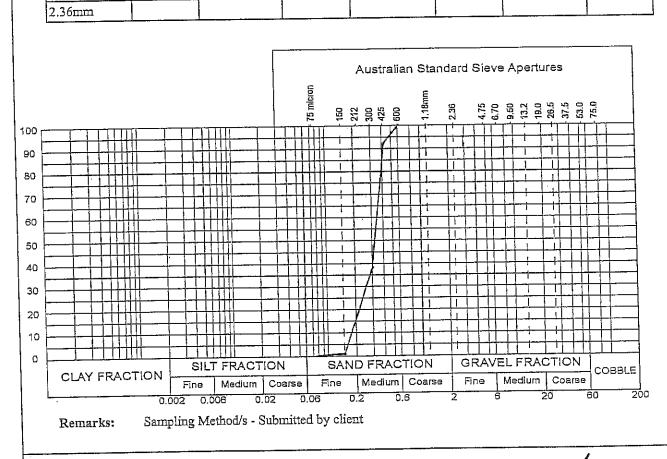
Sample ID: 3, 0.6-0.8

75.0mm

37.5 mm

19.0 mm

9.50 mm


4.75 mm

#### Particle Size Distribution of a Soil Standard Method of Analysis by Sieving: AS 1289.3.6.1 Sieving Sieving % Passing Sieve Size Sieve Size % Passing Sieve Size Sieve Size % Passing 1.18 mm 150.0mm 100 600 micron 92 425 micron

38

1

0





This laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Approved:

W Rozmianiec



52

A Division of AME C Engineering Pty Limited AB N 73 003 066 715 34 Walters Drive, Osborne Park WA 6017 Telephone: (08) 9244 1199 Facsimile: (08) 9244 1457 E-mail: src@amecaust.com.au

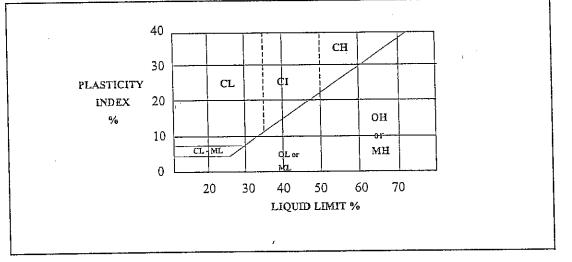
# TEST CERTIFICATE

Client: DOUGLAS PARTNERS PTY LTD Project: SMITH'S BEACH, YALLINGUP WA - PROJECT NO. 22180 Sheet No.: 4 OF 6 Job No.: S8170 Date Tested: 08.04.01

Plastic Properties - Casagrande Method

AS 1289.3.1.1, .3.2.1, .3.3.1, .3.4.1, .2.1.1

٦


Test No. Sample ID

Liquid Limit Plastic Limit Plasticity Index Linear Shrinkage

	1
	6
	1.1-1.3
%	63
%	25
% % %	38
%	14.0

Г

#### PLASTICITY CHART: AS 1726



History of Sample: Cool Oven Dried

Method of Preparation: Dry Sieved

Remarks: Sampling Method/s - Submitted by client.

Length of Linear Shrinkage Mould: 250 mm Nature of Shrinkage: Normal



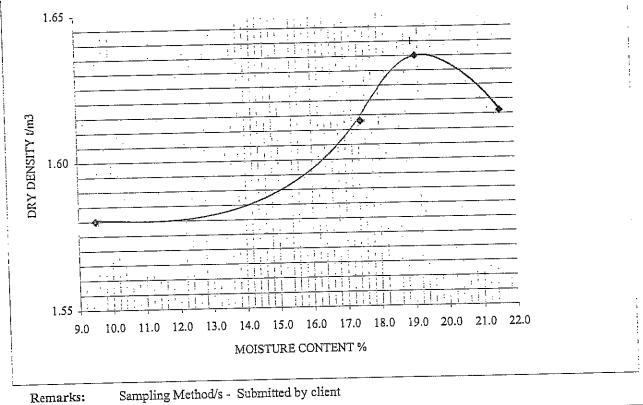
This laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full. Approved:

W Rozmianiec



A Division of AMEC Engineering Pty Limited ABN 73 003 066 715 34 Walters Drive, Osborne Park WA 6017 Telephone: (08) 9244 1199 Facsimile: (08) 9244 1457 E-mail: src@amecaust.com.au

# TEST CERTIFICATE


### Client: DOUGLAS PARTNERS PTY LTD

Sheet No.: 5 OF 6 Job No.: S8170 Date Tested: 04.04.01

Project: SMITH'S BEACH, YALLINGUP WA - PROJECT NO. 22180 Sample ID: 3, 0.6-0.8 Description: SAND

> Dry Density / Moisture Content Relationship AS 1289.5.1.1

Standard Maximum Dry Density	1.64	t/m³
Optimum Moisture Content	19.0	%
Retained on 19.0mm Sieve	0	%
Retained on 37.5mm Sieve	N/A	%



MARA

This laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Approved:

W Rozmianiec



A Division of AMEC Engineering Pty Limited ABN 73 003 066 715 34 Walters Drive, Osborne Park WA 6017 Telephone: (08) 9244 1199 Facsimile: (08) 9244 1457 E-mail: src@amecaust.com.au

# TEST CERTIFICATE

	Sheet No.: 6 OF 6 Job No.: S8170 Date Tested: 08.01.01	
	y Brian Vickers	
Required Dry Density Ratio:	95 %	
Required Moisture Content Ratio:	100 %	
	1.64 t/m³	
	19.0 %	
	1.56 t/m³ 95 %	
	19.0 %	
tio:	100 %	
	Required Dry Density Ratio:	ALLINGUP WA - PROJECT NO. 22180 Job No.: S8170 Date Tested: 08.01.01 Calling Head Permeability Soil Mechanics - Second Edition by Brian Vickers Required Dry Density Ratio: 95 % Required Moisture Content Ratio: 100 % 1.64 t/m ³ 19.0 % 1.56 t/m ³ 95 %

Average Coefficient of Permeability:

4.9 x 10⁻⁵ m/sec

Remarks: Sample submitted by client.

Approved:

W Rozmianiec

# RESULTS OF MATERIALS FINER THAN 75µm

Sample Details:	Test No.	Test Pit	Depth (m)
	1	1	0.7 – 0.9
·	2	3	2.0 – 2.1
	3	4	1.1 - 1.2

% passing 75µm:	Test No.	Result (%)	
	1	17	
	2	20	
	3	13	

Method of drying: Oven Dried

Client:	Canal Rocks Pty Ltd
Project:	Smith's Beach Development
Location:	Yallingup, WA

Test Method: AS.1141.12 - 1996

Project No:	22180	Tested by:	A. Gane
Report No:	-	Checked by:	C. Waterton
Page:	1 of 1		
Date Reported:	2 April 2001		

Laboratory: Perth

APPENDIX B

# Hand Auger Borehole Report





#### METHOD OF SOIL DESCRIPTION USED ON BOREHOLE AND TEST PIT REPORTS

SYMBOL	S										
	FILL					CLAY (CL, CI or CH)					
0000	GRAVEL (	gw, gp, gn	1 or GC)		<u>10 34</u>		C SOILS (OL, OH or Pt)				
	SAND (SV	V, SP, SM or	SC)		00	COBBLE	S or BOULDERS				
× × × × × × × × × × × × × × × × × × ×	SILT (ML o	,									
					cate mixed m	aterials such as sa	ndy clay.				
			STRATIGRAPH				<u> </u>				
			in the field by vi				preferred method given	in AS1726-2017.			
The materia	a properties a			isuai/	lacule metho						
		Particle Si				PI	asticity Properties				
Soil Grou	o Sub E	Division	Particle S	Size							
	BOULDERS		> 200 m	m	60 -	HIIIIIIIIIIIII	8. 801, MIIIIII				
	COBBLES		63 to 200	mm	50 -		Ine and				
	Co	Coarse 19 to 63		mm	8		100 20				
GRAVEL	Ме	dium	6.7 to 19	mm	2 40 - X		CH ar OH	13 (W.			
	F	ine	2.36 to 6.7	mm	QN 30 -	411111111111					
	Co	arse	0.6 to 2.36	mm	- 04 - 05 - 05 - 05 - 05 - 05 - 05 - 05 - 05		Ci or Ol MH or OH				
SAND	Ме	edium 0.21 to 0.6		mm	PLAS						
	F	ine	0.075 to 0.2	1 mr	n 10 -	CL pr OL					
SILT			0.002 to 0.07	75 m	m o-		40 50 60 70	80 90 10C			
CLAY < 0.002 mm							LIQUID LIMIT W				
MOISTURE	CONDITION	1									
M N W V Moisture co	0ry Sa 1oist So Vet So	ils are darke ils exude fre e grained so	r than in dry con e water. Sand ar	ditior nd gr	n and may fee avels tend to	el cool. Sands and cohere.	friable and powdery. gravels tend to cohere. it as specified in AS172	6-2017.			
		Grained Soi	s			Coars	e Grained Soils				
Symbol	Term		Shear Strength		Symbol	Term	Density Index (%)	SPN "N" *			
VS	Very Soft		12 kPa		. VL	Very Loose	Less than 15	0 to 4			
S	Soft		25 kPa		L	Loose	15 to 35	4 to 10			
F	Firm		50 kPa		MD	Medium Dense	35 to 65	10 to 30			
St	Stiff		100 kPa		D	Dense	65 to 85	30 to 50			
VSt	Very Stiff		200 kPa		VD	Very Dense	Above 85	Above 50			
H Fr	Hard Friable	ADOVE	200 kPa								
		sults. consist	- encv and densit	v ma	v be assesse	d from correlations	with the observed beha	viour of the			
material. * SPT corre	lations are no						verburden pressure and				
CEMENTA Weakly Cer		The ce	il may be easily	dicar	aroasted by	hand in air ar wata	r				
Moderately						hand in air or wate by hand in air or w					
iniouerately	Cementeu			ayyıt	yaie ine soli	by nanu in all OF W	ator.				



#### GOLDER MEMBER OF WSP

#### EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT REPORTS

DRILLING/E	XCAVATION MET	THOD									
ADH	Hollow auger drilli		EX	Excavator		PC	23	Diamon	d core - 83 mm		
ADT	Auger drilling with tc-bit		HA	Hand auger		PT	-	Push tul	pe sampling		
ADV	Auger drilling with v-bit		HAND	Excavated by	hand	RA	٨B	Rotary a	air blast		
AIRCORE	Aircore		HMLC	methods Diam		3 R(	2	Reverse	circulation		
AT	Air track		HQ3	mm Diamond	core - 61 mm	่า R1	Ē	Rock ro	ller		
BH	Backhoe bucket C	Cable	JET	Jetting		SC	DNIC	Sonic di	illing		
СТ	tool rig		MZ	Mazier tube sa	ampling	SF	РΤ	Standar	d penetration		
DTC	Diatube coring Ex	isting	NDD	Non-destructiv		U			Jndisturbed tube		
EE	excavation Extrud	•	NMLC	Diamond core		W	В		g Washbore drilling		
EPT	push tube		NQ3	Diamond core	- 45 mm			•			
	ON/EXCAVATION	N RESISTAN									
L	Low resistance	. Rapid pen	etration p	ossible with littl	le effort from	the equip	ment use	d.			
M									equipment used.		
Н			on/excav	ation. Further	penetration is	s possible	at a slow	rate and	requires significant		
_	effort from the ed										
R				ther progress p	ossible witho	out the risk	c of dama	ige or una	acceptable wear to		
	the digging imple				towa in alvelia a				what accordition of		
	ssments are subject or drilling tools, and				tors including	g the equip	oment po	wer, weig	jni, condition of		
WATER	and think tools, and	i ille expelle									
	Wate	r level at dat	e shown	<	1 F	Partial wat	ter loss				
<b>¥</b> ⊳		r inflow				Complete		s			
GROUNDW	ATER NOT The	observatior	n of grour	dwater, whethe					drilling water,		
OBSERVED				in of the boreh		,			0 /		
GROUNDW	ATER NOT The	borehole/te	st pit was	s dry soon after	excavation.	However,	groundw	ater coul	d be present in		
ENCOUNTE			strata. Ir	nflow may have	been observ	ed had the	e boreho	le/test pit	been left open for		
SAMPI ING	a lo AND TESTING	nger period.									
SPT		netration Te	st to AS1	289.6.3.1-2004							
4,7,11 N=18				lows per 300m		n followinc	150mm	seating			
30/80 mm				e blows and pe							
RW				d weight only							
HW				ammer and rod	weight only						
HB	Hammer dou		g on anvi	1							
DS	Disturbed sa										
BDS	Bulk disturbe	•									
G	Gas Sample										
W	Water Samp			n matad							
FP FV								dual			
PID	$\mathbf{J}$							uuai			
PM	Pressuremet										
PP				ed as instrume	nt reading in l	kPa					
U63				r indicates nomi			n millimet	res			
WPT	Water press	•			•						
DCP	Dynamic cor		on test								
CPT	Cone penetr	ation test									
CPTu				ressure (u) mea							
	OF VISUALLY OB	SERVABLE	CONTAI	MINATION AND	ODOUR (fo	or specific	soil conta	aminatior	l		
assessment				I		N.c. :-			a tifi a al		
R = 0				1	Slight evidence of visible     R = B     Slight non-natural odours identified						
R = 1	Slight evidence of	of visible									
R = 1 R = 2	Slight evidence of contamination Vi	of visible isible contan	nination		R = C	Moderat	e non-na	tural odo	urs identified		
R = 1 R = 2 R = 3	Slight evidence of contamination Vi Significant visible	of visible isible contan	nination			Moderat	e non-na	tural odo			
R = 1 R = 2 R = 3 ROCK COR	Slight evidence of contamination Vi Significant visible E RECOVERY	of visible isible contan e contamina	nination tion	Quality	R = C R = D	Moderat Strong n	e non-na Ion-natur	tural odo	urs identified identified		
R = 1 R = 2 R = 3 ROCK COR	Slight evidence of contamination Vi Significant visible E RECOVERY I Core Recovery	of visible isible contan e contamina RQI	nination tion D = Rock		R = C R = D	Moderat Strong n CR = Soli	e non-na ion-natur d Core	tural odo	urs identified identified F = Fracture		
R = 1 R = 2 R = 3 <b>ROCK COR</b> TCR = Tota	Slight evidence of contamination Vi Significant visible E RECOVERY I Core Recovery (%)	of visible isible contan e contamina RQI	nination tion D = Rock esignatio	n (%)	R = C R = D	Moderat Strong n CR = Soli Recovery	e non-na ion-natur d Core (%)	tural odo al odours ered	urs identified identified		
R = 1 $R = 2$ $R = 3$ <b>ROCK COR</b> $TCR = Tota$ $= Length of c$	Slight evidence of contamination Vi Significant visible E RECOVERY I Core Recovery	of visible isible contan e contamina RQI $= \sum Axial let$	nination tion D = Rock esignatio	n (%) re > 100 mm ×100	$R = C$ $R = D$ Si $\sum_{n=1}^{n} \sum_{n=1}^{n} \sum_{n=1}^{$	Moderat Strong n CR = Soli	e non-na on-natur d Core (%)	tural odo al odours	urs identified identified F = Fracture Frequency		



#### TERMS FOR ROCK MATERIAL STRENGTH & WEATHERING AND ABBREVIATIONS FOR DEFECT DESCRIPTIONS

STRENG		LICS (MDa)	r		Ei.	eld Guide		
Symbol		UCS (MPa)					n ha naalad with Imifa taa har	
VL	Very		Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard					
	Low		to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.					
L		2 to 6	Easily scored with a knife, indentations 1 mm to 3 mm show in the specimen with firm blows					
	Low		of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm					
			diameter may be broken by hand. Sharp edges of core may be friable and break during					
			handling.	1	1 .c	450 1 5		
Μ	Medium	6 to 20	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can					
			by hand with difficulty. A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be					
Н	High	20 to 60						
	New		broken wit	n pick with	a single firm blow; roo	k rings under nam	imer.	
VH	Very	60 to 200	Hand spee	cimen brea	aks with pick after more	than one blow; ro	ock rings under hammer.	
	High		Specimen requires many blows with geological pick to break through intact material; rock					
EH	Extremely	>200				lical pick to break t	inrougn intact material, rock	
Asterial	High			rings under hammer. y Low' shall be described using soil characteristics. The presence of an original rock structure				
				be descri	bed using soil characte	rístics. The presen	ice of an original rock structure	
		be noted, if re	elevant.					
			1					
Syl	mbol	Term	Field Guide					
RS		Residual	Material is weathered to such an extent that it has soil properties. Mass structure and					
		Soil	material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.					
		Extremely	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.					
		Weathered						
tir			The whole of the rock material is discoloured, usually by iron staining or bleaching to the					
	нw	Highly Weathered	extent that the colour of the original rock is not recognizable. Rock strength is significantly					
			changed by weathering. Some primary minerals have weathered to clay minerals. Porosity					
			may be increased by leaching, or may be decreased due to deposition of weathering DW					
			products	in pores.				
		Moderately Weathered					staining or bleaching to the	
	MW		extent that the colour of the original rock is not recognizable, but shows little or no change					
				th from fre				
c	SW	Slightly	Rock is partially discoloured with staining or bleaching along joints but shows little or no					
		Weathered	change of strength from fresh rock.					
	FR	Fresh			n of decomposition of in	ndividual minerals	or colour changes.	
ABBREV	IATIONS FC	OR DEFECT T	YPES AND	DESCRI	PTIONS			
Defect T	уре			Coating	or Infilling	Roughn		
Р	Parting			Cn	Clean	VRo	Very Rough	
Х	Foliation			Sn	Stain	Ro	Rough	
L	Cleavage			Ve	Veneer	Sm	Smooth	
С	Contact			Ct	Coating	Po	Polished	
J	Joint			In	Infill	SI	Slickensided	
SSu	Sheared Surface				Vertical Boreholes – The dip			
SS				Planarit Pl			on from horizontal) of the defec	
SZ	Sheared Zone				Planar is given.			
	Crushed Seam			Cv	Curved		Boreholes - The inclination is	
		IS Infilled Seam			11 1 1 1	mogouro	d as the soute angle hetwarn	
CS		am		Un	Undulating		d as the acute angle between	
CS	Infilled Sea	am Weathered Se	eam	Un St	Stepped		axis and the vertical direction.	



JOB NO:

Datgel Tools

10.02.00.04

<<DrawindFile>> 18-10-2021 13:26

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



### **REPORT OF HAND AUGERED BOREHOLE: HA01**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development LOCATION: Yallingup

20435097

COORDS: 315991 m E 6273479 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.50 m

Logged: TC Checked: DK

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** DCP TEST (AS1289.6.3.2) Blows per 100 mm RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 10 15 20 25 5 0 -0.0 SM Silty SAND × fine to medium grained, dark brown, about 15% silt, with rootlets L MD D × × × ₽ 0.30 D fine to coarse grained, red brown, with fine gravel M-H 0.5 R END OF HAND AUGER @ 0.50 m REFUSAL GROUNDWATER NOT ENCOUNTERED Inferred refusal on Gneiss 1.0 1.5 2.0 2.5 3.0 **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



JOB NO:

10.02.00.04

<<DrawingFile>> 18-10-2021 13:26

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



### **REPORT OF HAND AUGERED BOREHOLE: HA02**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd

20435097

PROJECT: Smiths Beach Development LOCATION: Yallingup

COORDS: 315991 m E 6273397 m N MGA94 50 SURFACE RL: 24.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.65 m

LOGGED: DK CHECKED: TC

DATE: 11-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY RATION -**BROUP SYMBOI** DCP TEST (AS1289.6.3.2) Blows per 100 mm RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD 2 WATER DEPTH (metres) FIELD TEST PENETF RESIST, DEPTH RL 10 15 20 25 5 0 -0.0 SHAT 24.00 SM Silty SAND × fine to medium grained, brown, about 15-20% silt, with rootlets About 200 mm of topsoil L × × 0.30 ₹ L D red brown, with gneiss gravel MD D 0.5 × 23.35 END OF HAND AUGER @ 0.65 m REFUSAL Hammer Bounce R Inferred refusal on Gneiss GROUNDWATER NOT ENCOUNTERED 1.0 1.5 2.0 2.5 3.0 Datgel Tools **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datgel Tools

10.02.00.04

<<DrawindFile>> 18-10-2021 13:26

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



### **REPORT OF HAND AUGERED BOREHOLE: HA03**

SHEET: 1 OF 1

CLIENT:

Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development

LOCATION: Yallingup JOB NO: 20435097

COORDS: 316007 m E 6273291 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.30 m

LOGGED: TC CHECKED: DK DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** DCP TEST (AS1289.6.3.2) Blows per 100 mm RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 10 15 20 25 5 0 -0.0 SM Silty Gravelly SAND Ж. MD D ٩A fine to coarse grained, brown, about 30% fine to medium gravel, about 15% silt inferred extremely weathered gneiss L , ð D R END OF HAND AUGER @ 0.30 m Inferred refusal on Gneiss REFUSAL GROUNDWATER NOT ENCOUNTERED 0.5 1.0 1.5 2.0 2.5 3.0 **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datael Tools

10.02.00.04

18-10-2021 13:26

<<DrawingFile>>

SMITHS BEACH.GPJ

20435097

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



Sampling

# **REPORT OF HAND AUGERED BOREHOLE: HA04**

**Field Material Description** 

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd LOCATION: Yallingup 20435097

Drilling

PROJECT: Smiths Beach Development

COORDS: 315947 m E 6273232 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 2.60 m

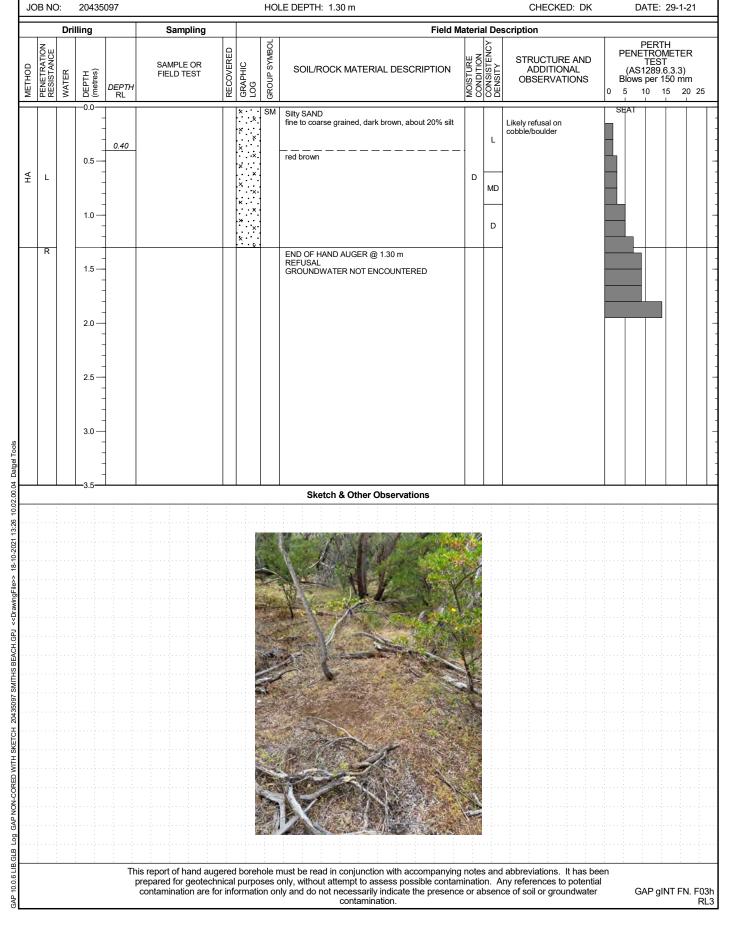
LOGGED: DK CHECKED: TC

DATE: 11-12-20 DATE: 29-1-21

#### MOISTURE CONDITION CONSISTENCY DENSITY TRATION **GROUP SYMBOI** DCP TEST RECOVERED STRUCTURE AND (AS1289.6.3.2) Blows per 100 mm SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS WATER DEPTH (metres) PENETF RESIST/ FIELD TEST DEPTH RL 10 15 20 25 5 0 -0.0 SHAT <u>CD /</u> SAND / Silty SAND fine to medium grained, brown SM about 300 mm of topsoil L × 0.5 D MD D L 1.00 10. pale brown 1.20 VD SF SAND ₽ fine to medium grained, pale grey brown, with 1.40 clay/silt DS 1.40-1.80 m CF 1.5 Sandy CLAY high plasticity, orange brown and grey, about 60% fine to coarse sand Rec = 400/400 mm М St w~ PL 2.0 VSt н 2.5 Refusal in hard CLAY R END OF HAND AUGER @ 2.60 m REFUSA GROUNDWATER NOT ENCOUNTERED 3.0 **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3






# **REPORT OF HAND AUGERED BOREHOLE: HA05**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development LOCATION: Yallingup COORDS: 315912 m E 6273317 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.30 m

LOGGED: TC CHECKED: DK

DATE: 10-12-20 DATE: 29-1-21





Datgel Tools

10.02.00.04

<<DrawingFile>> 18-10-2021 13:27

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



### **REPORT OF HAND AUGERED BOREHOLE: HA06**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development

LOCATION: Yallingup JOB NO: 20435097

COORDS: 315909 m E 6273413 m N MGA94 50 SURFACE RL: 16.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: DK CHECKED: TC

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0-SHAT 16.00 SP SAND fine to medium grained, brown, with silt about 300 mm of topsoil L 0.5 0.60 15.40 red brown MD 1.0 L ₹ 1.5 D D 2.0 2.5 М -3.0 13.00 END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED Sketch & Other Observations This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



CLIENT:

Datgel Tools

10.02.00.04

18-10-2021 13:27

<<DrawingFile>>

SMITHS BEACH.GPJ

20435097

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB

LOCATION: Yallingup



Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development

# **REPORT OF HAND AUGERED BOREHOLE: HA07**

SHEET: 1 OF 1

COORDS: 315876 m E 6273480 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 2.00 m SHEET. I OI

LOGGED: TC

DATE: 10-12-20 DATE: 29-1-21

JOB NO: 20435097 CHECKED: DK Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY TRATION **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) PENETF RESIST/ FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT SM Silty SAND × fine to medium grained, dark brown, about 15 to 20% silt × MD D × 0.5 × 0.60 SF L SAND fine to medium grained, brown, with silt/clay ₹ 1.0 D 1.30 Μ F, Silty SAND fine to coarse grained, brown orange, about 20% SN ٠× 1.5 × silt, trace gravel М × × VD DS 1.80-2.00 m Rec = 200/200 mm н -2.0 R END OF HAND AUGER @ 2.00 m REFUSAL GROUNDWATER NOT ENCOUNTERED 2.5 3.0 **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



GAP 10.0.6 LIB.GLB Log GAP NON-CORED WITH SKETCH 20435097 SMITHS BEACH. GPJ <</ style="text-align: right;">SMITHS BEACH. GPJ <</ style="text-align: right;">SMITHS BEACH. GPJ <</ style="text-align: right;">SMITHS CONTOUR CONTOURD CONTO



# **REPORT OF HAND AUGERED BOREHOLE: HA08**

SHEET: 1 OF 1

Smiths 2014 Pty Ltd CLIENT: LOCATION: Yallingup

20435097

PROJECT: Smiths Beach Development

COORDS: 315833 m E 6273396 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: DK CHECKED: TC

DATE: 10-12-20 DATE: 29-1-21

		Dril	ling		Sampling				Field N			scription					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	<b>GROUP SYMBOL</b>	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	E	(AS1 Blows	PERTH TROM TEST 289.6 per 15	H 1ETER 5.3.3) 50 mm 5 20	25
HA	L			0.80				SP	SAND fine to medium grained, brown, with silt	D	MD	About 250 mm of topsoil					-
			3.0 - - -	-					END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED								
			-3.5						Sketch & Other Observations								
					is report of hand auge	in the second	boreh	oler	ust be read in conjunction with accompanying	J note	es anc	dabbreviations. It has been					
				I	prepared for deotechn	ical r	ourpo	ses (	nly, without attempt to assess possible contain ly and do not necessarily indicate the presenc contamination.	ninati	on A	Any references to potential		GA	۹P gI	NT FN.	F03h RL3



Datgel Tools

10.02.00.04

<<DrawingFile>> 18-10-2021 13:27

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA09**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development

LOCATION: Yallingup JOB NO: 20435097

COORDS: 315817 m E 6273322 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: DK CHECKED: TC

DATE: 11-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT SP SAND fine to medium grained, orange brown About 300 mm of topsoil 0.5 L 1.0 ₹ L 1.5 D MD 2.0 2.5 D -3.0 END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED Sketch & Other Observations This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datgel Tools

10.02.00.04

18-10-2021 13:27

<<DrawingFile>>

SMITHS BEACH.GPJ

20435097

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA10**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd LOCATION: Yallingup

20435097

PROJECT: Smiths Beach Development

COORDS: 315852 m E 6273231 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.30 m

LOGGED: DK CHECKED: TC

DATE: 11-12-20 DATE: 29-1-21

Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** DCP TEST RECOVERED (AS1289.6.3.2) Blows per 100 mm STRUCTURE AND SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS WATER DEPTH (metres) FIELD TEST DEPTH RL 10 15 20 25 5 0 -0.0 SHAT SAND / Silty SAND fine to medium grained, brown SM About 250 mm of topsoil L × D L 0.5 MD D ٩ 0.80 Cł Sandy CLAY orange brown and grey, fine to coarse sand, about 40% fines М Extremely weathered rock 1.0 w < PL н н R END OF HAND AUGER @ 1.30 m REFUSAL GROUNDWATER NOT ENCOUNTERED Refusal on hard clay 1.5 2.0 2.5 3.0 **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datael Tools

10.02.00.04

18-10-2021 13:27

<<DrawingFile>>

SMITHS BEACH.GPJ

20435097

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA11**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd LOCATION: Yallingup

PROJECT: Smiths Beach Development

20435097

COORDS: 315785 m E 6273235 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.50 m

LOGGED: DK

CHECKED: TC

DATE: 11-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** DCP TEST RECOVERED STRUCTURE AND (AS1289.6.3.2) Blows per 100 mm SAMPLE OR GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS METHOD DEPTH (metres) WATER FIELD TEST DEPTH RL 10 15 20 25 5 0 -0.0 SHAT <u>CD /</u> SAND / Silty SAND fine to medium grained, brown, with fine to coarse gneiss gravel SM About 200 mm of topsoil L L × 0.5 MD 0.60 SF Gravelly SAND fine to coarse grained, orange brown, fine to coarse gneiss gravel, with silt 0 М VD ₽ D 0.80 SC Clayey SAND / Sandy CLAY fine to coarse grained, pale grey and orange brown, about 25 to 60% medium plasticity fines in C 1.0 VD H н zones -1.5 END OF HAND AUGER @ 1.50 m REFUSAL GROUNDWATER NOT ENCOUNTERED Refusal on hard clay 2.0 2.5 3.0 **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3





# REPORT OF HAND AUGERED BOREHOLE: HA12

SHEET: 1 OF 1

CLIENT:Smiths 2014 Pty LtdPROJECT:Smiths Beach DevelopmentLOCATION:YallingupJOB NO:20435097

COORDS: 315738 m E 6273338 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: TC CHECKED: DK

DATE: 11-12-20 DATE: 29-1-21

		Dri	ling		Sampling				Field M			scription					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	F E O	F PENE (AS1 Blows 5 1	PERTI TROM TEST 1289.6 per 19	H METER 5.3.3) 50 mm 5 20	۱ 25
HA	L		-0.0 	0.80	DS 1.50-1.70 m Rec = 200/200 mm			SP	SAND fine to medium grained, brown brown orange becoming pale brown orange with depth	M	D			EAI			
10.02.00.04 Datgel Iools			3.0  						END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED			_					
00.04			-3.5						Sketch & Other Observations								
GAP 10.0.6 LEGGLE LOG GAP NON-CORED WITH SKEICH 2043509/ SMITHS BEACH.GPJ <																	
GAP 10.0.6 LIE				Tł	prepared for geotechr	nical	l purpo	ses o	nust be read in conjunction with accompanying nly, without attempt to assess possible contan ly and do not necessarily indicate the presence contamination.	ninatio	on. A	any references to potentia	en 	G	AP gll	NT FN.	. F03h RL3



Datgel Tools

10.02.00.04

<<DrawingFile>> 18-10-2021 13:27

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA13**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd

20435097

PROJECT: Smiths Beach Development LOCATION: Yallingup

COORDS: 315764 m E 6273379 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: DK CHECKED: TC

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT SP SAND fine to medium grained, orange brown L -MD 0.5 1.0 L ₹ 1.5 D MD 2.0 2.5 М D -3.0 END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED Sketch & Other Observations This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datael Tools

10.02.00.04

18-10-2021 13:27

<<DrawingFile>>

SMITHS BEACH.GPJ

20435097

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA14**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd LOCATION: Yallingup

20435097

PROJECT: Smiths Beach Development

COORDS: 315792 m E 6273477 m N MGA94 50 SURFACE RL: 10.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: TC CHECKED: DK

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT 10.00 SP SAND fine to medium grained, dark brown, trace fines L -MD 0.5 D D 1.0 1.10 8.90 pale brown ₹ L 1.5 2.0 М VD 2.50 2.5 with silt -3.0 7.00 END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED Sketch & Other Observations This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



10.02.00.04

<<DrawingFile>> 18-10-2021 13:27

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



### **REPORT OF HAND AUGERED BOREHOLE: HA15**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd

20435097

PROJECT: Smiths Beach Development LOCATION: Yallingup

COORDS: 315694 m E 6273420 m N MGA94 50 SURFACE RL: 20.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: DK CHECKED: TC

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT 20.00 SP SAND fine to medium grained, orange brown 0.5 L 1.0 L MD ₹ 1.5 D 2.0 D 2.5 М -3.0-17.00 END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED Datgel Tools Sketch & Other Observations This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datgel Tools

10.02.00.04

<<DrawingFile>> 18-10-2021 13:27

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA16**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development

LOCATION: Yallingup JOB NO: 20435097

COORDS: 315694 m E 6273355 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: DK CHECKED: TC

DATE: 11-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT SP SAND fine to medium grained, orange brown About 200 mm of topsoil L-MD 0.5 1.0 L ₹ 1.5 D D 2.0 2.5 М -3.0 END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED Sketch & Other Observations This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datgel Tools

10.02.00.04

18-10-2021 13:27

<<DrawingFile>>

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA17**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd LOCATION: Yallingup

20435097

PROJECT: Smiths Beach Development

COORDS: 315596 m E 6273379 m N MGA94 50 SURFACE RL: 34.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: DK CHECKED: TC

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT 34.00 SP SAND fine to medium grained, orange brown About 150 mm of topsoil L 0.5 L 1.0 MD ₹ 1.5 D 2.0 М D 2.5 -3.0 31.00 END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED Sketch & Other Observations This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datgel Tools

10.02.00.04

<<DrawingFile>> 18-10-2021 13:28

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA18**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development LOCATION: Yallingup 20435097

COORDS: 315568 m E 6273453 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: DK CHECKED: TC

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT SP SAND fine to medium grained, orange brown About 100 mm of topsoil 0.5 MD 1.0 ₹ L 1.5 D 2.0 D 2.5 -3.0 END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED Sketch & Other Observations This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3





# **REPORT OF HAND AUGERED BOREHOLE: HA19**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development LOCATION: Yallingup

20435097

COORDS: 315526 m E 6273391 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90°

HOLE DEPTH: 3.00 m

Logged: DK Checked: TC

DATE: 11-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT SP SAND fine to medium grained, brown D 0.40 fine to coarse grained, pale brown orange MD 0.5 1.0 ₹ L 1.5 Μ DS 1.80-2.00 m Rec = 200/200 mm D 2.0 2.5 -3.0 END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED Datgel Tools 10.02.00.04 Sketch & Other Observations <<DrawingFile>> 18-10-2021 13:28 20435097 SMITHS BEACH.GPJ SKETCH GAP NON-CORED WITH Log GAP 10.0.6 LIB.GLB This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datgel Tools

10.02.00.04

<<DrawingFile>> 18-10-2021 13:28

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA20**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd

20435097

PROJECT: Smiths Beach Development LOCATION: Yallingup

COORDS: 315430 m E 6273397 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.90 m

LOGGED: TC CHECKED: DK

DATE: 11-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT SM Silty SAND fine to medium grained, dark brown, about 15% silt × × × D L × 0.40 ÷× pale brown orange 0.5 × × MD D ₹ L 1.0 Μ 1.5 D × × R END OF HAND AUGER @ 1.90 m TARGET DEPTH Refusal on weathered rock 2.0 GROUNDWATER NOT ENCOUNTERED 2.5 3.0 **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



CLIENT:

JOB NO:

10.02.00.04

<<DrawingFile>> 18-10-2021 13:28

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA21**

SHEET: 1 OF 1

Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development LOCATION: Yallingup 20435097

COORDS: 315440 m E 6273464 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.10 m

LOGGED: TC CHECKED: DK

DATE: 11-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT SM Silty SAND fine to medium grained, dark brown, about 15% silt × × × 0.40 L pale brown orange 0.5 D ₽ × L DS 0.80-1.00 m Rec = 200/200 mm MD 10 R END OF HAND AUGER @ 1.10 m REFUSAL Refusal on Gneiss GROUNDWATER NOT ENCOUNTERED 1.5 2.0 2.5 3.0 Datgel Tools **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datgel Tools

10.02.00.04

<<DrawingFile>> 18-10-2021 13:28

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA22**

SHEET: 1 OF 1

CLIENT: LOCATION: Yallingup

Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development

20435097

COORDS: 315529 m E 6273515 m N MGA94 50 SURFACE RL: 26.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.00 m

LOGGED: TC CHECKED: DK

DATE: 11-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND SAMPLE OR GRAPHIC LOG (AS1289.6.3.3) Blows per 150 mm METHOD SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0-SHAT 26.50 SM × Silty SAND fine to medium grained, brown, about 15% silt × MD × × 0.30 pale brown orange ₽ L 0.5 D D × × 0.80 25.70 fine to coarse grained, pale grey, extremely weathered gneiss × VD -1.0-25 50 Refusal on inferred Gneiss END OF HAND AUGER @ 1.00 m REFUSAL GROUNDWATER NOT ENCOUNTERED 1.5 2.0 2.5 3.0 **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3





# **REPORT OF HAND AUGERED BOREHOLE: HA23**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development LOCATION: Yallingup 20435097

COORDS: 315460 m E 6273520 m N MGA94 50 SURFACE RL: 29.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.90 m

LOGGED: TC CHECKED: DK DATE: 11-12-20 DATE: 29-1-21

			ling		Sampling				Field			scription					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	0	PEN (AS Blow 5	PERT ETROI TES S1289. /s per 1 10	H METE 6.3.3) 50 mr 15 2	m
			0.0 	29.00 0.30			× × × ×	SM	Silty SAND fine to medium grained, dark grey, about 15% silt		L	Some rock outcrops in the vicinity		SEAT			
¥ L	М		- 0.5 —	28.70			× × ×		pale brown grey	D	MD - D	-					
	н		-	0.70 28.30			×		fine to coarse grained, pale grey, extremely weathered rock		VD						
			1.0	28.10					END OF HAND AUGER @ 0.90 m REFUSAL GROUNDWATER NOT ENCOUNTERED			Inferred refusal on gneiss					
			- - 1.5 —	-													
			-	-													
			- 2.0 —	-													
			-	-													
			2.5	-													
			- - 3.0 —	-													
			-	-													
			_													1 1	
			-3.5-														
			-3.5	1					Sketch & Other Observations								
			_3.5					-	Sketch & Other Observations								
			_3.5						Sketch & Other Observations								
			-3.5						Sketch & Other Observations								
			-3.5						Sketch & Other Observations								
	· · · · ·		_3.5						Sketch & Other Observations								
	·····		-3.5						Sketch & Other Observations								
	·····								Sketch & Other Observations								
	· · · · · · · · · · · · · · · · · · ·		-3.5						Sketch & Other Observations								
	· · · · · · · · · · · · · · · · · · ·		-3.5						Sketch & Other Observations								
	· · · · · · · · · · · · · · · · · · ·								Sketch & Other Observations								
	· · · · · · · · · · · · · · · · · · ·								Sketch & Other Observations								
	· · · · · · · · · · · · · · · · · · ·		-3.5						Sketch & Other Observations								
	· · · · · · · · · · · · · · · · · · ·																
									<section-header></section-header>								
			-3.5														
	· · · · · · · · · · · · · · · · · · ·								<section-header></section-header>								
			-3.5						<section-header></section-header>								
			-3.5						<image/>								
			-3.5		his report of hand au		d boret	nole r	The set of	g note	sanc	d abbreviations. It has be	en				
			-3.5		prepared for geotech	nnica	l purpo	ses o		minatio	on. A	ny references to potentia	ıl		GAP gl		



Datgel Tools

10.02.00.04

<<DrawingFile>> 18-10-2021 13:28

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA24**

SHEET: 1 OF 1

CLIENT:

Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development LOCATION: Yallingup 20435097

COORDS: 315517 m E 6273591 m N MGA94 50 SURFACE RL: 20.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.40 m

LOGGED: TC CHECKED: DK

DATE: 11-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST MOISTURE CONDITION CONSISTENCY DENSITY **GROUP SYMBOI** TRATION RECOVERED STRUCTURE AND SAMPLE OR GRAPHIC LOG (AS1289.6.3.3) Blows per 150 mm METHOD SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS WATER DEPTH (metres) FIELD TEST PENETF RESIST, DEPTH RL 5 . 10 15 20 25 n -0.0 SHAT 20.00 SM Silty SAND fine to medium grained, dark brown, about 15% silt × DS 0.10-0.30 m Rec = 200/200 mm L-MD ₽ D L 19.60 END OF HAND AUGER @ 0.40 m REFUSAL GROUNDWATER NOT ENCOUNTERED Inferred refusal on Gneiss 0.5 1.0 1.5 2.0 2.5 3.0 **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datgel Tools

10.02.00.04

<<DrawingFile>> 18-10-2021 13:28

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



#### **REPORT OF HAND AUGERED BOREHOLE: HA25**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd

20435097

PROJECT: Smiths Beach Development LOCATION: Yallingup

COORDS: 315536 m E 6273661 m N MGA94 50 SURFACE RL: 10.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.20 m

LOGGED: DK CHECKED: TC

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** ANCF MOISTURE CONDITION CONSISTENCY DENSITY **BROUP SYMBOI** DCP TEST (AS1289.6.3.2) Blows per 100 mm RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD 2 WATER DEPTH (metres) FIELD TEST PENETF RESIST DEPTH RL 10 15 20 25 5 -0.0 ×···× SHAT 10.50 SM Silty SAND fine to coarse grained, brown, about 15-20% silt L-MD ₹ М D About 50 mm of topsoil 10.30 END OF HAND AUGER @ 0.20 m REFUSAL GROUNDWATER NOT ENCOUNTERED Refusal on inferred Gneiss 0.5 1.0 1.5 2.0 2.5 3.0 Sketch & Other Observations This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



10.02.00.04

<<DrawingFile>> 18-10-2021 13:28

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

GAP 10.0.6 LIB.GLB



#### **REPORT OF HAND AUGERED BOREHOLE: HA26**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development LOCATION: Yallingup

20435097

COORDS: 315505 m E 6273696 m N MGA94 50 SURFACE RL: 10.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.80 m

LOGGED: TC CHECKED: DK

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** DCP TEST (AS1289.6.3.2) Blows per 100 mm RECOVERED STRUCTURE AND SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS WATER DEPTH (metres) FIELD TEST DEPTH RL 10 15 20 25 5 0 -0.0 SHAT 10.00 SM Silty SAND × fine to medium grained, dark brown, about 15% silt, with fine to medium gravel MD D D М × 0.40 9.60 ٩A × Sandy CLAY medium plasticity, brown orange red, about 40% CI 0.5 w < PL Н Н fine to coarse sand Refusal on hard clay R 9.20 END OF HAND AUGER @ 0.80 m REFUSAL GROUNDWATER NOT ENCOUNTERED 1.0 1.5 2.0 2.5 3.0 Datgel Tools **Sketch & Other Observations** Log This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3





#### **REPORT OF HAND AUGERED BOREHOLE: HA27**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development LOCATION: Yallingup

JOB NO:

10.02.00.04

18-10-2021 13:28

SMITHS BEACH.GPJ

20435097

SKETCH

GAP NON-CORED WITH

GAP 10.0.6 LIB.GLB

20435097

COORDS: 315594 m E 6273629 m N MGA94 50 SURFACE RL: 10.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.70 m

LOGGED: TC CHECKED: DK

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** DCP TEST RECOVERED (AS1289.6.3.2) Blows per 100 mm STRUCTURE AND SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS WATER DEPTH (metres) FIELD TEST DEPTH RL 10 15 20 25 5 0 -0.0 SHAT 10.50 SM Silty SAND × fine to medium grained, dark brown, about 15% silt, with fine to medium gravel MD D D М × × Η 0.40 10.10 ķ Sandy CLAY medium plasticity, brown orange red, about 40% CI 0.5 w < PL VSt н Н fine to coarse sand, trace gravel 9.80 R Refusal on hard clay END OF HAND AUGER @ 0.70 m REFUSAL GROUNDWATER NOT ENCOUNTERED 1.0 1.5 2.0 2.5 3.0 Datgel Tools **Sketch & Other Observations** <<DrawingFile>> Log This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datael Tools

10.02.00.04

18-10-2021 13:28

<<DrawingFile>>

SMITHS BEACH.GPJ

20435097

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA28**

SHEET: 1 OF 1

CLIENT: LOCATION: Yallingup

Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development

20435097

COORDS: 315595 m E 6273557 m N MGA94 50 SURFACE RL: 19.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.00 m

LOGGED: TC CHECKED: DK

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY TRATION **GROUP SYMBOI** DCP TEST (AS1289.6.3.2) Blows per 100 mm RECOVERED STRUCTURE AND SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS WATER DEPTH (metres) FIELD TEST PENETF RESIST, DEPTH RL 10 15 20 25 5 0 -0.0 19.00 SHAT GP ö 000 Sandy GRAVEL Τ fine to coarse grained, lateritised gneiss, brown, fine to medium sand, with silt °.0.0 .0.0 D MD Ò. М 0.50 18.50 ₽ 0.5 0 <u></u> Sandy CLAY medium to high plasticity, orange brown, red brown and pale grey, about 50% fine to coarse sand, trace gravel CI/ DS 0.60-1.00 m Rec = 400/400 mm CH VSt М н D н Refusal on hard clay -1.0-R 18.00 END OF HAND AUGER @ 1.00 m REFUSAI GROUNDWATER NOT ENCOUNTERED 1.5 2.0 2.5 3.0 **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



10.02.00.04

18-10-2021 13:28

<<DrawingFile>>

SMITHS BEACH.GPJ

20435097

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



# **REPORT OF HAND AUGERED BOREHOLE: HA29**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd LOCATION: Yallingup

20435097

PROJECT: Smiths Beach Development

COORDS: 315661 m E 6273609 m N MGA94 50 SURFACE RL: 8.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 1.90 m

LOGGED: TC CHECKED: DK

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0-SHAT 8.00 SP SAND fine to medium grained, dark brown, with silt 0.40 7.60 orange brown 0.5 L D L ₹ 1.0 DS 1.00-1.20 m Rec = 200/200 mm MD .40 6.60 pale grey brown, with clay 1.5 D М 1.80 Н SC Clayey SAND VD fine to coarse grained, orange brown, about 15% to 20% low plasticity clay 6.10 2.0 END OF HAND AUGER @ 1.90 m REFUSAL GROUNDWATER NOT ENCOUNTERED 2.5 3.0 Datgel Tools **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datgel Tools

10.02.00.04

<<DrawingFile>> 18-10-2021 13:28

20435097 SMITHS BEACH.GPJ

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



### **REPORT OF HAND AUGERED BOREHOLE: HA30**

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd

20435097

PROJECT: Smiths Beach Development LOCATION: Yallingup

COORDS: 315727 m E 6273575 m N MGA94 50 SURFACE RL: 6.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 2.20 m

LOGGED: TC CHECKED: DK

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT 6.50 SP SAND fine to medium grained, black and grey, with fines, minor organic content L -MD 0.5 L D 1.0 М <u>1.20</u> 5.30 .... SF SAND fine to medium grained, pale yellow 1.5 5.00 SC Clayey SAND fine to coarse grained, yellow grey, about 15% to 20% low plasticty clay VD ÷ . М 2.00 2.0 DS 2.00-2.20 m pale brown orange yellow, about 25% medium н Rec = 200/200 mm plasticity clay 4.30 END OF HAND AUGER @ 2.20 m REFUSAL GROUNDWATER NOT ENCOUNTERED 2.5 3.0 **Sketch & Other Observations** This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3



Datgel Tools

10.02.00.04

18-10-2021 13:29

<<DrawingFile>>

SMITHS BEACH.GPJ

20435097

SKETCH

GAP NON-CORED WITH

Log

GAP 10.0.6 LIB.GLB



### **REPORT OF HAND AUGERED BOREHOLE: HA31**

SHEET: 1 OF 1

CLIENT: LOCATION: Yallingup

Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development

JOB NO: 20435097

COORDS: 315738 m E 6273539 m N MGA94 50 SURFACE RL: 8.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: TC CHECKED: DK

DATE: 10-12-20 DATE: 29-1-21

#### Drilling Sampling **Field Material Description** PERTH PENETROMETER TEST (AS1289.6.3.3) Blows per 150 mm MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE **GROUP SYMBOI** RECOVERED STRUCTURE AND SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL OBSERVATIONS WATER DEPTH (metres) FIELD TEST DEPTH RL 5 . 10 15 20 25 0 -0.0 SHAT 8.00 $\mathcal{M}$ SP SAND & TOPSOIL fine to medium grained, black and grey, with fines L 12 0.30 7.70 34 SF SAND fine to medium grained, brown grey 0.5 MD 1.0 D L М ₹ 1.5 2.0 2.20 SC Clayey SAND fine to medium grained, orange yellow, about 15% VD low plasticity clay 2.50 2.5 SP SAND Μ fine to medium grained, pale grey M -W Water table close -3.0 5.00 END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED Sketch & Other Observations This report of hand augered borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater GAP gINT FN. F03h contamination. RL3





# REPORT OF HAND AUGERED BOREHOLE: HA32

SHEET: 1 OF 1

CLIENT: Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development

PROJECT: Smiths Beach Develo LOCATION: Yallingup JOB NO: 20435097 COORDS: 315252 m E 6273212 m N MGA94 50 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 3.00 m

LOGGED: DK CHECKED: TC

DATE: 11-12-20 DATE: 29-1-21

		Dri	lling		Sampling				Field Ma							
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS 0	PEN (A Blov	PER IETRO TES S1289 vs per 10	TH METE .6.3.3) 150 mi 15 2	R m 20 25
	L		-0.0    0.5   					SP	SAND fine to medium grained, dark brown, with silt, minor organic content		L	-	SEAT			
HA			1.0 — - - 1.5 —	1.00					orange brown	D	D	-				
	м		2.0 — - - - 2.5 — - - - - - - - - - - - - - - - - - - -								VD					
			3.0  						END OF HAND AUGER @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED							
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1									Sketch & Other Observations							
GAP 10.0.6 LIB.(		-	: :	TI	prepared for geotechr	nica	l purpo	ses (	nust be read in conjunction with accompanying r nly, without attempt to assess possible contamin ly and do not necessarily indicate the presence contamination.	natio	n. A	ny references to potential		GAP g	INT FN	N. F03h RL3

APPENDIX C

# **Borehole Report**



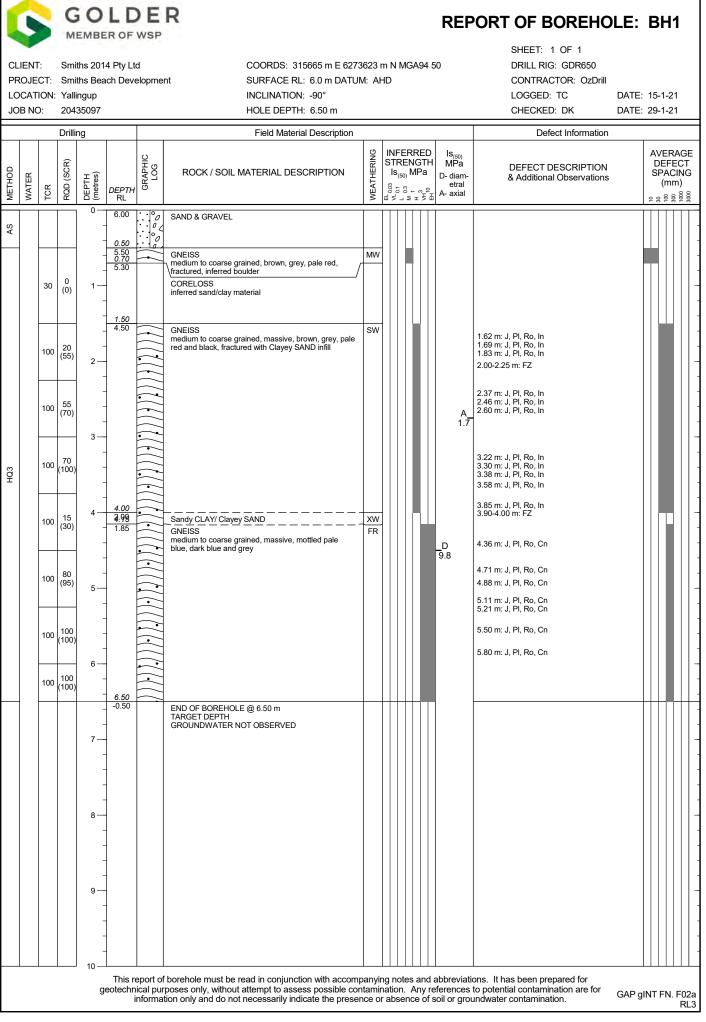


#### METHOD OF SOIL DESCRIPTION USED ON BOREHOLE AND TEST PIT REPORTS

SYMBOLS	6							
	FILL					CLAY (CI	_, CI or CH)	
0000	GRAVEL (	gw, gp, gn	1 or GC)		<u>v</u> <u>v</u>		C SOILS (OL, OH or Pt)	
	SAND (SV	V, SP, SM or	SC)		000	COBBLE	S or BOULDERS	
	SILT (ML o	·						
					cate mixed m	aterials such as sa	ndy clay.	
			STRATIGRAPH					
			in the field by vi				preferred method given	IN AS1726-2017.
The material	properties a	Particle Size		sual/				
	1					PI	asticity Properties	
Soil Group	Sub D	Division	Particle S	Size				
E	BOULDERS		> 200 m	m	60 -	UHHHHHHH		
	COBBLES		63 to 200	mm	50 -		In the second	
	Co	arse	19 to 63 r	nm	8			NUMB 20)
GRAVEL	Me	dium	6.7 to 19 ı	mm	2 40 - Xu		CH or OH	13 (W
	F	ine	2.36 to 6.7	mm	Z 30 -	441111111111		
	Со	arse	0.6 to 2.36	mm	- 04 - 05 - 05 - 05 - 05 - 05		Cl or Ol	
SAND	Me	dium	0.21 to 0.6	mm	PLAS	CL or OL	MH or OH	
	F	ine	0.075 to 0.2	1 mr	n 10 -			
	SILT		0.002 to 0.07	75 m	m o-	10 20 30	40 50 60 70	80 90 100
	CLAY		< 0.002 n	nm		· · · · · · · · ·	LIQUID LIMIT W	10 10 10
MOISTURE	CONDITION	J						
Symbol Te D Dr	y De	scription nds and grav					friable and powdery.	
							gravels tend to cohere.	
W We Moisture.com			e water. Sand ar				iit as specified in AS172	6-2017
CONSISTEN				ciativ			in as specified in AOTTZ	0-2017.
CONCIONE LA		Grained Soi	ls			Coars	e Grained Soils	
Symbol	Term		Shear Strength		Symbol	Term	Density Index (%)	SPN "N" *
	Very Soft		12 kPa		VL	Very Loose	Less than 15	0 to 4
S	Soft		25 kPa		L	Loose	15 to 35	4 to 10
F	Firm		50 kPa		MD	Medium Dense	35 to 65	10 to 30
St	Stiff		100 kPa		D	Dense	65 to 85	30 to 50
	Very Stiff		200 kPa		VD	Very Dense	Above 85	Above 50
H	Hard	Above	200 kPa					
Fr	Friable	oulte consist	-	1 mc	v ho occorre	d from correlations	with the observed beha	viour of the
material.	Le of lest res	Suits, consist	ency and density	y ma	y de assesse	u nom correlations		would of the
	ations are no	ot stated in A	S1726-2017, and	d ma	v be subject	to corrections for c	verburden pressure and	equipment type
CEMENTATI			, un		,			
Mookly Com	ented	The so	il may be easily o	disaç	gregated by	hand in air or wate	er.	
Weakly Ceme Moderately C						by hand in air or w		



#### GOLDER MEMBER OF WSP


#### EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT REPORTS

DRILLING/	EXCAVATION MET	THOD								
ADH	Hollow auger drilli		EX	Excavator			PQ3	Diamon	d core - 83 mm	
ADT	Auger drilling with	•	HA	Hand auger			PT		be sampling	
ADV	Auger drilling with		HAND	Excavated by	hand		RAB	Rotary a		
AIRCORE	Aircore		HMLC	methods Dian		3	RC	-	circulation	
AT	Air track		HQ3	mm Diamond	core - 61 mm	n l	RT	Rock rol	ller	
BH	Backhoe bucket C	Cable	JET	Jetting		:	SONIC	Sonic dr	illing	
СТ	tool rig		MZ	Mazier tube s	ampling	;	SPT		d penetration	
DTC	Diatube coring Ex	isting	NDD	Non-destructiv		I	U		Jndisturbed tube	
EE	excavation Extrud	•	NMLC	Diamond core		,	WB		g Washbore drilling	
EPT	push tube		NQ3	Diamond core	e - 45 mm				0	
PENETRAT	ION/EXCAVATION	N RESISTAI								
L	Low resistance									
Μ									equipment used.	
н			ion/excav	ation. Further	penetration is	s possib	le at a slow	rate and	requires significant	
-	effort from the ed									
R				ther progress p	ossible witho	but the r	ISK OT dama	age or una	acceptable wear to	
These asse	the digging imple ssments are subject			ont on many fac	tore including	n the ea	uinment no	wor woid	the condition of	
	or drilling tools, and					y ine eq	uipineni pu	wei, weig		
WATER	arining toolo, and									
¥	Wate	r level at da	te shown	<	] F	Partial w	ater loss			
$\triangleright$		r inflow					te water los			
GROUNDW				dwater, whethe		not, was	s not possil	ole due to	o drilling water,	
OBSERVED				in of the boreh						
GROUNDW									d be present in	
ENCOUNTE		s permeable nger period.		flow may have	been observ	ed had	the boreho	le/test pit	been left open for	
SAMPLING	AND TESTING	nger periou.								
SPT	Standard Pe	netration Te	st to AS1	289.6.3.1-2004	-					
4,7,11 N=1				lows per 300m						
30/80 mm				e blows and pe	netration for t	that inte	rval are rep	ported		
RW				d weight only						
HW				ammer and rod	weight only					
HB DS	Hammer dou Disturbed sa		g on anvi	I						
BDS	Bulk disturbe									
G	Gas Sample	•								
Ŵ	Water Samp									
FP	Field perme		er sectio	n noted						
FV	Field vane sl	hear test exp	pressed a	s uncorrected s	shear strength	h (sv = p	beak value	sr = resi	dual	
PID	value) Photo	ionisation D	etector re	ading in ppm						
PM	Pressuremet									
PP				ed as instrume						
U63		•	- number	r indicates nom	inal sample d	liameter	' in millimet	res		
WPT DCP	Water press Dynamic cor		on tost							
CPT	Cone penetr		JII IESI							
CPTu			th pore p	ressure (u) mea	asurement					
	OF VISUALLY OB					or specif	ic soil conta	amination		
assessment		-		-	(	•				
R = 0	No visible evider		mination		R = A		n-natural o			
R = 1	Slight evidence of				R = B		non-natura			
R = 2	contamination Vi				R = C				urs identified	
R = 3	Significant visible	e contamina	tion		R = D	Strong	g non-natur	al odours	Identified	_
	E RECOVERY	DO	D - Poole	Quality		<u> </u>	olid Coro	1	E - Erooturo	_
	l Core Recovery (%)		D = Rock esignatio			CR = So Recove	olid Core		F = Fracture Frequency	
l enath of a	ore recovered			re > 100 mm			cal core recov	rered	No.of defects	$\neg$
	of core run	=	•	×100		ength of o		×100	=	(m)
Longui		Le	ngth of cor			5			2011947 01 20110	()



#### TERMS FOR ROCK MATERIAL STRENGTH & WEATHERING AND ABBREVIATIONS FOR DEFECT DESCRIPTIONS

STRENG		LICS (MDa)	r		Ei.	eld Guide						
Symbol		UCS (MPa)					n ha naalad with Imifa taa har					
VL	Very						n be peeled with knife; too har					
	Low						broken by finger pressure.					
							n the specimen with firm blows					
L	Low	2 to 6					150 mm long by 50 mm					
				nay be bro	exen by hand. Sharp ec	iges of core may b	e friable and break during					
			handling.	1	1 .c	450 1 5						
Μ	Medium	6 to 20				150 mm long by 5	0 mm diameter can be broken					
	la i	G	by hand w			motor connet he h	roken by hand but can be					
Н	High	20 to 60										
	New	-	broken wit	n pick with	a single firm blow; roo	k rings under nam	imer.					
VH	Very	60 to 200	Hand spee	cimen brea	aks with pick after more	than one blow; ro	ock rings under hammer.					
	High		Cussimum			via al miale da la ma ale d						
EH	Extremely	>200				lical pick to break t	through intact material; rock					
Asterial	High		rings unde			vistics. The unseen						
				be descri	bed using soil characte	rístics. The presen	nce of an original rock structure					
		l be noted, if re EATHERING	elevant.									
			1			eld Guide						
Syl	mbol	Term	Motorial i	a weathar			rties. Mass structure and					
r		Residual					ble, but the soil has not been					
г	RS	Soil		itly transpo		are no longer visio	be, but the soli has not been					
>	<w td=""  <=""><td>Extremely</td><td></td><td></td><td></td><td></td><td>rties. Mass structure and</td></w>	Extremely					rties. Mass structure and					
-		Weathered	material texture and fabric of original rock are still visible.									
				The whole of the rock material is discoloured, usually by iron staining or bleaching to the								
		Highly	extent that the colour of the original rock is not recognizable. Rock strength is significantly									
	HW	Highly Weathered	changed	by weathe	ering. Some primary mi	nerals have weath	ered to clay minerals. Porosity					
		Weathered	may be in	ncreased b	ov leaching, or may be	decreased due to d	deposition of weathering DW					
			may be increased by leaching, or may be decreased due to deposition of weathering DW products in pores.									
		Moderately					staining or bleaching to the					
	MW	Weathered				not recognizable,	but shows little or no change					
				th from fre								
c	SW	Slightly				or bleaching along	joints but shows little or no					
		Weathered	<u> </u>		from fresh rock.							
	FR	Fresh			n of decomposition of in	ndividual minerals	or colour changes.					
ABBREV	IATIONS FC	OR DEFECT T	YPES AND	DESCRI	PTIONS							
Defect T	уре			Coating	or Infilling	Roughn						
Р	Parting			Cn	Clean	VRo	Very Rough					
Х	Foliation			Sn	Stain	Ro	Rough					
L	Cleavage			Ve	Veneer	Sm	Smooth					
С	Contact			Ct	Coating	Po	Polished					
J	Joint			In	Infill	SI	Slickensided					
SSu	Sheared S	Surface					Boreholes – The dip					
SS	Sheared S	Seam		Planarit			on from horizontal) of the defec					
SS Sneared Seam SZ Sheared Zone				PI	Planar	is given.						
				Cv	Curved		Boreholes - The inclination is					
					11 1 1 1	mogouro	d as the soute angle hetwarn					
CS	Infilled Se	am		Un	Undulating		d as the acute angle between					
CS IS EWS	Infilled Sea	am Weathered Se	eam	Un St	Stepped		axis and the vertical direction.					



10.0.6 LIB.GLB Log GAP CORED BOREHOLE 2 20435097 SMITHS BEACH.GPJ <<DrawingFile>>

GAP 1

Tools

18-10-2021 14:57 10.02.00.04 Datgel



LOCATION: Yallingup

CLIENT:

JOB NO:



Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development

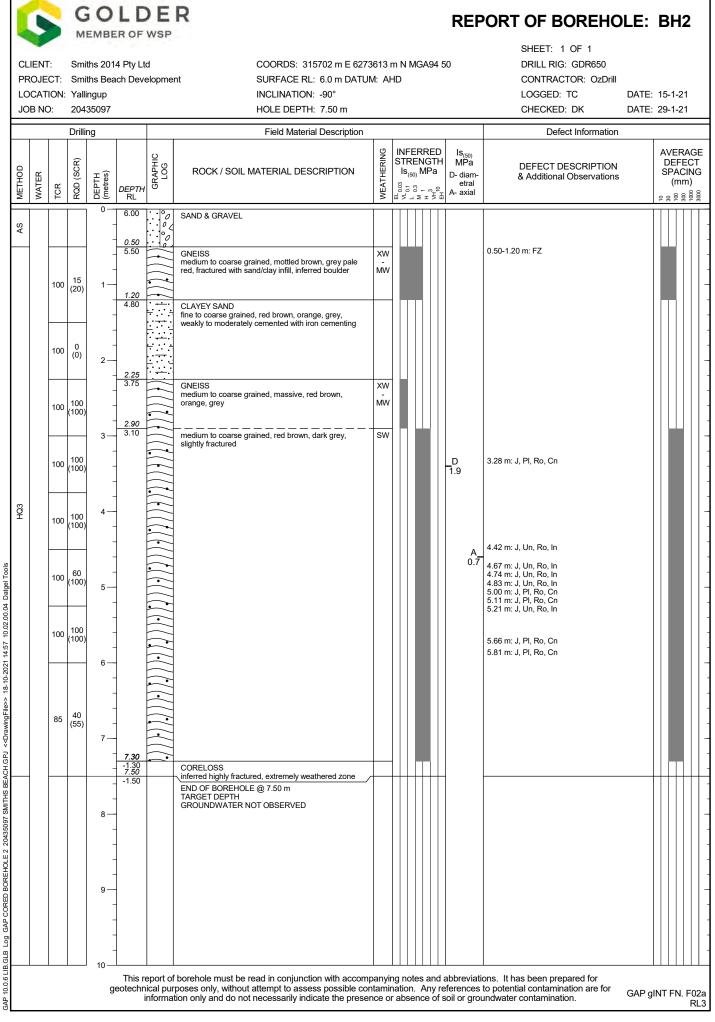
20435097

# **REPORT OF CORE PHOTOGRAPHS: BH1**

COORDS: 315665 m E 6273623 m N MGA94 50 SURFACE RL: 6.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 6.50 m

SHEET: 1 OF 1 DRILL RIG: GDR650 CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK




PointID : BH1 Depth Range: 0.00 - 5.00 m



PointID : BH1 Depth Range: 5.00 - 6.50 m

This report of core photographs must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

GAP gINT FN. F28 RL1



18-10-2021 14:57 10.02.00.04 Datgel <<DrawingFile>> GAP CORED BOREHOLE 2 20435097 SMITHS BEACH.GPJ

GAP 10.0.6 LIB.GLB



Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development

20435097

CLIENT:

JOB NO:

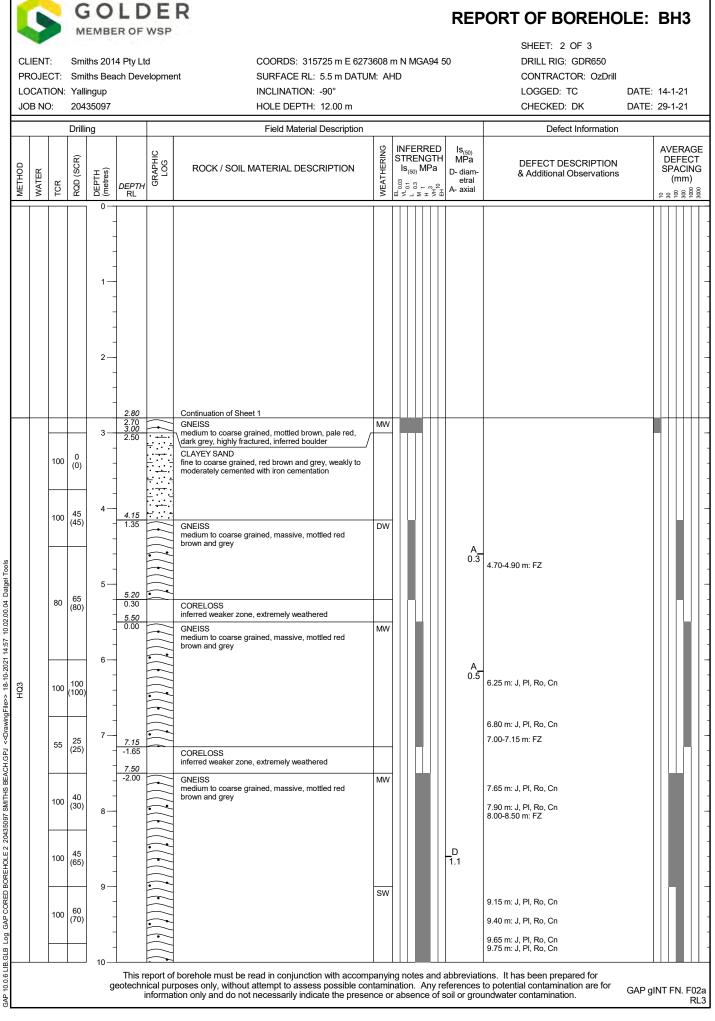
LOCATION: Yallingup

# REPORT OF CORE PHOTOGRAPHS: BH2

COORDS: 315702 m E 6273613 m N MGA94 50 SURFACE RL: 6.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 7.50 m SHEET: 1 OF 1 DRILL RIG: GDR650 CONTRACTOR: OzDrill LOGGED: TC DAT CHECKED: DK DAT



PointID : BH2 Depth Range: 0.00 - 5.00 m




PointID : BH2 Depth Range: 5.00 - 7.50 m

This report of core photographs must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

	5				DER of wsp				REPO			BOREHOLE: BH3	
PF LC		CT: ION:		lup	ty Ltd Development			SUI INC	DRDS: 315725 m E 6273608 m N MGA94 50 RFACE RL: 5.5 m DATUM: AHD LINATION: -90° LE DEPTH: 12.00 m		DRILL CONT LOGO	ET: 1 OF 3 L RIG: GDR650 TRACTOR: OzDrill GED: TC DATE: 14-1-21 CKED: DK DATE: 29-1-21	
		Dri	lling		Sampling				Field Material Desc	riptio	on		_
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
HQ3 AS				5.50	C 0.50-1.50 m Rec = 0/1000 mm C 1.50-3.00 m Rec = 800/1500 mm			SP	SAND fine to medium grained, pale grey Silty SAND fine to medium grained, dark grey black For Continuation Refer to Sheet 2	D	MD		
			9	-									-
					echnical purposes on	ly, w	/ithout	atten	n conjunction with accompanying notes and abbreviations. pt to assess possible contamination. Any references to po ssarily indicate the presence or absence of soil or groundw	otentia	al cont	tamination are for	1a ∟3

GAP 10.0.6 LIB.GLB Log GAP NON-CORED FULL PAGE 20435097 SMITHS BEACH GPJ <<DrawingFile>> 18-10-2021 14:57 10.02.00.04 Datgel Tools



<<DrawingFile>> 18-10-2021 14:57 10:02:00:04 Datgel GAP CORED BOREHOLE 2 20435097 SMITHS BEACH.GPJ Log GAP 10.0.6 LIB.GLB

1	C						R					REP	ORT OF BOREHO	LE:	Bŀ	13
P Li		ECT: FION:	Smi Smi Yalli	ths 201	4 Pty Lt ach Dev	d	COORDS: 315725 m E 6273 nt SURFACE RL: 5.5 m DATUI INCLINATION: -90° HOLE DEPTH: 12.00 m			MGA	<b>\94</b> {	50	SHEET: 3 OF 3 DRILL RIG: GDR650 CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK	DATE: DATE:		
F			Drilli	ng			Field Material Description						Defect Information			
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STI Is	FERF REN (50) M	GTH IPa	MPa D- diam-	DEFECT DESCRIPTION & Additional Observations		DE SPA (r	RAGE FECT ACING nm)
НОЗ		100	45 (80)	10 - - - 11 -	-		GNEISS medium to coarse grained, massive, mottled red brown and grey	SW				A_ 0.7	10.62 m: J, PI, Ro, Cn 10.73 m: J, PI, Ro, Cn 11.10 m: J, PI, Ro, Cn 11.23 m: J, PI, Ro, Cn			
		100	95 (95)	-	-	((((							11.47 m: J, PI, Ro, Cn 11.70 m: J, PI, Ro, Cn			
GAP 10.0.6 LIB GLB Log GAP CORED BOREHOLE 2 20435097 SMITHS BEACH.GPJ < <drawingfile>&gt; 18-10-2021 14:57 10.02.00.04 Dargel Tools</drawingfile>							END OF BOREHOLE @ 12.00 m TARGET DEPTH GROUNDWATER NOT OBSERVED									
GAP 10.0.61				g	eotechr	ical pu	f borehole must be read in conjunction with accomposes only, without attempt to assess possible contion only and do not necessarily indicate the presention only and do not necessarily indicate the presention.	ntamii	natio	on. A	ny re	eferences	to potential contamination are for	GAP g		N. F02a RL3



JOB NO:

LOCATION: Yallingup



Smiths 2014 Pty Ltd

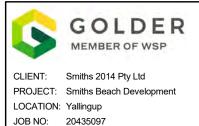
PROJECT: Smiths Beach Development

20435097

# **REPORT OF CORE PHOTOGRAPHS: BH3**

COORDS: 315725 m E 6273608 m N MGA94 50 SURFACE RL: 5.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 12.00 m SHEET: 1 OF 1 DRILL RIG: GDR650 CONTRACTOR: OzDrill LOGGED: TC DATE CHECKED: DK DATE

) Drill DATE: 14-1-21 DATE: 29-1-21




PointID : BH3 Depth Range: 2.00 - 7.00 m



PointID : BH3 Depth Range: 7.00 - 12.00 m

This report of core photographs must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.



## **REPORT OF BOREHOLE: BH4**

COORDS: 315765 m E 6273585 m N MGA94 50 SURFACE RL: 6.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 16.50 m SHEET: 1 OF 2 DRILL RIG: GDR650 CONTRACTOR: OZDrill LOGGED: TC C CHECKED: DK C

II DATE: 13-1-21 DATE: 29-1-21

F			Dril	ling		Sampling				Field Material Desc	riptic	n	
МЕТЦОЛ		PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	<b>GROUP SYMBOL</b>	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
v	2			-0	6.00			···°0		SAND & GRAVEL			
				- - 1	<u>0.50</u> 5.50			00000000000000000000000000000000000000	SP	SAND fine to medium grained, pale grey			
				2								MD	
				3	<u>3.00</u> 3.00	Rec = 400/450 mm SPT 3.00-3.45 m 5, 4, 8 N=12			SC	Clayey SAND fine to coarse grained, pale brown, about 20-25% medium plasticity clay	D		-
4 Datgel Tools				4 — - - 5 —									- - - -
18-10-2021 14:57 10.02.00.0 LDC2				6		Rec = 300/410 mm SPT 6.00-6.41 m						VD	
ACH.GPJ < <drawingfile>&gt;</drawingfile>				- - 7		13, 18, 20/110mm N>38							
AGE 20435097 SMITHS BE/				8	7.50 -1.50				SC / CI	Sandy CLAY medium plasticity, brown, grey, pale blue and pale red, fine to coarse sand, variable cementation, iron cemented			- - - - - -
GaP 10.0.6 LIB.GLB Log GAP NON-CORED FULL PAGE 20435097 SMITHS BEACH.GPJ < <drawingfile>&gt; 18-10-2021 14:57 10.02.00.04 Datgel Tools</drawingfile>				- 9 - -				<mark>٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ </mark>			w < PL	VSt	
0.6 LIB.GLB Loc				- 10—	т	his report of borehole	mus	st be re	ead i	n conjunction with accompanying notes and abbreviations.	lt has	beer	n prepared for
GAP 10.(					geot	echnical purposes onl	ly, w	ithout	atten	apt to assess possible contamination. Any references to pot ssarily indicate the presence or absence of soil or groundwate and a start of the presence or absence of soil or groundwate and a start of the presence or absence of soil or groundwate and a start of the presence of the pre	entia	l cont	tamination are for



JOB NO:

LOCATION: Yallingup

20435097



#### **REPORT OF BOREHOLE: BH4**

Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development

COORDS: 315765 m E 6273585 m N MGA94 50 SURFACE RL: 6.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 16.50 m

SHEET: 2 OF 2 DRILL RIG: GDR650 CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK

DATE: 13-1-21 DATE: 29-1-21

			Dril	ling		Sampling				Field Material Desc	ripti	on	
	MEINOU	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
GAP 10.0.6 LIB.GLB Log GAP NON-CORED FULL PAGE 20435097 SMITHS BEACH.GPJ < <drawingfile>&gt; 18-10-2021 14:57 10.02.00.04 DatgetTools</drawingfile>	57L				-10.50					Sandy CLAY medium plasticity, brown, grey, pale blue and pale red, fine to coarse sand, variable cementation, iron cemented	w <pl< td=""><td></td><td></td></pl<>		
GAP 10.(					geot	echnical purposes on	ily, w	/ithout	atten	ppt to assess possible contamination. Any references to po ssarily indicate the presence or absence of soil or groundwa	tentia	al cont	amination are for



LOCATION: Yallingup

CLIENT:

JOB NO:



Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development

20435097

# **REPORT OF CORE PHOTOGRAPHS: BH4**

COORDS: 315765 m E 6273585 m N MGA94 50 SURFACE RL: 6.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 16.50 m SHEET: 1 OF 1 DRILL RIG: GDR650 CONTRACTOR: OzDrill LOGGED: TC DATI CHECKED: DK DATI

orill DATE: 13-1-21 DATE: 29-1-21



PointID : BH4 Depth Range: 8.00 - 13.00 m



PointID : BH4 Depth Range: 13.00 - 16.50 m

This report of core photographs must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

-	
6	
~	



#### **REPORT OF BOREHOLE: BH5**

CLIENT:Smiths 2014 Pty LtdPROJECT:Smiths Beach DevelopmentLOCATION:YallingupJOB NO:20435097

COORDS: 315750 m E 6273601 m N MGA94 50 SURFACE RL: 6.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 10.50 m SHEET: 1 OF 3 DRILL RIG: GDR650 CONTRACTOR: OZDrill LOGGED: TC CHECKED: DK

DATE: 16-1-20 DATE: 29-1-21

		Dri	lling		Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
AS			-0	6.50 0.50			· · · 0 · · 0 · · 0	{	SAND & GRAVEL			
			-	6.00				SP	SAND fine to medium grained, pale grey			
H			1									
			-							D	MD	
HQ3			2									
			- - 3—									
SPT			-	-	Rec = 300/450 mm SPT 3.00-3.45 m 8, 13, 12 N=25							
			- - 4 —						For Continuation Refer to Sheet 2			
			-									
Datgel Tools			- - 5—									
10.02.00.04			-									
-2021 14:57			- - 6 —									
File>> 18-10			-									
J < <drawing HQ3</drawing 			- - 7 —									
S BEACH.GP			-									
5097 SMITHS												
PAGE 2043			-									
ORED FULL			- - 9—									
GAP NON-C			-									
B.GLB Log												
GAP 10.0.6 LIB.GLB Log GAP NON-CORED FULL PAGE 20435097 SMITHS BEACH.GPJ < <drawingfile>&gt; 18-10-2021 14:57 10.02.00.04 Datgel Tools HQ3</drawingfile>				T geot	his report of borehole echnical purposes on information only a	e mu Ily, w and	st be r vithout do not	ead i atten nece	n conjunction with accompanying notes and abbreviations. npt to assess possible contamination. Any references to po ssarily indicate the presence or absence of soil or groundwa	It has tentia ater c	s beer al cont contar	n prepared for tamination are for GAP gINT FN. F01a nination. RL3

		5						R	REI	PORT OF BOREHO	LE:	Bŀ	15
	PR(		CT: ION:	Smi Yalli		4 Pty Lt		COORDS: 315750 m E 6273601 m N M0 nt SURFACE RL: 6.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 10.50 m	GA94 50	DRILL RIG: GDR650 CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK	DATE: DATE:		
F				Drilli	ng			Field Material Description		Defect Information			
	MEIHOU	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION 발 Is ₍₅₀₎	NGTH MPa	DEFECT DESCRIPTION & Additional Observations		DE SPA (r	RAGE FECT ACING nm)
GAP 10.0.6 LIB.GLB Log GAP CORED BOREHOLE 2 20435097 SMITHS BEACH.GPJ <4DrawingFile>> 18-10-2021 14:57 10.02.00.04 Datgel Tools			100	15 (20) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) (0)		3.50 3.60 3.75 2.75 4.35 4.50 2.00 6.80 -0.30 6.80 -0.30 7.25 -0.75		Continuation of Sheet 1       MW         GNEISS       MW         Inferred weak zone       MW         GNEISS       MW         Inferred weak zone       MW         CORELOSS       MW         Inferred weak zone       MW         CALYEY SAND/ SANDY CLAY       MW         brown, red, orange and grey, moderately cemented       MW         moderately to well cemented, variably cemented       MW         GNEISS       SW         GNEISS       SW         FR       FR	D 0.2 A 0.4	4 8.49 m: J, Pl, Ro, Cn 8.70 m: J, Pl, Ro, Cn 8.83 m: J, Pl, Ro, Cn 9.25 m: J, Pl, Ro, Cn			
GAP 10.0.6 LII						eotechn	ical pu	borehole must be read in conjunction with accompanying note poses only, without attempt to assess possible contamination. tion only and do not necessarily indicate the presence or absen	Any references	s to potential contamination are for	GAP gl	INT FI	N. F02a RL3

		5						R				REF	ORT OF BOREHO	LE:	Bŀ	15
F	PRC		CT: ION:	Smi Yalli		4 Pty Lt ach Dev		COORDS: 315750 m E 6273 nt SURFACE RL: 6.5 m DATUM INCLINATION: -90° HOLE DEPTH: 10.50 m			IGA94 S	50	SHEET: 3 OF 3 DRILL RIG: GDR650 CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK	DATE: DATE:		
_				Drilli	na			Field Material Description					Defect Information			
METHOD		WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STRE Is ₍₅₀	RRED ENGTH MPa	D- diam-	DEFECT DESCRIPTION & Additional Observations		DEI SPA (n	RAGE FECT ACING nm)
			100	100 (100)	10	10.50	())))	GNEISS medium to coarse grained, massive, mottled red brown, grey, pale red	FR				10.00 m: J, Pl, Ro, Cn			
GAP 10.0.6 LIB.GLB Log GAP CORED BOREHOLE 2 20435097 SMITHS BEACH.GPJ < <drawingfile>&gt; 18-10-2021 14:57 10.02.00.04 Datgel Tools</drawingfile>								END OF BOREHOLE @ 10.50 m TARGET DEPTH GROUNDWATER NOT OBSERVED								
GAP 10.0.6 LIE						eotechr	ical pui	f borehole must be read in conjunction with accomp rposes only, without attempt to assess possible con tion only and do not necessarily indicate the preser	ıtamir	nation.	Any re	eferences	to potential contamination are for	GAP gl	INT FI	N. F02a RL3

٦

Г



JOB NO:

LOCATION: Yallingup



Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development

20435097

# **REPORT OF CORE PHOTOGRAPHS: BH5**

COORDS: 315750 m E 6273601 m N MGA94 50 SURFACE RL: 6.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 10.50 m SHEET: 1 OF 1 DRILL RIG: GDR650 CONTRACTOR: OzDrill LOGGED: TC DATI CHECKED: DK DATI

) Drill DATE: 16-1-20 DATE: 29-1-21



PointID : BH5 Depth Range: 3.00 - 8.00 m



PointID : BH5 Depth Range: 8.00 - 10.50 m

This report of core photographs must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.



JOB NO:



#### **REPORT OF BOREHOLE: BH6**

Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development LOCATION: Yallingup 20435097

COORDS: 315761 m E 6273634 m N MGA94 50 SURFACE RL: 2.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 6.00 m

SHEET: 1 OF 2 DRILL RIG: Jarco CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK

DATE: 10-3-21 DATE: 15-3-21

		Dri	lling		Sampling				Field Material Desc	riptic	n	
METHOD	PENETRATION RESISTANCE	1	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0	2.00 <u>1.00</u> 1.00				SP	SAND fine to medium grained, pale grey white, quatz and calcareous sand GNEISS	D	L - MD	
HQ3			- - - 2	1.25 0.75 1.50 0.50				SC / CI	fine to coarse grained, inferred boulder, mottled blue, grey and dark grey, slightly weathered, high strength CORE LOSS Clayey SAND /Sandy CLAY grey, brown, orange, red, fine to coarse grained sand, medium plasticity clay, variably cemented, moderately iron cemented in parts	м	VD - H	
				-0.40				CI	CLAY medium plasticity, grey, red brown	w~ PL	VSt	
JOS									For Continuation Refer to Sheet 2			
GAP 10.0.6 LIB GLB LOG GAP NON-CORED FULL PAGE 20435097 SMITHS BEACH GPJ < <drawngfile>&gt; 78-10-2021 14:59 10.02.00.04 Dagel Tools</drawngfile>			5									
			6 — - - -									
09/ SMILINS BEACH.GPJ <			7									
-CORED FULL PAGE 2043;			9									
LIB.GLB Log GAP NUN-			- - - - 10									
GAP 10.0.6				T geot	echnical purposes or	nly, v	/ithout	atten	n conjunction with accompanying notes and abbreviations. npt to assess possible contamination. Any references to po assarily indicate the presence or absence of soil or groundw	tentia	l cont	tamination are for

	MEMBER OF	<b>ER</b> WSP					REP	ORT OF BOREHO	LE:	BH6
CLIENT: S PROJECT: S LOCATION: Y	Smiths 2014 Pty Lto Smiths Beach Deve	i	COORDS: 315761 m E 6273 SURFACE RL: 2.0 m DATUN INCLINATION: -90° HOLE DEPTH: 6.00 m			GA94	£ 50	SHEET: 2 OF 2 DRILL RIG: Jarco CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK		10-3-21 15-3-21
D	Prilling	-	Field Material Description					Defect Informat	ion	
METHOD WATER TCR	DEPTH DEPTH H1dap Rutdap	ROCK / SOIL	MATERIAL DESCRIPTION	ATHER	INFER STREN UCS	IGTH MPa	a) 30F	DEFECT DESCRIPTION & Additional Observations		AVERAGE DEFECT SPACING (mm)
GAP 10.06 LIB GLB Log GAP CORED BOREHOLE 20435097 SMITHS BEACH.GPU <-CDrawingFile>> 18-10-2021 14:59 10.02 00.04 Daigei Tools         Image:	geotechni	END OF BOREHOL TARGET DEPTH GROUNDWATER	ed, massive, grey, brown, red	ntamina	ation.	Any	references to	potential contamination are for	GAP g	NT FN. F02a RL3



JOB NO:

LOCATION: Yallingup



Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development

20435097

#### **REPORT OF CORE PHOTOGRAPHS: BH6**

COORDS: 315761 m E 6273634 m N MGA94 50 SURFACE RL: 2.0 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 6.00 m

SHEET: 1 OF 1 DRILL RIG: Jarco CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK

DATE: 10-3-21 DATE: 15-3-21



PointID : BH6 Depth Range: 1.00 - 6.00 m

This report of core photographs must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.





#### **REPORT OF BOREHOLE: BH7**

CLIENT:Smiths 2014 Pty LtdPROJECT:Smiths Beach DevelopmentLOCATION:YallingupJOB NO:20435097

COORDS: 315727 m E 6273627 m N MGA94 50 SURFACE RL: 2.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 6.00 m SHEET: 1 OF 2 DRILL RIG: Jarco CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK

DATE: 11-3-21 DATE: 15-3-21

ľ			Dril	lling		Sampling				Field Material Des	cripti	on		_
	METHOD	PENETRATION RESISTANCE	WATER		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	НДЗ			0   	2.50				SP	SAND fine to medium grained, pale grey white, quartz and calcareous sand	м	L - MD		
				1		Rec = 450/450 mm SPT 1.00-1.45 m 4, 13, 28 N=41						D		-
				-						For Continuation Refer to Sheet 2				
				2										_
				-										
				-										
				-										
				3 —										-
				-										
				-										
				-										
				4										-
				-										
Tools				-										
Datgel ⁻				- 5—										
00.04														
10.02				-										
15:00				-										
0-2021				6 —										-
> 18-1				-										
ngFile>				-										
≤Drawir				-										
sPJ <				7 —										-
EACH.(														
THS BI				-										
97 SM				_										
204350				8										-
AGE				-										
FULLF				-										
ORED				9										-
NON-C				-										
GAP				-										
GAP 10.0.6 LIB.GLB Log GAP NON-CORED FULL PAGE 20435097 SMITHS BEACH.GPJ <-DrawingFile>> 18-10-2021 15:00 10.02.00.04 Dargel Tools														
LIB.GL				10 —					L	 				
10.0.6					T geot	nis report of borehole echnical purposes onl	mu y, w	st be n vithout	ead i atten	n conjunction with accompanying notes and abbreviations. npt to assess possible contamination. Any references to p assarily indicate the presence or absence of soil or groundw	It ha otentia	s beei al cont		la
GAP						iniormation only a	nıq	uo not	nece	essaniy indicate the presence or absence of soil or groundy	ater (	Jontar	tamination are for GAP gINT FN. F01 mination. RL	_3

		R				REP	ORT OF BOREHO	DLE:	Bŀ	17	
CLIENT: Smiths 2014 PROJECT: Smiths Beach LOCATION: Yallingup JOB NO: 20435097	Pty Ltd	COORDS: 315727 m E 6273 SURFACE RL: 2.5 m DATUN INCLINATION: -90° HOLE DEPTH: 6.00 m			GA94	1 50	SHEET: 2 OF 2 DRILL RIG: Jarco CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK	DATE: DATE:			
Drilling		Field Material Description					Defect Informa	tion			
METHOD WATER TCR TCR RCD (SCR) Metres)	COG LOG LOG	ROCK / SOIL MATERIAL DESCRIPTION	H	INFER STREN UCS I	IGTH MPa	a) 30F	DEFECT DESCRIPTION & Additional Observations		DE SP/ (I		r G
SOT     100     55       100     55     -       100     55     -       100     55     -       100     55     -       100     55     -	$\begin{array}{c} 10.60 \\ \hline \\ 0.60 \\ \hline \\ 1 \\ \hline \\ 0 \\ \hline \\ 1 \\ 1 \\ \hline \\ 0 \\ \hline \\ 1 \\ 1 \\ \hline \\ 0 \\ \hline 0 \\ \hline \\ 0 \\ \hline 0 \\ $	Continuation of Sheet 1 GNEISS fine to coarse grained, dark blue, dark grey, possible boulder (CORE LOSS GNEISS fine to coarse grained, massive, brown, red, dark grey, fractured with clay/sand infill blue, green, grey, red-brown, slightly fractured blue, green, grey, red-brown, slightly fractured END OF BOREHOLE @ 6.00 m TARGET DEPTH GROUNDWATER NOT OBSERVED	SW - FR/ DW			PLI(D)=0.87 PLI(D)=3.40 PLI(D)=2.10					
		borehole must be read in conjunction with accomp						GAP g			



JOB NO:

LOCATION: Yallingup



Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development

20435097

#### **REPORT OF CORE PHOTOGRAPHS: BH7**

COORDS: 315727 m E 6273627 m N MGA94 50 SURFACE RL: 2.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 6.00 m SHEET: 1 OF 1 DRILL RIG: Jarco CONTRACTOR: OzDrill LOGGED: TC DATE: 11-3-21 CHECKED: DK DATE: 15-3-21



PointID : BH7 Depth Range: 1.00 - 6.00 m

This report of core photographs must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.





#### **REPORT OF BOREHOLE: BH8**

CLIENT: Smiths 2014 Pty Ltd PROJECT: Smiths Beach Development LOCATION: Yallingup JOB NO: 20435097 COORDS: 315740 m E 6273614 m N MGA94 50 SURFACE RL: 6.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 10.50 m SHEET: 1 OF 3 DRILL RIG: Jarco CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK

ill DATE: 12-3-21 DATE: 15-3-21

			Dril	lling		Sampling	,		ı	Field Material Desc			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
:	НА			0   1 	6.50				SP	SAND fine to medium grained, pale grey			-
				2 — 							м	MD	-
	HQ3			- - - 4									-
0-2021 15:00 10.02.00.04 Datgel To				5 — - - - 6 —						For Continuation Refer to Sheet 2			-
GAP 10.0.6 LIB.GLB Log GAP NON-CORED FULL PAGE 20435097 SMITHS BEACH.GPJ < <drawingfile>&gt; 18-10-2021 15:00 10.02.00.04 Datgel Tools</drawingfile>				- - - 7 -									-
RED FULL PAGE 20435097 SMITHS				- 8									-
10.0.6 LIB.GLB Log GAP NON-COI				9— - - - 10—	T geot	echnical purposes or	ılv. v	vithout	atten	n conjunction with accompanying notes and abbreviations.	entia	I cont	amination are for
GAP						information only	and	do not	nece	ssarily indicate the presence or absence of soil or groundwa	ater c	ontan	nination. GAF give FN. FOTA RL3

1	C						R					REP	ORT OF BORE	HOLE:	В	H8
F		ECT: FION:	Smi Smi Yalli	ths 201 ths Bea	4 Pty Lt	d	COORDS: 315740 m E 627 SURFACE RL: 6.5 m DATU INCLINATION: -90° HOLE DEPTH: 10.50 m			MG.	A94	- 50	SHEET: 2 OF 3 DRILL RIG: Jarco CONTRACTOR: Oz LOGGED: TC CHECKED: DK	Drill DATE DATE		
			Drilli	ng			Field Material Description						Defect Info	ormation		
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STR	SM	GTH Pa	LABORATORY STRENGTH (MPa)	DEFECT DESCRIPT & Additional Observa		DI SF	ERAGE EFECT PACING (mm)
GAP 10.0.6 LIB GLB Log GAP CORED BOREHOLE 20435097 SMITHS BEACH.GPJ <-DrawingFile>> 18-10-2021 15:00 10.02.00.04 Datget Tools HO3		100	0 (0) 95 (100)		<u>5.75</u> 0.75 0.75		Continuation of Sheet 1 GNEISS fine to coarse grained, red brown, cemented clayey sand GNEISS fine to coarse grained, massive, red brown and grey, slightly fractured	XW				PLI(D)=0.14 PLI(D)=0.18				
GAP 10.0.6 LIB.GLI				10 — 9	eotechr	ical pur	borehole must be read in conjunction with accom poses only, without attempt to assess possible co ion only and do not necessarily indicate the prese	ntamir	natio	n. A	٩ny	references to	potential contamination are	for GAP (	  INT F	FN. F02a RL3

	C						R	REP	ORT OF BOREHC	LE:	BH8			
PI L(		CT: ION:	Smit Smit Yalli	ths 201	4 Pty Lt	d	COORDS: 315740 m E 6273 SURFACE RL: 6.5 m DATUM INCLINATION: -90° HOLE DEPTH: 10.50 m			MGAS	94 50	SHEET: 3 OF 3 DRILL RIG: Jarco CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK		12-3-21 15-3-21
			Drillir	na			Field Material Description					Defect Informat	ion	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STRE	RREI ENGT S MPa	ZENG ⁷ a)	DEFECT DESCRIPTION & Additional Observations		AVERAGE DEFECT SPACING (mm)
HQ3		100	95 (100)	10 — -	10.50	())	GNEISS fine to coarse grained, massive, red brown and grey, slightly fractured	DW			PLI(D)=0.64			
GAP 10.0.6 LIB GLB Log GAP CORED BOREHOLE 20435097 SMITHS BEACH.GPJ < <drawingfile>&gt; 18-10-2021 15:00 10.02.00.04 Datgel Tools</drawingfile>							END OF BOREHOLE @ 10.50 m TARGET DEPTH GROUNDWATER NOT OBSERVED							
GAP 10.0.(				g	eotechn	ical pui	f borehole must be read in conjunction with accomp poses only, without attempt to assess possible con tion only and do not necessarily indicate the presen	tamir	nation	n. An	y references to	o potential contamination are for	GAP gl	NT FN. F02a RL3

٦



Smiths 2014 Pty Ltd

PROJECT: Smiths Beach Development

20435097

CLIENT:

JOB NO:

LOCATION: Yallingup

# **REPORT OF CORE PHOTOGRAPHS: BH8**

COORDS: 315740 m E 6273614 m N MGA94 50 SURFACE RL: 6.5 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 10.50 m

SHEET: 1 OF 1 DRILL RIG: Jarco CONTRACTOR: OzDrill LOGGED: TC CHECKED: DK

DATE: 12-3-21 DATE: 15-3-21



PointID : BH8 Depth Range: 5.00 - 10.00 m



PointID : BH8 Depth Range: 10.00 - 10.50 m

This report of core photographs must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

APPENDIX D

# **Pavement Dipping Report**

Pavement Dipping Location Pavement Thickness ncl. Surfacing (mm) End of Hole (mm)	<b>PD01</b> >520	Rocks Rd		Logged: DG	Date: 22/12/2020	Checked:	DAAC	<b>B</b> 02.02.24
ncl. Surfacing (mm) End of Hole (mm)	>520			Eoggeen De	Date: 22/12/2020	спескеа:	DIVIS	Date: 03-02-21
	- 320		Samples					
· · · · · · · · · · · · · · · · · · ·	520							
	<b>ASPHALT</b> L4 mm DGA							A.
	40					Secure 5		
Comments C	cored with water					1994 Destadores	10 - 15 -	
Basecourse Thickness (mm)	Sandy GRAVEL (GP) ine to coarse grained, sub-round prown to brown, approximately grained sand, trace non plastic fi	30-40% fine to coarse	1 x DS		a			
hickness (mm) 1	120				State 1		E STA	
Comments	dry			•			E Str	Star and
fi	mments dry Gravelly SAND (SP) fine to medium grained crushed limestone, pale yellow fine to medium gravel (inferred fill)							1
hickness (mm) >	>360						NF STREET	
omments	dry, attempted hand augering the material kept collapsing	g to deeper depths but						
Subgrade								
Comments	Not encountered							

Pavement Dipping		PD02		6	outhbound l	ano		Coordinates:		5 E 627313			zone	
Location		1002		3	Julibound		Logged:	DG	Date:	22/12/2020	Checked:	DMS	Date:	03-02-21
Pavement Thickness incl. Surfacing (mm)			190			Samples								
End of Hole (mm)			410						a sile				dine .	
Surfacing	<b>ASPHALT</b> 14 mm DG		ferred 10 mn	n seal					-					
Thickness (mm)	40											The second second		
Comments	cored wit	h water					A said			And and a second		Sec. 1		
Basecourse	Sandy GRAVEL (GP)         fine to coarse grained, sub-rounded to sub-angular,         brown, approximately 30-40% fine to coarse grained strace non-plastic fines					1 x DS	Z		L'AL					
Thickness (mm)	150						And the second		1 per			E. E. X.	A Marine	ter Styre
Comments	dry						Car	Co the						5. M. F.
Subgrade	Gravelly SAND (SP) fine to coarse, pale brown, approximately 30% fine to					1 x BDS		ANT .						
Comments	dry													
<b>Pavement Condition</b>	s and	Acabalt	curfacing la	oke rolative	hunow Cha	oo of novem	nt is good	no cignificant	dofacto	obsorved				
General Comments					iy new. shap	be of paverne	ent is good,	no significant	uerects	ubserveu.				
Perth Sands Penetron			ted at 410 n											
Testing Increment (n	· ·	-150	150-300	300-450	450-600									
Blow Count / 150 mr	m	8	7	7	7									

Pavement Dipping	PD03	southbound	202	Approx.	Coordinates:		E 6273292		MGA	zone s	201
Location	2005	southbound	ane	Logged:	DG	Date:	22/12/2020	Checked:	DMS	Date:	03-02-21
Pavement Thickness incl. Surfacing (mm)	300		Samples			The state	4	***	Jacob Par		
End of Hole (mm)	490				1.40	ECN	e.c	1			
Surfacing	ASPHALT 14 mm DGA with inferred 10 mr	n seal									
Thickness (mm)	30						1.18		and a		
Comments	cored with water				1 Alton	1	4. ·	A Paul	( San -	1 de	
Basecourse	Sandy GRAVEL/Gravelly SAN fine to medium grained, sub-rou gravel, brown, fine to coarse gra	nded to sub-angular									N.C.
Thickness (mm)	270					New St	A. F. M				19 M
Comments	dry					1.30	Called 1	ter and			
Subgrade	Clayey Gravelly SAND (SP-SC fine to coarse, brown-orange, w rounded gravel, low plasticity fir	1 x DS									
Comments	dry, similar material to based distinguish layer	ourse - difficult to									
<b>Pavement Condition</b>	s and	ooks relatively new. Sha	on of navomo	nt is good	o cignificant	dofocto c	bsorvod				
General Comments			be of pavelle	in is good, i			Jusel veu.				
Dynamic Cone Penet		nm aepth									
Testing Increment (n			$\vdash$								
Blow Count / 100 mr	<b>n</b> Refusal										

Pavement Dipping	PD04	northbound l	ane		: 316065 E 6273444			zone 50J
Location				Logged: DG	Date: 22/12/2020	Checked:	DMS	Date: 03-02-21
Pavement Thickness incl. Surfacing (mm)	260		Samples					
End of Hole (mm)	870						S. A.	
Surfacing	<b>ASPHALT</b> 14 mm DGA							
Thickness (mm)	30				Constant of the			1. 1. 1. A.
Comments	cored with water			A Star A C		Se al	*	A CONTRACTOR
Basecourse	Sandy GRAVEL/Gravelly SAND (GP/SP) fine to medium grained, sub-rounded to sub-angular gravel, brown, fine to coarse grained sand, trace fines		1 x DS					6.
Thickness (mm)	230					1 - M		
Comments	dry			and the				
Subgrade	SAND (SP) fine to coarse, pale brown, with 1 rounded gravel, trace fines different subgrade material from Clayey SAND (SC), fine to coarse,	approx. 500 mm depth -	1 x DS					
Comments	dry to moist							

Pavement Dipping	PD05	northbound la	ine	Approx. Coordinates:			
Location	FD05			Logged: DG	Date: 22/12/2020	Checked:	DMS Date: 03-02-21
Pavement							
Thickness incl.	290		Samples				
Surfacing (mm)							
End of Hole (mm)	1000						
Surfacing	ASPHALT 10 mm red laterite DGA with info	erred 5 mm seal					
Thickness (mm)	30			the state of the second state		and the second	1
Comments	cored with water			at the states		19 M. 19	
Basecourse	Sandy GRAVEL (GP) fine to medium grained, sub-rou gravel, brown, fine to coarse gra						
Thickness (mm)	190			Section 2.			
Comments	dry to moist						
Sub-base	Sandy GRAVEL (GP) fine to medium grained, sub-rou gravel, grey-brown, fine to coars fines				16	K	
Thickness (mm)	70						an Thanking - 1
Comments	dry to moist			See .			
Subgrade	Silty SAND(SM) fine to medium, dark brown, infe plasticity silt, trace fine to mediu at 800 mm depth material transi inferred medium plasticity silt/cl	m sub-rounded gravel. tions to red brown,					
Comments	moist						

Dynamic Cone Penetromet	er: conduc	ted at 450 n	nm depth				
Testing Increment (mm)	0-100	100-200	200-300	300-400	400-500	500-600	
Blow Count / 100 mm	3	3	2	2	2	2	

Pavement Dipping	PD06		southbound	lana		<b>s:</b> 315906 E 6273603	3 N Datum		zone 50J
Location	PD06		southbound	lane	Logged: DG	Date: 22/12/2020	Checked:	DMS	Date: 03-02-21
Pavement Thickness incl. Surfacing (mm)		290		Samples			and the second		
End of Hole (mm)		750		1		The second second		She for	
	ASPHALT 10 mm red laterite	DGA with inf	erred 5 mm seal						
Thickness (mm)	30			1		No. 18 Alexandre	tod. The	1 x d	
Comments	cored with water			]			Carl Soft		The state of the state
Basecourse	low plasticity fines	ed, sub-roun		1 x DS				Ň	
Thickness (mm)	260			4					
Comments	dry							A.	
	SAND (SP) fine to medium, bro fines	own to pale b	rown, trace non plastic	1 x BDS			řť		
Comments	dry								
Pavement Condition General Comments Perth Sands Penetror	the ben	-	due to turning stresses		nt is good, no significar	nt defects observed. Min	or flushing o	n the who	eel paths closer to
Testing Increment (n		150-300							
Blow Count / 150 mr		130 300							

APPENDIX E

# Falling Weight Deflectometer Test Report





Client :		Golder	Associa	es					Job No	):			102	162
Project Name	<b>e</b> :	FWD t	esting - Y	allingup					File Na	me:			Beach F	Rd North
Road Name:		Smiths	Beach F	load - St	arting fo	orm Can	al Rock	Road	Survey	Date:			18/12	/2020
Section / Lan	ie:	Northb	ound L1						Tested	By:			Т	М
Surface Test	ed:	Aspha	lt						Testing	j Interva	al:		25	m
Prepared By:		CK		Checke	ed By:	ТМ								
													Normalise	ed to (kPa)
		DYN	ATEST F	WD (E-	044) TE	EST RES	ULTS T	<b>O WA:</b>	326.2				50	66
Chainage (km)												Deflection	Curvature	
	deg ⁰C		(kPa)	0	200	300	400	500	600	750	900	1500	(mm)	(mm)
0.000	55.0	L1	548	389	228	157	100	91	61	53	39	15	0.401	0.166
0.025	55.0	L1	552	341	223	157	118	94	77	64	42	21	0.350	0.121
0.050	55.0	L1	548	377	244	180	139	117	101	83	57	32	0.389	0.137
0.076	55.0	L1	547	388	239	164	118	89	66	52	35	16	0.402	0.154
0.100	55.0	L1	550	238	123	84	61	48	47	34	22	11	0.245	0.119
0.125	55.0	L1	544	244	132	86	61	48	36	29	13	9	0.253	0.116
0.150	55.0	L1	541	220	121	86	65	50	41	29	19	11	0.231	0.104
0.175	55.0	L1	537	311	192	114	73	51	39	28	15	6	0.328	0.126
0.200	55.0	L1	534	338	202	137	97	72	63	47	36	16	0.358	0.145
0.226	55.0	L1	542	485	320	228	165	137	105	81	59	28	0.506	0.172
0.251	55.0	L1	539	455	290	196	137	104	86	60	35	18	0.478	0.174
0.275	55.0	L1	545	353	201	126	78	55	42	32	26	15	0.367	0.158
0.301	55.0	L1	541	346	199	124	78	56	42	33	25	14	0.361	0.153
0.326	55.0	L1	545	280	178	115	91	65	49	44	30	19	0.291	0.106
0.350	55.0	L1	540	488	261	161	100	77	58	48	36	16	0.511	0.238
0.375	55.0	L1	542	257	137	84	58	46	38	31	24	12	0.269	0.126
0.400	55.0	L1	537	329	214	146	102	78	59	41	29	11	0.347	0.122



Client : Golder Associates Job No:													102	162
Project Name	e:	FWD t	esting - Y	allingup					File Na	me:			Beach F	Rd North
Road Name:		Smiths	Beach F	Road - St	arting fo	orm Cana	al Rock	Road	Survey	Date:			18/12	/2020
Section / Lan	e:	Northb	ound L1						Tested	By:			Т	М
Surface Test	ed:	Aspha	lt						Testing	lnterva	d:		25	m
Prepared By:	:	CK		Checke	ed By:	ТМ								
													Normalise	ed to (kPa)
		DYN	ATEST F	WD (E-	044) TE	EST RES	ULTS T	O WA:	326.2					66
Chainage (km)												Deflection	Curvature	
	deg ⁰C		(kPa)	0	200	300	400	500	600	750	900	1500	(mm)	(mm)
0.425	56.0	L1	531	444	327	252	197	149	116	88	54	22	0.473	0.124
0.453	56.0	L1	537	244	168	127	96	83	59	44	27	19	0.257	0.079
0.475	56.0	L1	533	395	223	137	87	64	49	37	23	13	0.419	0.182
0.500	56.0	L1	532	283	147	77	46	40	36	25	17	6	0.302	0.145
0.527	56.0	L1	526	385	244	155	106	83	55	40	22	6	0.415	0.152
0.550	56.0	L1	527	527	347	229	150	105	80	58	34	15	0.566	0.193
0.576	56.0	L1	525	407	206	128	77	60	44	35	18	9	0.439	0.217
0.600	57.5	L1	524	885	563	373	241	162	107	70	38	21	0.956	0.348
0.625	57.5	L1	526	739	535	387	279	209	154	96	60	23	0.795	0.220
0.650	57.5	L1	527	922	648	459	334	253	186	126	80	24	0.991	0.295
0.677	57.5	L1	531	655	409	280	199	145	106	69	40	17	0.698	0.262
0.701	57.5	L1	537	270	156	111	88	70	62	45	30	15	0.284	0.119
0.726	57.5	L1	538	227	120	75	58	52	44	39	27	19	0.239	0.113
0.752	57.5	L1	535	366	182	107	76	65	57	49	40	25	0.387	0.195
0.755	57.5	L1	517	407	245	147	96	64	46	40	34	19	0.446	0.178
0.775	57.5	L1	539	331	195	114	74	63	49	42	30	21	0.347	0.142
0.800	57.5	L1	541	274	173	115	85	70	61	51	41	26	0.286	0.105



Client :		Golder Associates								)1	_	102162		
Project Name:		FWD testing - Yallingup								me:		Beach Rd North		
Road Name:	Smiths Beach Road - Starting form Canal Rock Road								Date:		18/12/2020			
Section / Lan	e:	Northb	Northbound L1									TM		
Surface Test	Aspha	lt						Testing	g Interva	al:	25 m			
Prepared By:	CK		TM											
												Normalised to (kPa)		
		DYN	ATEST F	WD (E-	566									
Chainage (km)	Pavement Temp'tr	tr Lane	FWD Stress (kPa)		G	eophone L	ocation (	(mm) and	I Deflection	ons (micr	on)	Deflection	Curvature	
	deg ⁰C			0	200	300	400	500	600	750	900	1500	(mm)	(mm)
0.825	57.5	L1	537	529	298	172	105	69	48	34	30	18	0.557	0.243
0.851	57.5	L1	539	398	214	131	87	65	52	42	32	17	0.417	0.193
0.875	56.5	L1	563	337	195	128	94	71	57	46	36	17	0.339	0.143
0.901	56.5	L1	559	510	274	174	130	90	67	50	41	17	0.516	0.239
0.924	55.2	L1	562	432	234	147	91	66	56	37	27	14	0.435	0.200
0.950	55.2	L1	553	383	228	144	109	76	61	50	33	16	0.392	0.159
0.976	55.2	L1	552	394	218	137	89	67	52	38	27	16	0.404	0.180
0.993	55.2	L1	556	285	183	129	90	69	52	39	29	15	0.290	0.103
Redoxide Asphalt Surface														
Reduxide Asp	mail Sunac	;e												
Mean			540	402	244	161	112	85	66	50	34	17	0.422	0.166
SDEV			11	158	114	83	60	44	31	21	13	6	0.17	0.06
COVR, %	2	39	47	51	53	51	48	42	39	34	40.7	33.9		
97.5 Percentile											0.952			
95 Percentile												0.790		

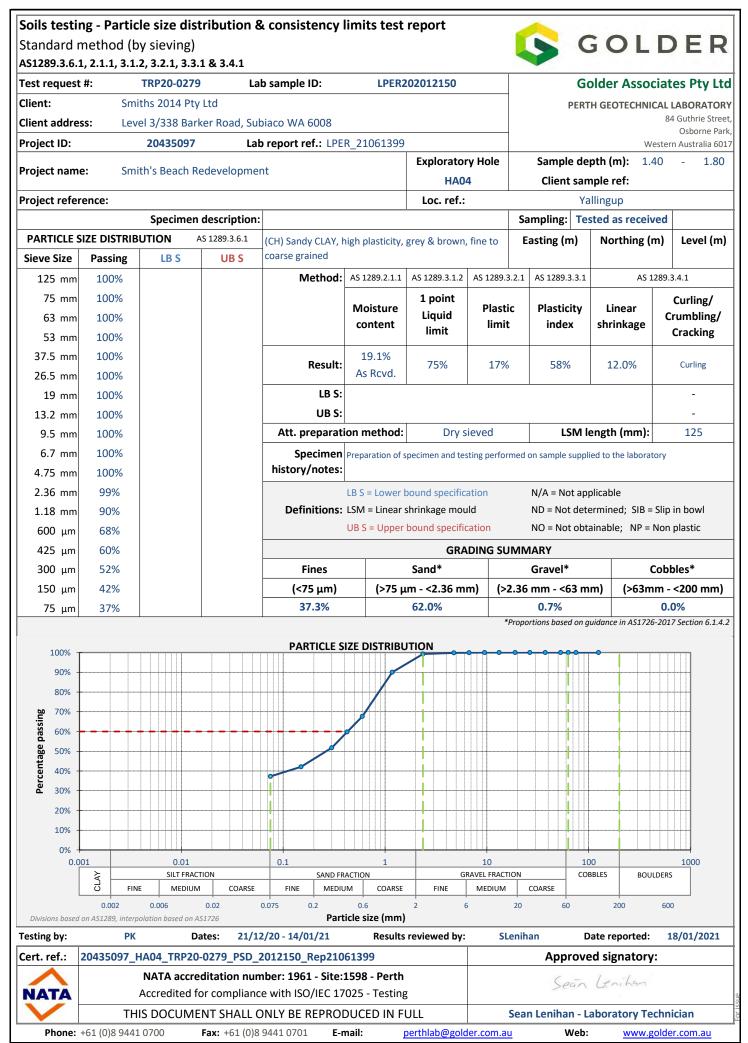


Client :	Golder Associates								)1		102162			
<b>Project Name</b>	FWD testing - Yallingup								me:		Beach Rd South			
Road Name:		Smiths Beach Road - Starting from the Carpark								Date:		18/12/2020		
Section / Lan	e:	Southb	bound - R	1					Tested	By:			TM	
Surface Test	ed:	Aspha	lt						Testing	j Interva	al:	25 m		
Prepared By:	CK		Checke	d By:	TM									
										Normalised to (kPa)				
DYNATEST FWD (E- 044) TEST RESULTS TO WA:326.2													566	
Chainage (km)	Pavement Temp'tr	Lane	FWD Stress	Geophone Location (mm) and Deflections (micron)								Deflection	Curvature	
	deg ⁰C		(kPa)	0	200	300	400	500	600	750	900	1500	(mm)	(mm)
0.990	55.2	R1	547	299	182	123	90	69	58	47	39	22	0.309	0.121
0.965	55.2	R1	546	283	170	112	82	62	51	39	30	15	0.293	0.117
0.940	55.2	R1	550	216	142	96	69	53	44	35	27	14	0.222	0.076
0.921	55.2	R1	555	168	121	87	67	54	45	37	27	14	0.171	0.047
0.890	54.5	R1	548	210	139	97	74	58	50	40	30	19	0.217	0.074
0.865	54.5	R1	547	219	123	81	65	45	43	33	28	15	0.226	0.099
0.840	54.5	R1	551	149	109	68	58	45	40	30	23	14	0.153	0.041
0.816	54.5	R1	547	250	160	104	74	59	50	38	29	15	0.259	0.093
0.790	54.5	R1	545	306	161	105	75	62	50	41	34	19	0.318	0.151
0.765	54.5	R1	543	311	182	120	87	70	60	48	42	28	0.324	0.134
0.740	54.5	R1	539	318	177	116	79	61	48	38	31	15	0.334	0.148
0.715	54.5	R1	538	230	114	82	64	54	44	38	33	21	0.242	0.122
0.690	55.9	R1	538	101	82	57	45	39	35	28	23	11	0.106	0.020
0.665	55.9	R1	538	298	195	133	98	71	52	37	26	10	0.314	0.109
0.640	55.9	R1	525	1024	649	427	270	175	109	61	37	17	1.104	0.405
0.615	55.9	R1	521	1226	846	587	405	282	189	104	57	16	1.332	0.413
0.590	58.0	R1	524	816	505	355	252	163	118	78	42	17	0.881	0.335

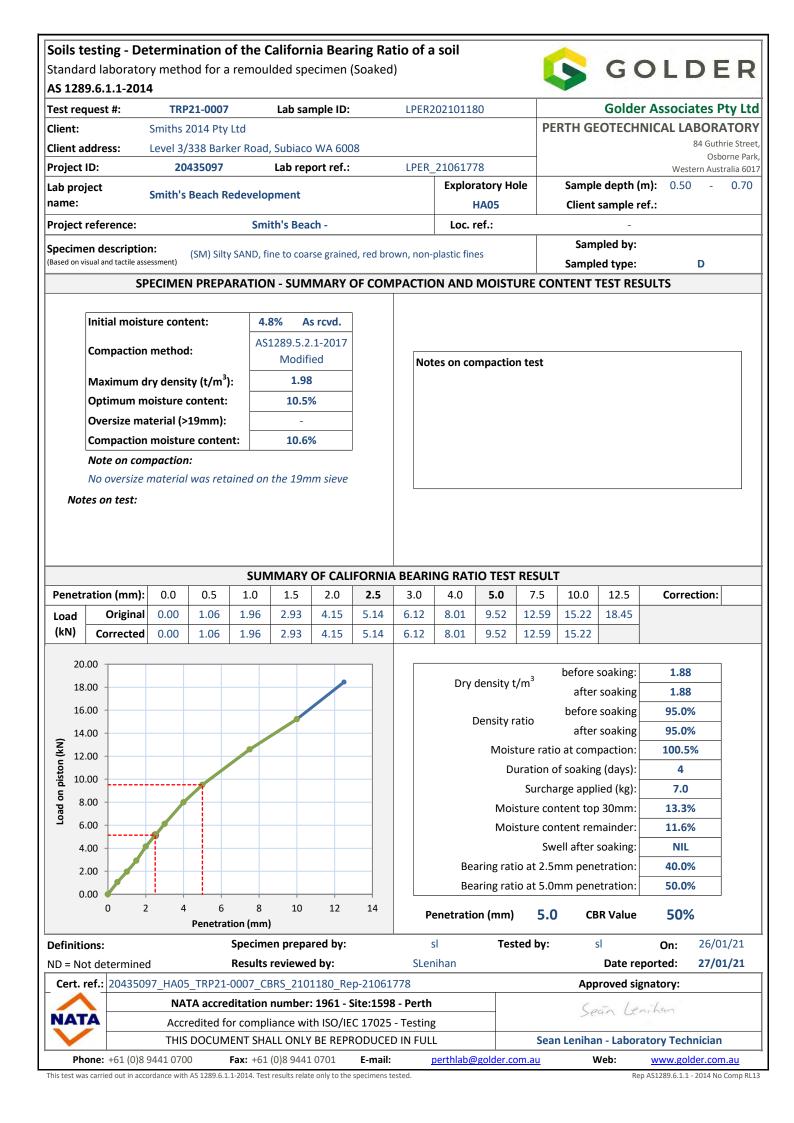


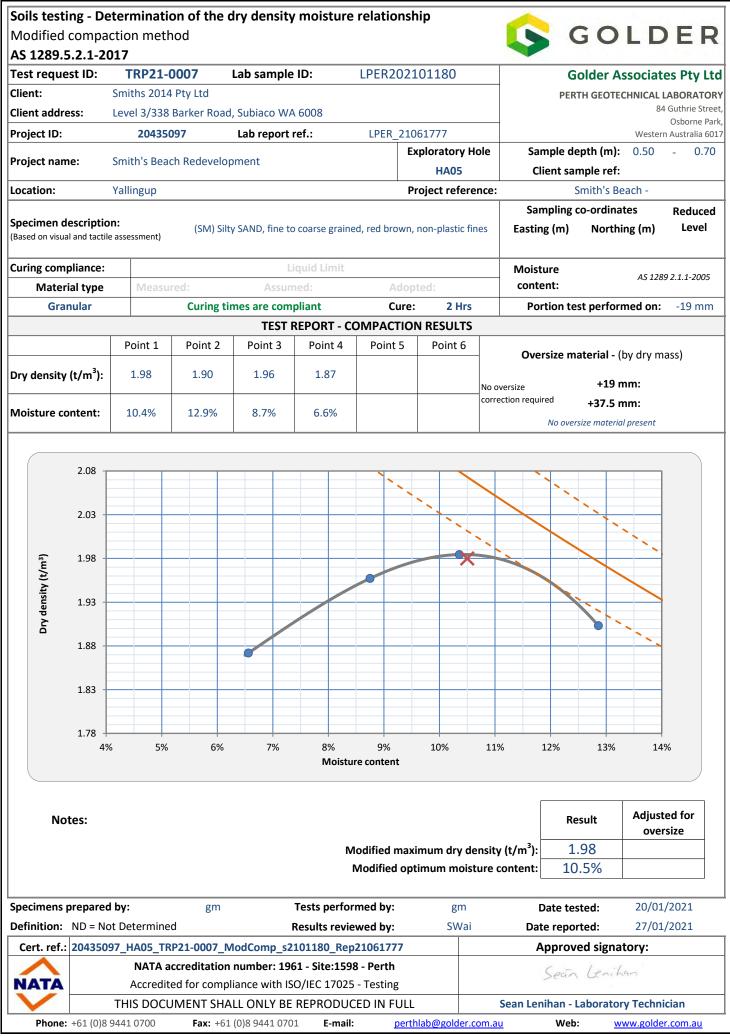
Client :		Golder Associates								):		102162		
Project Name	FWD testing - Yallingup								me:		Beach Rd South			
Road Name:	Smiths Beach Road - Starting from the Carpark								Date:		18/12/2020			
Section / Lan	e:	<b>v</b> 1								By:			TM	
Surface Test	Aspha	lt						Testing	j Interva	al:	25 m			
Prepared By:	CK Checked By: TM													
													Normalise	ed to (kPa)
DYNATEST FWD (E- 044) TEST RESULTS TO WA:326.2													566	
Chainage (km)	Pavement Temp'tr	Lane	FWD Stress	Geophone Location (mm) and Deflections (micron)									Deflection Curvature	
	deg ⁰ C		(kPa)	0	200	300	400	500	600	750	900	1500	(mm)	(mm)
0.564	58.0	R1	522	605	345	229	139	99	76	52	33	16	0.656	0.283
0.540	58.0	R1	525	438	191	103	67	47	34	24	18	7	0.473	0.267
0.515	58.0	R1	526	250	126	78	46	38	32	19	9	4	0.269	0.133
0.490	58.0	R1	518	502	319	221	153	114	84	54	30	8	0.548	0.199
0.465	58.0	R1	521	689	411	279	194	129	82	40	22	11	0.748	0.302
0.440	56.5	R1	526	377	208	139	97	70	52	38	21	7	0.405	0.181
0.415	56.5	R1	531	220	122	86	68	48	41	32	24	10	0.234	0.104
0.390	56.5	R1	527	547	337	224	166	100	76	54	31	10	0.588	0.225
0.365	56.5	R1	532	303	146	80	61	41	38	28	16	12	0.322	0.167
0.340	56.5	R1	532	235	133	97	68	52	44	33	23	10	0.250	0.109
0.315	56.5	R1	533	279	165	109	74	54	44	33	26	10	0.297	0.121
0.295	56.5	R1	537	310	173	109	73	54	43	36	27	12	0.326	0.144
0.265	56.5	R1	538	306	173	110	74	54	43	35	27	12	0.322	0.141
0.240	56.5	R1	532	440	226	120	76	49	46	33	25	12	0.468	0.229
0.215	56.5	R1	536	403	245	177	133	101	80	58	46	19	0.426	0.167
0.195	56.5	R1	528	495	309	213	157	123	101	85	59	27	0.531	0.200
0.165	56.5	R1	526	352	198	132	95	75	56	47	26	10	0.379	0.165




www.statswa.com.au

Client :		Golder	· Associat	es					Job No	)1			102	162
<b>Project Name</b>	<b>):</b>	FWD t	esting - Y	allingup					File Na	me:			Beach F	d South
Road Name:		Smiths	Beach R	load - St	arting fr	om the C	Carpark		Survey	Date:			18/12	2/2020
Section / Lan	e:	Southb	oound - R	1					Tested	By:			Т	М
Surface Test	ed:	Aspha	lt						Testing	j Interva	al:		25	m
Prepared By:		CK		Checke	d By:	ТМ								
													Normalise	ed to (kPa)
		DYN	ATEST F	WD (E-	044) TE	ST RES	ULTS T	O WA:	326.2				50	66
Chainage (km)	Pavement Temp'tr	Lane	FWD Stress		Ge	ophone L	ocation (	mm) and	l Deflectio	ons (micr	on)		Deflection	Curvature
	deg ⁰C		(kPa)	0	200	300	400	500	600	750	900	1 <b>500</b>	(mm)	(mm)
0.140	56.5	R1	528	300	139	83	57	47	38	23	13	8	0.321	0.172
0.115	56.5	R1	533	194	102	63	50	39	36	25	20	8	0.206	0.098
0.090	56.5	R1	537	192	90	45	42	27	26	18	15	8	0.202	0.108
0.065	56.5	R1	535	169	89	62	49	39	36	27	19	9	0.179	0.085
0.040	56.5	R1	533	358	212	146	111	87	72	56	42	18	0.380	0.155
0.015	56.5	R1	531	283	164	129	106	89	80	69	53	27	0.301	0.127
Redoxide Asp	halt Surfac	e e												
Mean			535 367 217 145 103 75 59 42 29								14	0.391	0.160	
SDEV			9 231 154 107 72 47 30 18 11								11	6	0.25	0.09
COVR, %			2	63	71	74	70	63	52	43	38	41	64.6	56.1
97.5 Percentile													1.110	
95 Percentile													0.892	


APPENDIX F


# Laboratory Test Certificates



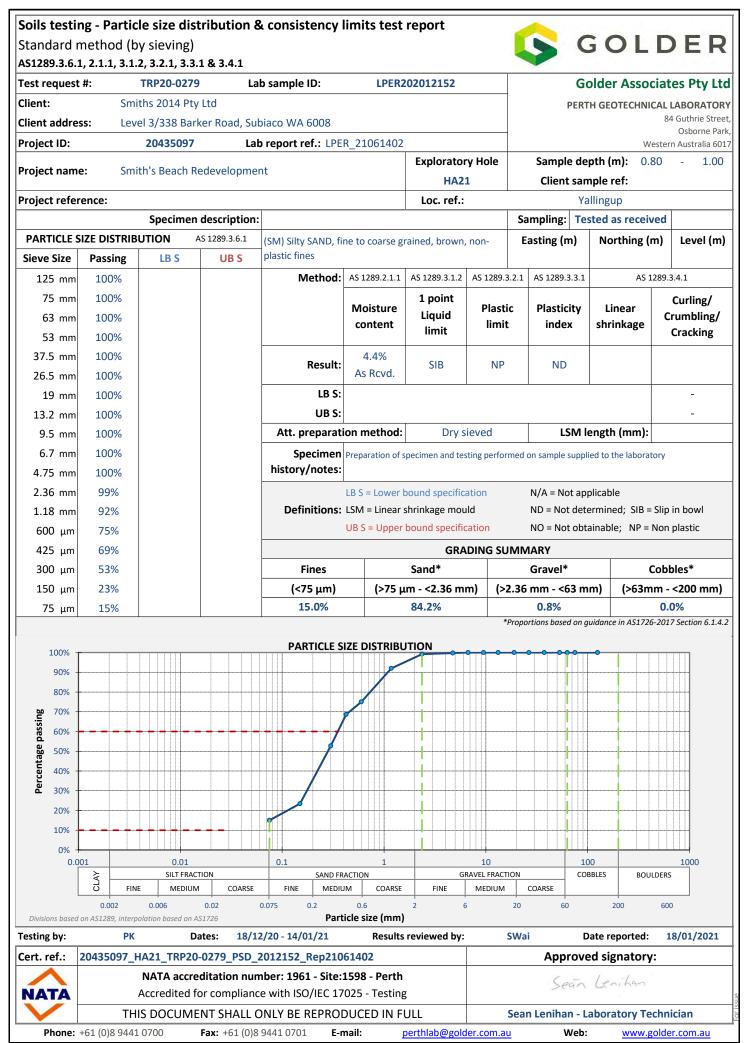



These tests were carried out in accordance with the Australian standards identified in this certificate Test results relate only to the specimens tested.

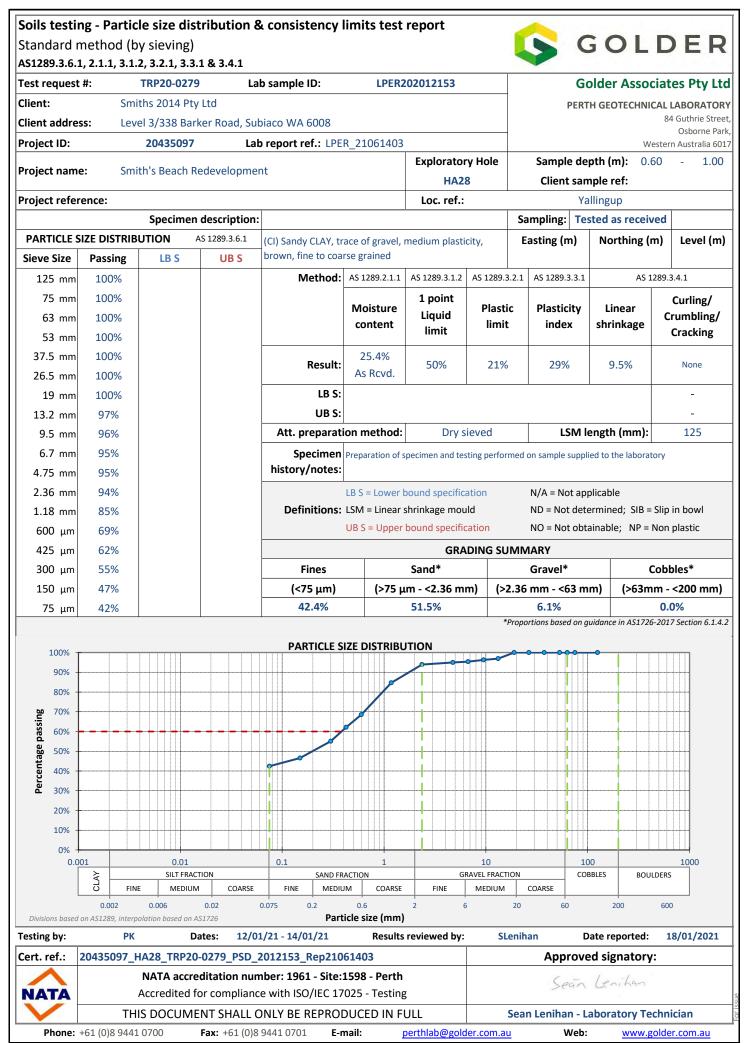




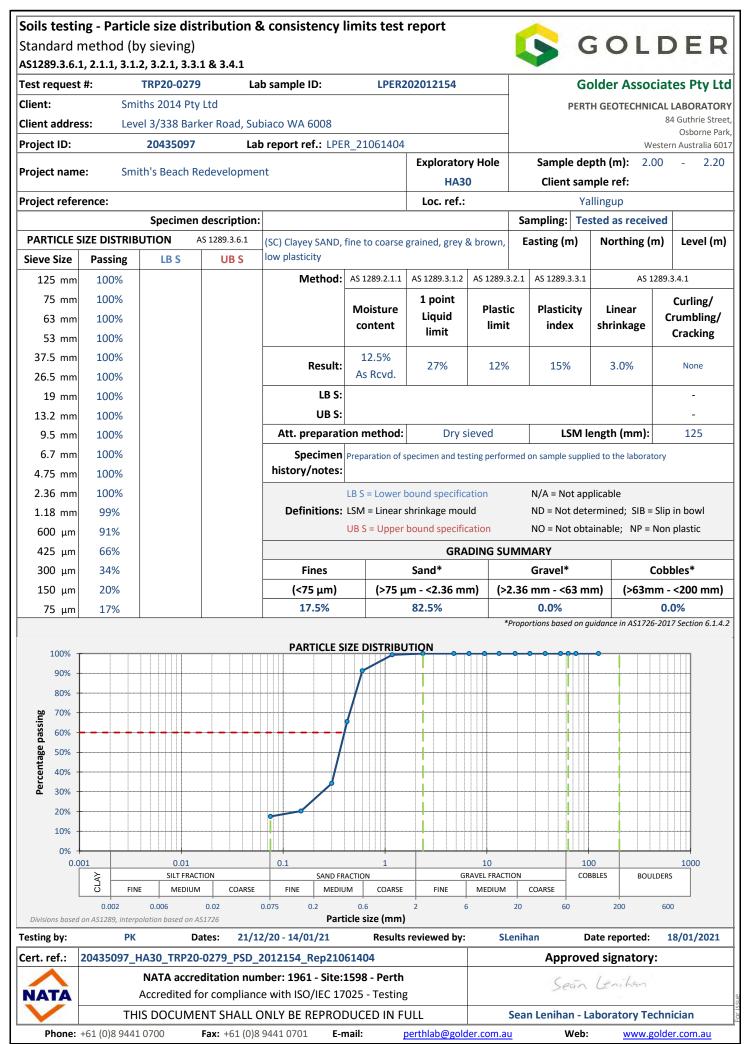
AS1289.3.6.	1, 2.1.1, 3.1							A				
est request	t #:	TRP21-000	La La	b sample ID:	LPER2	02101180			G	older Asso	ciates	Pty L
lient:	Sm	hiths 2014 Pty	/ Ltd						PERT	TH GEOTECHN		
lient addre	ss: Le	vel 3/338 Bar	ker Road, Sul	biaco WA 6008								ithrie Str sborne P
Project ID:		20435097	La	b report ref.: LPE	R_21061776					W	/estern Au	ustralia 6
roject nam	e: Sm	nith's Beach R	edevelopme	nt		Explorator HA0	-		ample de Client san		.50 -	0.7
roject refe	rence:		Smith's	Beach -		Loc. ref.:			Ya	allingup		
		Specimer	description:	;				Samp	pling: Te	sted as recei	ved	
PARTICLE S	SIZE DISTRI	BUTION	AS 1289.3.6.1	(SM) Silty SAND, fi	ine to coarse gi	rained, red bro	own, non-	East	ting (m)	Northing (	(m) L	evel (n
Sieve Size	Passing	LB S	UB S	plastic fines	Ū		-					
125 mm	100%			Method:	AS 1289.2.1.1	AS 1289.3.1.2	AS 1289.3	.2.1 AS	S 1289.3.3.1	AS	1289.3.4.:	L
75 mm	100%					1 point					C.,	rling/
63 mm	100%				Moisture	Liquid	Plasti	-	Plasticity	Linear		nbling
53 mm	100%				content	limit	limit		index	shrinkage		cking
37.5 mm	100%				4.8%							
26.5 mm	100%			Result:	4.8% As Rcvd.	SIB	NP		ND			
20.5 mm 19 mm	100%			LB S:								-
				UB S:								_
13.2 mm 9.5 mm	100% 100%			Att. preparat		Dry	sieved		ISMI	ength (mm):		
6.7 mm	100%					,						
0.7 mm	100%			Specimen	Preparation of s	pecimen and te	sting perfori	med on s	sample suppl	lied to the labora	itory	
4 75	1000/											
4.75 mm	100%			history/notes:		1						
2.36 mm	100%			history/notes:	LB S = Lower b				'A = Not ap	•	- Clin in l	
2.36 mm 1.18 mm	100% 100%			history/notes:	LB S = Lower b LSM = Linear s	shrinkage mou	uld	ND	D = Not det	ermined; SIB =	•	
2.36 mm 1.18 mm 600 μm	100% 100% 87%			history/notes:	LB S = Lower b	shrinkage mou bound specifie	uld cation	ND	D = Not det D = Not obt	•	•	
2.36 mm 1.18 mm 600 μm 425 μm	100% 100% 87% 75%			history/notes: Definitions:	LB S = Lower b LSM = Linear s	shrinkage mou bound specific GRA	uld	ND NO MMAR	D = Not det D = Not obt RY	ermined; SIB = ainable; NP =	Non pla	stic
2.36 mm 1.18 mm 600 μm 425 μm 300 μm	100% 100% 87% 75% 54%			history/notes: Definitions: Fines	LB S = Lower b LSM = Linear s UB S = Upper	shrinkage mou bound specifi GRA Sand*	uld cation ADING SU	ND NO MMAR Gr	D = Not det D = Not obt RY ravel*	ermined; SIB = ainable; NP =	Non pla	stic s*
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm)	LB S = Lower b LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m	uld cation ADING SU	ND NO MMAR Gr 2.36 mr	D = Not det D = Not obt RY ravel* m - <63 m	ermined; SIB = ainable; NP =	Non pla Cobble nm - <2	stic s*
2.36 mm 1.18 mm 600 μm 425 μm 300 μm	100% 100% 87% 75% 54%			history/notes: Definitions: Fines	LB S = Lower b LSM = Linear s UB S = Upper	shrinkage mou bound specifi GRA Sand*	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ermined; SIB = ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b S LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b S LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b S LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% -	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b S LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% -	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b S LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% -	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b S LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% -	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b S LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% - 80% - 50% -	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b S LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 90% - 80% - 80% - 50% - 40% -	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b S LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 100% - 90% - 80% - 80% - 40% - 40% - 30% -	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b S LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 90% - 80% - 80% - 80% - 30% - 30% - 30% - 20% -	100% 100% 87% 75% 54% 26%			history/notes: Definitions: Fines (<75 μm) 19.7%	LB S = Lower b S LSM = Linear s UB S = Upper	shrinkage mou bound specifiu GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2	ND NO MMAR Gra 2.36 mr 0	D = Not det D = Not obt RY ravel* m - <63 m	ainable; NP =	Non pla Cobble nm - <2 0.0%	stic s* 00 mn
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 90% - 80% - 8	100% 100% 87% 54% 26% 20%			history/notes: Definitions: Fines (<75 μm) 19.7% PARTICLE S	LB S = Lower b LB S = Linear s UB S = Upper (>75 µ SIZE DISTRIBU SIZE DISTRIBU SIZE DISTRIBU 1	shrinkage mou bound specifi GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2 m) (>2 */	ND NO MMAR Gr. 2.36 mr 0 Proportion	D = Not det D = Not obt RY m - <63 m D.0% ms based on g	ermined; SIB = ainable; NP = nm) (>63n guidance in AS172	Non pla	stic s* 00 mn
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 90% - 80% - 80% - 80% - 30% - 40% - 10% - 10% - 10% - 10% - 10% -		0.01 SILT FRAC NE MEDIUM		history/notes: Definitions: Fines (<75 μm) 19.7% PARTICLE S	LB S = Lower t LB S = Lower t LB S = Upper (>75 µ SIZE DISTRIBU SIZE DISTRIBU SIZE DISTRIBU 1 1 RACTION	shrinkage mou bound specifi GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2 */	ND NO MMAR Gr. 2.36 mr 0 Proportion	D = Not det D = Not obt RY m - <63 m D.0% ms based on g 0.0% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ermined; SIB = ainable; NP = nm) (>63n guidance in AS172	Non pla	stic s* 00 mn ction 6.1
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 90% - 80% - 80% - 80% - 30% - 40% - 10% - 10% - 10% - 10% - 10% -	100% 100% 87% 54% 26% 20%	SILT FRAC	A COARSE	history/notes: Definitions: Fines (<75 μm) 19.7% PARTICLE S 0.1 0.1 SAND FF FINE MEDII 0.075 0.2	LB S = Lower t LB S = Lower t LISM = Linear s UB S = Upper (>75 µ SIZE DISTRIBL SIZE DISTRIBL 1 1 1 1 1 1 1 1 1 1 1 1 1	shrinkage mou bound specifi GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2 */ */ */ */		D = Not det D = Not obt RY m - <63 m D.0% ms based on g 0.0% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ermined; SIB = ainable; NP = nm) (>63n guidance in AS172	Non pla	stic s* 00 mn ction 6.1
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 90% - 80% - 80% - 20% - 10% - 0,0% - 0,	100% 100% 87% 54% 26% 20%	SILT FRAC NE MEDIUM 0.006 rpolation based on A	0.02 0.1726	history/notes: Definitions: Fines (<75 μm) 19.7% PARTICLE S PARTICLE S 0.1 SAND FF FINE MEDIU 0.075 0.2 PARTICLES	LB S = Lower b LB S = Linear s UB S = Upper (>75 µ SIZE DISTRIBU SIZE DISTRIBU I I I I I A I I I I I I I I I I I I I I I I I I I I I I	shrinkage mou bound specific GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2 */	ND NO MMAR Gr. 2.36 mr 0 Proportion	D = Not det D = Not obt RY ravel* m - <63 m 0.0% ms based on g 0.0% 10 10 10 10 10 10 10 10 10 10	ermined; SIB = ainable; NP = m) (>63m uidance in AS172	Non pla	stic s* 00 mn ction 6.1 
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 90% - 80% - 80% - 20% - 10% - 0% - 0% - 0% - 0% - 0% - 0% -	100% 100% 87% 54% 26% 20%	SILT FRAC NE MEDIUM 0.006 rpolation based on A	0.02 0.1726	history/notes: Definitions: Fines (<75 μm) 19.7% PARTICLE S 0.1 0.1 SAND FF FINE MEDII 0.075 0.2	LB S = Lower b LB S = Linear s UB S = Upper (>75 µ SIZE DISTRIBU SIZE DISTRIBU I I I I I A I I I I I I I I I I I I I I I I I I I I I I	shrinkage mou bound specifi GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2 */	ND NO MMAR Gr. 2.36 mr 0 Proportion	D = Not det D = Not obt RY ravel* m - <63 m 0.0% ms based on g 0.0% 0.0% 1.0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	ermined; SIB = ainable; NP = ainable; Ainable; Ain	Non pla	stic s* 00 mn ction 6.1 
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 80% - 80% - 80% - 80% - 20% - 20% - 10% - 0%	100% 100% 87% 75% 54% 26% 20% 	SILT FRAC NE MEDIUM 0.006 rpolation based on 7	0.02 0.02 AS1726 Pates: 21/0	history/notes: Definitions: Fines (<75 μm) 19.7% PARTICLE S PARTICLE S 0.1 SAND FF FINE MEDIU 0.075 0.2 PARTICLES	LB S = Lower t LSM = Linear s UB S = Upper (>75 µ SIZE DISTRIBU SIZE DISTRIBU 1 SIZE DISTRIBU 1 SIZE DISTRIBU 1 SIZE DISTRIBU 1 SIZE DISTRIBU 1 SIZE DISTRIBU 1 SIZE DISTRIBU 1 SIZE DISTRIBU 1 SIZE DISTRIBU 0 SIZE DISTRIBU	shrinkage mou bound specific GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2 */	ND NO MMAR Gr. 2.36 mr 0 Proportion	D = Not det D = Not obt RY ravel* m - <63 m 0.0% ms based on g 0.0% 0.0% 1.0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	ermined; SIB = ainable; NP = m) (>63m uidance in AS172	Non pla	stic s* 00 mn ction 6.1 
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 80% - 80% - 80% - 80% - 80% - 20% - 20% - 10% - 0% - 0	100% 100% 87% 75% 54% 26% 20% 	SILT FRAC NE MEDIUM 0.006 rpolation based on / - D HA05_TRP21 NATA accret	A         COARSE           0.02         0.02           A\$1726         21/02           Pates:         21/02           L-0007_PSD_2         21	history/notes: Definitions: Fines (<75 μm) 19.7% PARTICLE S 0.1 0.1 SAND FF FINE MEDIN 0.075 0.2 Part 1/21 - 27/01/21	LB S = Lower b LB S = Lower b LISM = Linear s UB S = Upper (>75 µ SIZE DISTRIBU SIZE DISTRIBU 1 SIZE DISTRIBU 1 SIZE DISTRIBU 1 SIZE DISTRIBU 0 SIZE DISTRIBU 0 SIZE DISTRIBU 0 SIZE DISTRIBU 0 0 0 0 0 0 0 0 0 0 0 0 0	shrinkage mou bound specific GRA Sand* m - <2.36 m 80.3%	uld cation ADING SU m) (>2 */	ND NO MMAR Gr. 2.36 mr 0 Proportion	D = Not det D = Not obt RY ravel* m - <63 m 0.0% ms based on g 0.0% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ermined; SIB = ainable; NP = ainable; Ainable; Ain	Non pla	stic s* 00 mm ction 6.1


These tests were carried out in accordance with the Australian standards identified in this certificate. Test results relate only to the specimens tested.




These tests were carried out in accordance with the Australian standards identified in this certificate. Test results relate only to the specimens tested.

AS1289.3.6.	1, 2.1.1, 3.1.	2, 3.2.1, 3.3	.1 0 3.4.1									
Test reques	t #:	TRP20-0279	9 La	b sample ID:	LPER2	202012155			G	older Asso	ociate	es Pty L
Client:	Sm	iths 2014 Pty	y Ltd						PERT	TH GEOTECHN	IICAL L	ABORATO
Client addre	ess: Lev	el 3/338 Bar	ker Road, Su	biaco WA 6008							84	Guthrie Stre Osborne Pa
Project ID:		20435097	La	b report ref.: LPE	R_21061401					١	Nestern	Australia 6
Project nam	ne: Smi	ith's Beach F	Redevelopme	nt		Explorator HA1	-		-	pth (m): 1	80	- 2.0
Project refe	rence:					Loc. ref.:				allingup		
		Specimer	description	:				Samplii		sted as rece	ived	
PARTICLE	SIZE DISTRIB	•	AS 1289.3.6.1	(SP) SAND, trace of	of silt fine to co	arse grained	brown	Easting	-	Northing		Level (n
Sieve Size	Passing	LB S	UB S	non-plastic fines		arse granieu,	brown,	Lasting	5 ()	i toi tiinig	(,	Lever
125 mm				Method:	AS 1289.2.1.1	AS 1289.3.1.2	AS 1289.3	3.2.1 AS 12	289.3.3.1	AS	1289.3.	4.1
75 mm				incentou.		1 point					1	
63 mm					Moisture	Liquid	Plasti	c Plas	sticity	Linear		Curling/ umbling/
					content	limit	limit	in	dex	shrinkage		racking
53 mm					2.6%							
37.5 mm				Result:	2.6% As Rcvd.	SIB	NP		ND			
26.5 mm				10.0								
19 mm				LB S:								-
13.2 mm				UB S:		-	• •					-
9.5 mm				Att. preparat			sieved			ength (mm)		
6.7 mm					Preparation of s	specimen and te	sting perfor	med on sam	ple suppl	ied to the labor	atory	
4.75 mm	1000/											
				history/notes:								
2.36 mm					LB S = Lower B	bound specific		-	= Not ap	•		
	100% 100%				LB S = Lower B LSM = Linear	shrinkage mou	ıld	ND =	Not det	ermined; SIB	•	
2.36 mm	100% 100%				LB S = Lower B LSM = Linear	1 - C	ıld	ND =	Not det	•	•	
2.36 mm 1.18 mm	100% 100% 97% 80%				LB S = Lower B LSM = Linear	shrinkage mou bound specific	uld cation	ND =	Not det	ermined; SIB	•	
2.36 mm 1.18 mm 600 μm	100% 100% 97%				LB S = Lower B LSM = Linear	shrinkage mou bound specific	uld cation	ND = NO =	Not dete	ermined; SIB	•	llastic
2.36 mm 1.18 mm 600 μm 425 μm	100% 100% 97% 80% 35%			Definitions	LB S = Lower H : LSM = Linear s UB S = Upper	shrinkage mou bound specific GRA	uld cation	ND = NO =	Not dete Not obt	ermined; SIB ainable; NP =	= Non p Cobb	llastic
2.36 mm 1.18 mm 600 μm 425 μm 300 μm	100% 100% 97% 80% 35% 7%			Definitions: Fines	LB S = Lower H : LSM = Linear s UB S = Upper	shrinkage mou bound specific GRA Sand*	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm)	LB S = Lower H : LSM = Linear s UB S = Upper	shrinkage mou bound specific GRA Sand* um - <2.36 m	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ermined; SIB ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm) 4.6%	LB S = Lower H : LSM = Linear s UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm) 4.6%	LB S = Lower I : LSM = Linear : UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm) 4.6%	LB S = Lower I : LSM = Linear : UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% -	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm) 4.6%	LB S = Lower I : LSM = Linear : UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% -	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm) 4.6%	LB S = Lower I : LSM = Linear : UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% -	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm) 4.6%	LB S = Lower I : LSM = Linear : UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% -	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm) 4.6%	LB S = Lower I : LSM = Linear : UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% -	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm) 4.6%	LB S = Lower I : LSM = Linear : UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% -	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm) 4.6%	LB S = Lower I : LSM = Linear : UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% -	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm) 4.6%	LB S = Lower I : LSM = Linear : UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 100% - 90% - 80% -	100% 100% 97% 80% 35% 7%			Definitions: Fines (<75 μm) 4.6%	LB S = Lower I : LSM = Linear : UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 100% - 90% - 80% -	100% 100% 97% 80% 35% 7%	0.01		Definitions: Fines (<75 μm) 4.6%	LB S = Lower I : LSM = Linear : UB S = Upper	shrinkage mou bound specifie GRA Sand* um - <2.36 m 95.4%	uld cation DING SU m) (>i	ND = NO = MMARY Grav 2.36 mm 0.0	Not dete Not obt rel* - <63 m	ermined; SIB ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 100% - 90% - 80% -		SILT FRAC		Definitions: Fines (<75 µm) 4.6% PARTICLE S	LB S = Lower I LB S = Lower I LB S = Upper (>75 µ SIZE DISTRIBL SIZE DISTRIBL 1 1 RACTION	shrinkage mou bound specific GRA Sand* um - <2.36 m 95.4% JTION	Ald Cation ADING SU m) (>: * * * * *	ND = NO = MMARY Grav 2.36 mm - 0.0° Proportions b	Not dete Not obt	ermined; SIB ainable; NP =	= Non p Cobbl mm - < 0.0	lastic les* 200 mm % Section 6.1.
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 100% - 90% - 80% -	100% 100% 97% 80% 35% 7% 5%	SILT FRAC	VI COARSE	Definitions:           Fines           (<75 μm)	LB S = Lower I : LSM = Linear : UB S = Upper (>75 µ SIZE DISTRIBL SIZE DISTRIBL 1 SIZE DISTRIB 1 SIZE DISTRIBL 1 SIZE DISTRIB 1 SIZE DISTRIBLA	shrinkage mou bound specific GRA Sand* um - <2.36 m 95.4% JTION I I I I I I I I I I I I I I I I I I	Ald Cation ADING SU m) (>: * * * * * * * * * * * * *	ND = NO = MMARY C.36 mm - 0.0 Proportions t	Not dete Not obt	ermined; SIB ainable; NP =	= Non p Cobbl mm - < 0.0 26-2017	lastic
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% - 80% - 100% - 20% - 10% - 0,0		SILT FRAG	M COARSE	Definitions:           Fines           (<75 μm)	LB S = Lower I LB S = Lower I LB S = Upper (>75 µ SIZE DISTRIBL SIZE DISTRIBL 1 1 RACTION	shrinkage mou bound specific GRA Sand* um - <2.36 m 95.4% JTION I I I I I I I I I I I I I I I I I I	Ald Cation ADING SU m) (>: * * * * *	ND = NO = MMARY Grav 2.36 mm - 0.0° Proportions b	Not dete Not obt	ermined; SIB ainable; NP =	= Non p Cobbl mm - < 0.0 26-2017	lastic
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 100% - 90% - 80% - 80% - 20% - 10% - 0,0% - 0,	100% 100% 97% 80% 35% 7% 5%	SILT FRAC MEDIUM 0.006 polation based on A	M COARSE 0.02 A\$1726	Definitions:           Fines           (<75 μm)	LB S = Lower I LB S = Lower I LSM = Linear : UB S = Upper (>75 µ SIZE DISTRIBL SIZE DISTRIBL 1 SIZE DISTRIB 1 SIZE DISTRIB 1 S	shrinkage mou bound specific GRA Sand* um - <2.36 m 95.4% JTION I I I I I I I I I I I I I I I I I I	Ald Cation ADING SU m) (>: m) (>: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (::	ND = NO = MMARY C.36 mm - 0.0 Proportions t	Not dete Not obt. el* - <63 m % assed on g	ermined; SIB ainable; NP =	<ul> <li>Non p</li> <li>Cobbl</li> <li>mm - &lt;</li> <li>0.0</li> <li>26-2017</li> <li>26-20</li></ul>	lastic les* 200 mn % Section 6.1
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 90% - 80% - 80% - 80% - 20% - 10% - 20% - 10% - 0% - 0	100% 100% 97% 80% 35% 7% 5%	SILT FRAC MEDIUM 0.006 polation based on / D	M COARSE 0.02 AS1726 Dates: 18/1	Definitions: Fines (<75 μm) 4.6% PARTICLE S 0.1 SAND FI FINE MEDI 0.075 0.2 Par 2/20 - 14/01/21	LB S = Lower I : LSM = Linear : UB S = Upper (>75 µ SIZE DISTRIBL SIZE DISTRIBL 1 SIZE DISTRIBL 1 COARSE 0.6 ticle size (mm) Results	shrinkage mou bound specific GRA Sand* Im - <2.36 m 95.4%	Ald Cation ADING SU m) (>: m) (>: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (::	ND = NO = MMARY Grav 2.36 mm - 0.0° Proportions b 0.0° Proportions b 0	Not dete Not obt.	ermined; SIB ainable; NP = m) (>63i uidance in AS17.	<ul> <li>Non p</li> <li>Cobbl</li> <li>mm - &lt;</li> <li>0.0</li> <li>26-2017</li> <li>26-20</li></ul>	lastic les* 200 mn % Section 6.1
2.36 mm 1.18 mm 600 µm 425 µm 300 µm 150 µm 75 µm 150 % - 80% - 80% - 80% - 80% - 20% - 10% - 20% - 10% - 0% -	100% 100% 97% 80% 35% 7% 5%	SILT FRAC MEDIUM 0.006 volation based on / D HA19_TRP2C	COARSE           0.02           ASJ726           Dates:         18/1           D-0279_PSD_	Fines           (<75 μm)	LB S = Lower I : LSM = Linear : UB S = Upper (>75 µ SIZE DISTRIBL SIZE DISTRIBL 1 COARSE 0.6 ticle size (mm) Results D61401	shrinkage mou bound specific GRA Sand* Im - <2.36 m 95.4%	Ald Cation ADING SU m) (>: m) (>: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (::	ND = NO = IMMARY Grav 2.36 mm - 0.00 Proportions to Proportions to a a a a a D a a a a D a a a a a D a a a a	Not dete Not obt el* - <63 m % mased on g	ermined; SIB ainable; NP = im) (>63i uuidance in AS17. uuidance in AS	<ul> <li>Non p</li> <li>Cobbl</li> <li>mm - &lt;</li> <li>0.0</li> <li>26-2017</li> <li>26-20</li></ul>	lastic les* 200 mn % Section 6.1
2.36 mm 1.18 mm 600 μm 425 μm 300 μm 150 μm 75 μm 100% - 90% - 80% - 80% - 20% - 10% - 20% - 10% - 0,0	100% 100% 97% 80% 35% 7% 5%	SILT FRAC MEDIUM 0.006 notation based on / D HA19_TRP2C NATA accre	vi COARSE 0.02 As1726 Dates: 18/1 D-0279_PSD_ editation nur	Definitions: Fines (<75 μm) 4.6% PARTICLE S 0.1 SAND FI FINE MEDI 0.075 0.2 Par 2/20 - 14/01/21	LB S = Lower I : LSM = Linear : UB S = Upper (>75 µ SIZE DISTRIBU SIZE DISTRIBU I SIZE DISTRIBU	shrinkage mou bound specific GRA Sand* Im - <2.36 m 95.4% JTION I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	Ald Cation ADING SU m) (>: m) (>: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (:: a) (::	ND = NO = IMMARY Grav 2.36 mm - 0.00 Proportions to Proportions to a a a a a D a a a a D a a a a a D a a a a	Not dete Not obt el* - <63 m % mased on g	ermined; SIB ainable; NP = m) (>63i uidance in AS17.	<ul> <li>Non p</li> <li>Cobbl</li> <li>mm - &lt;</li> <li>0.0</li> <li>26-2017</li> <li>26-20</li></ul>	lastic


These tests were carried out in accordance with the Australian standards identified in this certificate. Test results relate only to the specimens tested.



These tests were carried out in accordance with the Australian standards identified in this certificate Test results relate only to the specimens tested.



These tests were carried out in accordance with the Australian standards identified in this certificate Test results relate only to the specimens tested.

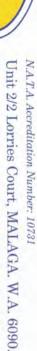


These tests were carried out in accordance with the Australian standards identified in this certificate. Test results relate only to the specimens tested.

De alva ta at				latuanath indau													
	•		•	strength index				TECT		<b>NDT</b> C				VCIC		COL	DED
		Axial (A), Diam	etral ( <b>D</b> ) or irre	egular Lump ( <b>L</b> ) specimer	าร			IES		JKI - S	UMM	ARY O		1515		GOL	DER
AS 4133.4.3																	
Test request	t ID:	TRP21-0007		nple IDs: 2101181	2101			•	ort ref.:			PER_210	61770				ociates Pty Ltd
Client:		Smiths 2014 Pty				Projec	t refere					Beach -			PERTH G	EOTECHNICAI	LLABORATORY
Client addre	ess:	Level 3/338 Bark	er Road, Subiaco	o WA 6008			Locat	ion:			Yalli	ngup					84 Guthrie Street, Osborne Park,
Project ID:		2043	5097	Project name:		1	1	Smit	h's Beac	h Redev	elopmen	t	1				Western Australia 6017
Explorator	•	Sample	Specimen	Sub-specimen:	S ₁	S ₂	S3	S ₄	S₅	S ₆	S ₇	S ₈	S ₉	S ₁₀	Location test co	nducted:	Laboratory
referen	nce	depth (m)	reference			-	,	-	,		,	0	,	10	Mean values:	Calculation exclu	udes specimens
BH1		2.75		Test type:	Α										which are not co	,	ne tolerances
				**Compliant test:	Yes										specified in the	test method	
Lab sample	ID	LPER202	2101181	Failure mode	Μ										Axial	Diametral	Irregular
Sampling	Ву	Date:		Failure load [kN]	4.9										4.9		
Samping		Method:	-	Defect orientation	90°										-	-	-
Moisture co	ontent			Is [MPa]	1.6										1.6		
Moisture co	ontent ty	pe:		ls ₍₅₀₎ [MPa]	1.7										1.7		
	3,	As received	Dry										History:	Test perfo	ormed on samples	submitted to the	laboratory.
Density (t/m	n)	ND	ND	Lithological description	JIVEISS							Cli	ent ref.:				
Explorator	y hole	Sample	Specimen	Sub-specimen:	S ₁	S ₂	S ₃	S4	S ₅	S ₆	<b>S</b> ₇	S ₈	Sg	S ₁₀	Location test co	nducted:	Laboratory
referen	nce	depth (m)	reference	Sub-specifien.	<b>J</b> ₁	52	53	54	5	<b>J</b> 6	37	<b>J</b> 8	39		Mean values:	Calculation exclu	udes specimens
BH1		4.50		Test type:	D										which are not co	ompliant with th	ne tolerances
DIT				**Compliant test:	Yes										specified in the	test method	
Lab sample	ID	LPER202	2101182	Failure mode	Μ										Axial	Diametral	Irregular
Compling	Ву	Date:		Failure load [kN]	24											24	
Sampling		Method:	-	Defect orientation	180°										-	-	-
Moisture co	ontent			Is [MPa]	9.8											9.8	
Moisture co	ontent ty	pe:		Is ₍₅₀₎ [MPa]	9.8											9.8	
	3.	As received	Dry			1		1			1		History:	Test perfe	ormed on samples	submitted to the	laboratory.
Density (t/m	n")	ND	ND	Lithological description	GNEISS							Cli	ent ref.:				
Definitions:			,	L = Lump / Irregular ane, <b>M</b> = Through rock mat	rix, <b>J</b> = /			•	, <b>ND</b> = N lane of v			dn't Fail		1		• •	aten gap at failure nce of the method
Cert. ref.:	1			2101182_Rep-21061770					prepared			SL			Appro	oved signatory:	
				: 1961 - Site:1598 - Perth			-	Tests pe	rformed	l by:	SL	27/0	)1/21				
NATA				th ISO/IEC 17025 - Testing				-	eviewed	-	SL	enihan			Sea	n Lenihan	
V		THIS DOCUME	NT SHALL ONLY	Y BE REPRODUCED IN FL	ILL				te repor	•	27/	01/2021			Sean Lenihan	- Laboratory Te	chnician
	Phone:	+61 (0)8 9441 070		<b>Fax:</b> +61 (0)8 9441				E-mail:	•		golder.co	-		1	Web:	www.golder.co	<u> </u>

	_		<b>6</b> • • • • •														
	-		-	strength index												~ ~	
-		Axial ( <b>A</b> ), Diam	etral ( <b>D</b> ) or irre	gular Lump ( <b>L</b> ) specime	ns			TEST	r repo	RT - S	UMM	ARY OI		LYSIS		GU	LDER
AS 4133.4.1-																	
Test request I	ID:	TRP21-0007	Lab san	ple IDs: 210118	3 - 2101	184		Lab rep	ort ref.:		L	PER_210	61771				ssociates Pty Ltd
Client:		Smiths 2014 Pty	Ltd			Projec	t refere	nce:			Smith's	Beach -			PERTH G	EOTECHNIC	AL LABORATORY
Client address	s:	Level 3/338 Bark	er Road, Subiaco	WA 6008			Locat	ion:			Yalli	ngup					84 Guthrie Street, Osborne Park,
Project ID:		2043	5097	Project name:				Smit	h's Beac	h Redev	elopmen	nt					Western Australia 6017
Exploratory		Sample	Specimen	Sub-specimen:	<b>S</b> ₁	S ₂	S ₃	S ₄	S ₅	S ₆	\$ ₇	S ₈	S9	S ₁₀	Location test co	onducted:	Laboratory
referenc	e	depth (m)	reference			-2	-5	~4	- 5	-0	-,	-0	- 9	-10	Mean values:	Calculation ex	cludes specimens
BH2		3.40		Test type:	D										which are not c	•	the tolerances
				**Compliant test:	Yes										specified in the	test method	
Lab sample ID	כ	LPER202	2101183	Failure mode	Μ										Axial	Diametra	l Irregular
Sampling –	Ву	Date:		Failure load [kN]	5.4											5.4	
Jamping		Method:	-	Defect orientation	180°										-	-	-
Moisture con	tent			ls [MPa]	1.9											1.9	
Moisture con	tent typ	pe:		ls ₍₅₀₎ [MPa]	1.9											1.9	
Danaitus (tr/m ³	3,	As received	Dry	Lithological description									History:	Test per	ormed on samples	s submitted to t	he laboratory.
Density (t/m ³	)	ND	ND	Lithological description								Cli	ent ref.:				
Exploratory	hole	Sample	Specimen	Sub-specimen:	S ₁	S ₂	S ₃	S ₄	S₅	S ₆	S ₇	S ₈	S9	S ₁₀	Location test co	onducted:	Laboratory
referenc	:e	depth (m)	reference	our speemen	•1	-2	-3	•4	-5	-6	•/	-8	- Gg	-10	Mean values:	Calculation ex	cludes specimens
BH2		4.60		Test type:	Α										which are not c	,	the tolerances
				**Compliant test:	Yes										specified in the	test method	
Lab sample ID	כ	LPER202	2101184	Failure mode	М										Axial	Diametra	l Irregular
Sampling –	Ву	Date:		Failure load [kN]	1.9										1.9		
Sampling		Method:	-	Defect orientation	90°										-	-	-
Moisture cont	tent			ls [MPa]	0.62										0.62		
Moisture con	tent ty	pe:		ls ₍₅₀₎ [MPa]	0.65										0.65		
Density (t/m ³	3,	As received	Dry	Lithological description	GNEISS								History:	Test perf	ormed on samples	s submitted to t	he laboratory.
Density (t/m	,	ND	ND	Lithological description	UNEISS							Cli	ent ref.:				
Definitions:	Test	types: A = Axial,	<b>D</b> = Diametral, <b>L</b>	. = Lump / Irregular		n/a	= Not a	oplicable	, <b>ND</b> = N	ot deter	mined				** A non co	mpliant test =	platen gap at failure
Demitions.	Failu	ure modes: B = A	long bedding pla	ne, <b>M</b> = Through rock mat	trix, <b>J</b> = A	Along joir	nt, <b>W</b> = A	Along a p	lane of w	veakness	s, <b>DF</b> = Di	dn't Fail			being outsi	de of the tole	rance of the method
Cert. ref.: 2	2043509	97_TRP21-0007_	PtLd_2101183 - 2	2101184_Rep-21061771			Spe	cimens p	prepared	by:		SL			Appr	oved signator	y:
$\wedge$		NATA accre	ditation number	: 1961 - Site:1598 - Perth				Tests pe	rformed	by:	SL	27/0	)1/21		C	n Lenihar	
NATA		Accredited for	or compliance wi	th ISO/IEC 17025 - Testing			1	Results r	eviewed	by:	SL	.enihan			>09	~ UTAINER	
		THIS DOCUME	NT SHALL ONLY	BE REPRODUCED IN FU	JLL			Da	te repor	ted:	27/	01/2021			Sean Lenihan	- Laboratory	Fechnician
	Phone:	+61 (0)8 9441 070	<u>ר</u>	Fax: +61 (0)8 9441	0701	1		E-mail:		herthlah	ogolder.co	om.au			Web:	www.golde	r com au

Including tests or	n; Axial ( <b>A</b> ), Diam	etral ( <b>D</b> ) or irre	egular Lump ( <b>L</b> ) specime	ns			TEST	REPC	RT - S	UMMA	ARY OF	ANAL	YSIS		GOL	DER
AS 4133.4.1-200	7															
Test request ID:	TRP21-0007	Lab sar	nple IDs: 210118	5 - 2101	186		Lab rep	ort ref.:		LI	PER_2106	1772			Golder Ass	ociates Pty Ltd
Client:	Smiths 2014 Pty	Ltd			Proje	ct refere	nce:			Smith's	Beach -			PERTH C	GEOTECHNICA	LABORATORY
Client address:	Level 3/338 Barl	ker Road, Subiaco	o WA 6008			Locat	ion:			Yalli	ngup					84 Guthrie Street
Project ID:	2043	5097	Project name:				Smit	h's Beac	h Redev	elopmen	nt					Osborne Park Western Australia 6017
Exploratory hole reference	Sample depth (m)	Specimen reference	Sub-specimen:	<b>S</b> ₁	S ₂	S ₃	S ₄	S ₅	S ₆	\$ ₇	S ₈	S ₉	<b>S</b> ₁₀	Location test		Laboratory
	4.60		Test type:	Α											Calculation exclu compliant with th	
BH3			**Compliant test:	Yes										specified in the	,	
Lab sample ID	LPER20	2101185	Failure mode	М										Axial	Diametral	Irregular
Ву	Date:		Failure load [kN]	0.78										0.78		
Sampling	Method:	-	Defect orientation	90°										-	-	-
Moisture content			Is [MPa]	0.24										0.24		
Moisture content	type:		Is ₍₅₀₎ [MPa]	0.25										0.25		
	As received	Dry	Link all attack descriptions	CNIEICO			I				н	listory:	Test per	formed on sample	es submitted to the	laboratory.
Density (t/m³)	ND	ND	<ul> <li>Lithological description</li> </ul>	GNEISS							Clie	nt ref.:				
Exploratory hole	•	Specimen	Sub-specimen:	S ₁	S ₂	S ₃	S₄	S ₅	S ₆	\$ ₇	S ₈	S9	S ₁₀	Location test	conducted:	Laboratory
reference	depth (m)	reference			-2	-3	-4	-5	-0	-,	-8	-9	-10	Mean values:	Calculation exclu	udes specimens
BH3	6.15		Test type:	Α										-	compliant with th	ne tolerances
			**Compliant test:	Yes										specified in the		
Lab sample ID		2101186	Failure mode	Μ										Axial	Diametral	Irregular
Sampling By	Date:		Failure load [kN]	1.4										1.4		
	Method:	-	Defect orientation	90°										-	-	-
Moisture content			Is [MPa]											0.45		
Moisture content		Dmi	Is ₍₅₀₎ [MPa]	0.47								liatowy	Tost por	<b>0.47</b>		laboratory
Density (t/m ³ )	As received	Dry	Lithological description	GNEISS								nt ref.:	rest per	ionneu on sampi	es submitted to the	laboratory.
Definitions:	est types: A = Axial	, <b>D</b> = Diametral, I	L = Lump / Irregular		-	n = Not ap										aten gap at failure nce of the method
			ane, <b>M</b> = Through rock mat 2101186_Rep-21061772	LIIX, <b>J</b> = A			cimens p			, <b>DF</b> = DI	SL				roved signatory:	
			:: 1961 - Site:1598 - Perth			-	Tests pe	-	-	SL	27/01	/21				
NATA			ith ISO/IEC 17025 - Testing				Results r		•		enihan.	,		Se	an Lenihan	
	THIS DOCUME	NT SHALL ONL	Y BE REPRODUCED IN FU	JLL				te repor	-	27/	01/2021			Sean Leniha	n - Laboratory Te	chnician
Phone	e: +61 (0)8 9441 070	0	Fax: +61 (0)8 9441	0701	<b>i</b>		E-mail:		perthlab@	golder.co	om.au			Web:	www.golder.c	om.au


Rocks testing - Determination of point load strength index

Rocks test	ting - D	etermination	of point load	l strength index											~		
Including te	ests on;	Axial ( <b>A</b> ), Diam	etral ( <b>D</b> ) or irre	egular Lump ( <b>L</b> ) specime	ns			TEST	r Repc	)RT - S	UMM	ARY OF		LYSIS		GO	LDER
AS 4133.4.1	1-2007																
Test request	t ID:	TRP21-0007	Lab san	nple IDs: 210118	7 - 2101	188		Lab rep	ort ref.:		L	PER_210	61773			Golder As	sociates Pty Ltd
Client:		Smiths 2014 Pty	Ltd			Proje	ct refere	nce:			Smith's	Beach -			PERTH GI	EOTECHNIC/	AL LABORATORY
Client addre	ss:	Level 3/338 Bark	ker Road, Subiaco	o WA 6008			Locat	ion:			Yalli	ngup					84 Guthrie Street, Osborne Park.
Project ID:		2043	5097	Project name:				Smit	h's Beac	h Redev	elopmer	it					Western Australia 6017
Explorator	•	Sample	Specimen	Sub-specimen:	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S9	S ₁₀	Location test co	nducted:	Laboratory
referen	nce	depth (m)	reference			•2	-3	-4	-5		•,	-8		-10	Mean values:	Calculation exc	cludes specimens
BH3		8.60		Test type:	D										which are not co		the tolerances
				**Compliant test:	Yes										specified in the	test method	
Lab sample I	ID	LPER202	2101187	Failure mode	М										Axial	Diametral	Irregular
Sampling	Ву	Date:		Failure load [kN]	3											3	
B		Method:	-	Defect orientation	45°										-	-	-
Moisture co	ntent			ls [MPa]	1.1											1.1	
Moisture co	ntent ty	pe:	1	ls ₍₅₀₎ [MPa]	1.1											1.1	
Density (t/m	n ³ 1	As received	Dry	Lithological description	GNEISS								History:	Test per	formed on samples	submitted to th	e laboratory.
Density (t/m	• ,	ND	ND									Cli	ent ref.:				
Explorator	•	Sample	Specimen	Sub-specimen:	S ₁	S ₂	S ₃	S ₄	S₅	S ₆	<b>S</b> ₇	S ₈	S ₉	S ₁₀	Location test co	nducted:	Laboratory
referen	ice	depth (m)	reference			-		•		, , , , , , , , , , , , , , , , , , ,			5				cludes specimens
BH3		10.40		Test type:	Α										which are not co	,	the tolerances
				**Compliant test:	Yes										specified in the		
Lab sample I			2101188	Failure mode	М										Axial	Diametral	Irregular
Sampling	Ву	Date:		Failure load [kN]	2										2		
		Method:	-	Defect orientation	90°										-	-	-
Moisture co				ls [MPa]	0.64										0.64		
Moisture co	ntent ty	·		Is ₍₅₀₎ [MPa]	0.67										0.67		
Density (t/m	1 ³ )	As received	Dry	Lithological description	GNEISS								-	Test perfor	med on samples submitte	d to the laboratory. S	oaked for at least 24 hours.
		ND	ND									Cli	ent ref.:				
Definitions:	Tes	t types: A = Axial	, <b>D</b> = Diametral, <b>I</b>	L = Lump / Irregular		n/a	a = Not ap	plicable	, <b>ND</b> = N	ot deter	mined						platen gap at failure
	Fail	ure modes: B = A	long bedding pla	ane, <b>M</b> = Through rock ma	trix, <b>J</b> = A	long joi	nt, <b>W</b> = A	long a p	lane of v	veakness	s, <b>DF</b> = Di	dn't Fail		1	being outsi	de of the toler	ance of the method
Cert. ref.:	204350	97_TRP21-0007_	PtLd_2101187 - 2	2101188_Rep-21061773			Spe	cimens p	orepared	l by:		SL			Appro	oved signatory	<i>r</i> :
				: 1961 - Site:1598 - Perth				Tests pe	rformed	l by:	SL	27/0	1/21		Sea	n Lenihan	
NATA			•	th ISO/IEC 17025 - Testing			I	Results r	eviewed	l by:	SL	enihan.			200	1	
		THIS DOCUME	NT SHALL ONLY	Y BE REPRODUCED IN F	JLL			Da	te repor	ted:	27/	01/2021			Sean Lenihan	- Laboratory T	echnician
	Phone:	+61 (0)8 9441 070	0	Fax: +61 (0)8 9441	0701			E-mail:		perthlab@	golder.co	om.au			Web:	www.golder	.com.au

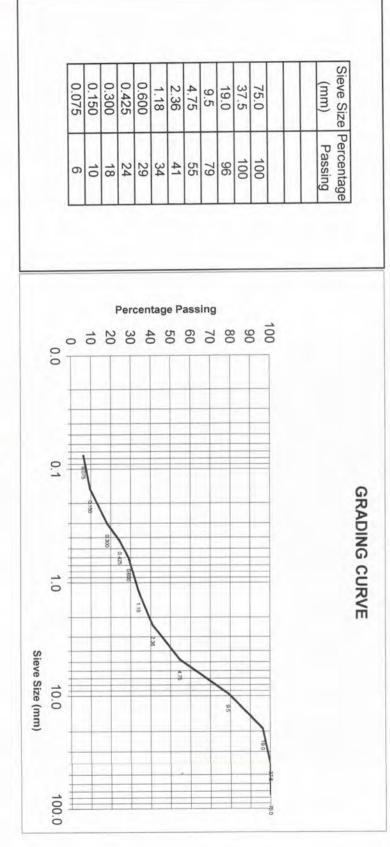
[																	
Rocks test	ting - D	etermination	of point load	l strength index													
Including te	ests on;	Axial ( <b>A</b> ), Diam	etral ( <b>D</b> ) or irre	egular Lump (L) specimer	าร			TEST	r repc	DRT - S	UMM	ARY O	F ANAI	YSIS		GOL	DER
AS 4133.4.:	1-2007																
Test request	t ID:	TRP21-0007	Lab san	n <b>ple IDs:</b> 2101189	- 21013	1810		Lab rep	ort ref.:		L	PER_210	61774			Golder Ass	ociates Pty Ltd
Client:		Smiths 2014 Pty	Ltd			Proje	ct refere	nce:			Smith's	Beach -			PERTH GE	OTECHNICAL	LABORATORY
Client addre	ess:	Level 3/338 Bark	ker Road, Subiaco	o WA 6008			Locat	ion:			Yalli	ngup					84 Guthrie Street, Osborne Park,
Project ID:		2043	5097	Project name:				Smit	h's Beac	h Redev	elopmen	nt					Western Australia 6017
Explorator	y hole	Sample	Specimen	Sub-specimen:	<b>S</b> ₁	S ₂	S ₃	S ₄	S₅	<b>S</b> ₆	<b>S</b> ₇	S ₈	S9	S ₁₀	Location test co	nducted:	Laboratory
referen	nce	depth (m)	reference	Sub-specifien.	51	52	53	54	5	<b>J</b> 6	37	<b>J</b> 8	39	J ₁₀	Mean values:	Calculation exclu	ides specimens
BH5		6.40		Test type:	D										which are not co	,	e tolerances
				**Compliant test:	Yes										specified in the t	test method	
Lab sample	ID	LPER202	2101189	Failure mode	Μ										Axial	Diametral	Irregular
Sampling	Ву	Date:		Failure load [kN]	0.59											0.59	
Sampling		Method:	-	Defect orientation	180°										-	-	-
Moisture co	ontent			ls [MPa]	0.2											0.2	
Moisture co	ontent ty	pe:		ls ₍₅₀₎ [MPa]	0.2											0.2	
Density (4)	.3,	As received	Dry		CNEICO								History:	Test perf	ormed on samples	submitted to the	laboratory.
Density (t/m	n)	ND	ND	- Lithological description	GIVEISS							Cli	ent ref.:				
Explorator	y hole	Sample	Specimen	Sub-specimen:	S₁	S ₂	S ₃	S₄	S ₅	S ₆	\$ ₇	S ₈	Sg	S ₁₀	Location test co	nducted:	Laboratory
referen	nce	depth (m)	reference		•1	•2	•3	•4	•5	-6	•/	-8	eg	-10	Mean values:	Calculation exclu	ides specimens
BH5		7.65		Test type:	Α										which are not co		e tolerances
				**Compliant test:	Yes										specified in the t	test method	
Lab sample	ID	LPER202	1011810	Failure mode	Μ										Axial	Diametral	Irregular
Sampling	Ву	Date:		Failure load [kN]	1.3										1.3		
oumping		Method:	-	Defect orientation	90°										-	-	-
Moisture co	ontent			ls [MPa]	0.4										0.4		
Moisture co	ontent ty	pe:	-	Is ₍₅₀₎ [MPa]	0.42										0.42		
Density (t/m	n ³ )	As received	Dry	Lithological description	GNEISS								History:	Test perf	ormed on samples	submitted to the	laboratory.
Density (t/1	,	ND	ND	Enthological description	GIVEISS							Cli	ent ref.:				
Definitions:	Tes	t types: A = Axial,	, <b>D</b> = Diametral, I	L = Lump / Irregular		n/a	= Not a	oplicable	, <b>ND</b> = N	ot deter	mined						aten gap at failure
Demitions.	Fail	ure modes: B = A	long bedding pla	ane, <b>M</b> = Through rock mat	rix, <b>J</b> = A	Along joi	nt, <b>W</b> = A	long a p	lane of v	veakness	s, <b>DF</b> = Di	dn't Fail			being outsid	de of the tolera	nce of the method
Cert. ref.:	204350	97_TRP21-0007_	PtLd_2101189 -	21011810_Rep-21061774			Spe	cimens p	prepared	l by:		SL			Appro	oved signatory:	
		NATA accre	ditation number	: 1961 - Site:1598 - Perth				Tests pe	rformed	l by:	SL	27/0	)1/21		Car	n Lenihan	
NATA		Accredited for	or compliance wi	th ISO/IEC 17025 - Testing			I	Results r	eviewed	l by:	SL	enihan.			284	A Contreet	
		THIS DOCUME	NT SHALL ONL	Y BE REPRODUCED IN FL	JLL			Da	te repor	ted:	27/	01/2021			Sean Lenihan	- Laboratory Te	chnician Guisse
	Phone:	+61 (0)8 9441 070	0	Fax: +61 (0)8 9441	0701			E-mail:		perthlab@	golder.co	om.au			Web:	www.golder.co	om.au

Including tests on	; Axial ( <b>A</b> ), Diam	etral ( <b>D</b> ) or irre	egular Lump ( <b>L)</b> specime	ns			TEST	r Repo	RT - S	UMMA	ARY OF	ANAL	YSIS		GOI	DER
AS 4133.4.1-2007																
Test request ID:	TRP21-0007	Lab sa	ample ID: 210	)11811			Lab rep	ort ref.:		LI	PER_210	61775				ociates Pty Lto
Client:	Smiths 2014 Pty	Ltd			Projec	ct refere	nce:			Smith's	Beach -			PERTH G	BEOTECHNICA	L LABORATOR
Client address:	Level 3/338 Barl	ker Road, Subiac	o WA 6008			Locat	ion:			Yalli	ngup					84 Guthrie Stree Osborne Par
Project ID:	2043	5097	Project name:				Smit	h's Beac	h Redev	elopmen	t					Western Australia 601
Exploratory hole reference	Sample depth (m)	Specimen reference	Sub-specimen:	S ₁	S ₂	S₃	S ₄	S₅	S ₆	<b>S</b> ₇	S ₈	S9	<b>S</b> ₁₀	Location test o	conducted: Calculation excl	Laboratory
	8.15		Test type:	D											compliant with t	
BH5			**Compliant test:	Yes										specified in the		
Lab sample ID	LPER202	1011811	Failure mode	М										Axial	Diametral	Irregular
By	Date:		Failure load [kN]	12											12	
Sampling	Method:	-	Defect orientation	180°										-	-	-
Moisture content			Is [MPa]	4.8											4.8	
Moisture content t	ype:		Is ₍₅₀₎ [MPa]	4.8											4.8	
Density (t/m³)	As received	Dry	Lithological description	GNEISS									Test per	formed on sample	es submitted to the	a laboratory.
Find and and had	ND	ND			1					T	Clie	ent ref.:		<b>.</b>		
Exploratory hole reference	Sample depth (m)	Specimen reference	Sub-specimen:	<b>S</b> ₁	S ₂	S ₃	S ₄	S ₅	S ₆	\$ ₇	S ₈	S ₉	<b>S</b> ₁₀	Location test o	Calculation excl	udas spacimans
			Test type:												compliant with t	
			**Compliant test:											specified in the	•	
ab sample ID			Failure mode											Axial	Diametral	Irregular
By	Date:		Failure load [kN]													
Sampling ,	Method:	-	Defect orientation											-	-	_
Moisture content			ls [MPa]													
Moisture content t	vpe:		Is ₍₅₀₎ [MPa]													
Density (t/m ³ )	As received	Dry	Lithological description									History:				
											Clie	ent ref.:				
Definitions:			<b>L</b> = Lump / Irregular ane, <b>M</b> = Through rock mat	:rix, <b>J</b> = /	•	ı = Not ap nt, <b>W</b> = A	•	,			dn't Fail					laten gap at failur nce of the metho
Cert. ref.: 204350	)97_TRP21-0007_	PtLd_21011811	_Rep-21061775			Spe	ecimen p	prepared	by:		SL			Арр	roved signatory:	:
$\wedge$			r: 1961 - Site:1598 - Perth				Test pe	rformed	by:	SL	27/0	1/21		C	an Lenihan	2
NATA	Accredited for	or compliance w	ith ISO/IEC 17025 - Testing				Result r	eviewed	by:	SL	enihan			See	an Utnikan	
$\mathbf{\vee}$	THIS DOCUME	NT SHALL ONL	Y BE REPRODUCED IN FU	JLL				te repor	-	27/	01/2021			Sean Lenihar	n - Laboratory Te	chnician
Phone	: +61 (0)8 9441 070	0	Fax: +61 (0)8 9441	0701	I		E-mail:		perthlab@		om.au	l		Web:	www.golder.o	com.au

Rocks testing - Determination of point load strength index



Laboratories


Qualcon

as trustee for Qualcon Unit Trust (ABN: 34 736 601 547 ACN: 068 691 369)

Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: qualcon@iinet.net.au

# PARTICLE SIZE DISTRIBUTION REPORT

5.6	Moisture Content (%) 5.6	AS1289.3.6.1, AS1289.1.2.1 - 6.4(b)
Santy Gravel - Base	Sample Description	22-Dec-20 (Ex Pavement)
7381	Test Number	C Prince
13-Jan-21	Date of Report	Smiths Beach Road, Yallingup (PD1 - 0.04m to 0.16m)
QL3698-21	Report Number	Golder Associates Pty Ltd



Accredited for compliance with ISO/IEC 17025 - Testing

> AS1289.3.61.REP.JAN2021 Approved by : G Donatti

Page_1_ of _2_

Authorised Signatory : 5 Can-

G J Donatti



as trustee for Qualcon Unit Trust ABN: 34 736 601 547 ACN: 068 691 369 Unit 2/2 Lorries Court, MALAGA. W.A. 6090. Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: qualcon@iinet.net.au

# CASAGRANDE REPORT

Report Number	QL3698-21	Date of Report	13-Jan-21
Client	Golder Associates Pty Ltd		
Location	Smiths Beach Road, Yalling	up (PD1 - 0.04m to	0.16m)
Test Methods	AS1289.3.1.2, AS1289.3.2.1,	AS1289.3.3.1. AS1	289.3.4.1
Material Description	Sandy Gravel - Base (Ex Pa	vement)	

Test Number		7381	
Material Status		Air Dried	
Preparation Method		Dry Sieved	
Liquid Limit (w _L )	(%)	NO	
Plastic Limit (w _P )	(%)	ND	
Plasticity Index (I _P )	(%)	NP	
Linear Shrinkage (LS)	(%)	NO	
Cracking		-	
Crumbling		-	
Curling			

<u>Notes on Test:</u> Liquid Limt = (NO) Plastic Limit = (ND) Plasticity Index = (NP)

Linear Shrinkage = (NO)

Not Obtainable, material slips in cup, test is not applicable. Not Determined, material can not be rolled. Non Plastic, when neither the liquid limit or Plastic Limit can be determined. Not Obtainable, material slips in cup, test is not applicable.

Authorised Signatory

e

G.J.Donatti

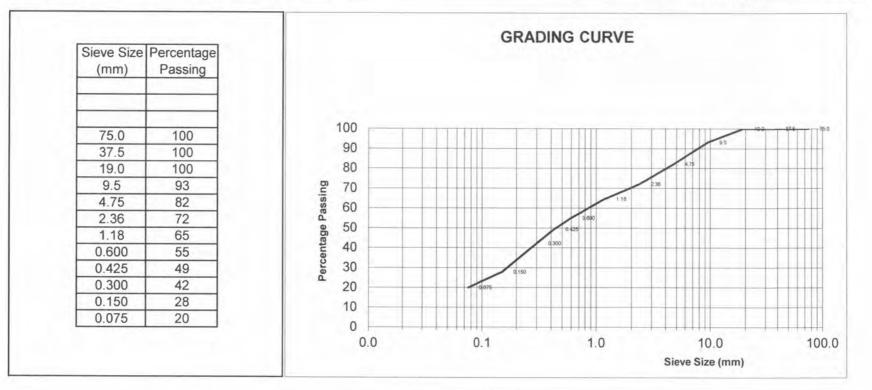
Page

2 of 2

AS1289.3.1.2, AS1289.3.2.1, AS1289.3.3.1, AS1289.3.4.1, REP. JAN2021 Approved By: O. Denetti






Unit 2/2 Lorries Court, MALAGA. W.A. 6090.

as trustee for Qualcon Unit Trust (ABN: 34 736 601 547 ACN: 068 691 369)

Phone: (08) 9249 9895 Fax: (08) 9248 1822 Emal: qualcon@iinet.net.au

# PARTICLE SIZE DISTRIBUTION REPORT

Client	Golder Associates Pty Ltd	Report Number	QL3699-21
Location	Smiths Beach Road, Yallingup (PD3 - 0.30m to 0.49m)	Date of Report	13-Jan-21
Sampled By	C Prince	Test Number	7382
Sample Date	22-Dec-20 (Ex Pavement)	Sample Description	Clayey Gravelly Sand
Test Method	AS1289.3.6.1, AS1289.1.2.1 - 6.4(b)	Moisture Content (%)	





Authorised Signatory G J Donatti

Page 1_of 2_

AS1289.3.61.REP.JAN2021 Approvec by : G Donatti



as trustee for Qualcon Unit Trust ABN: 34 736 601 547 ACN: 068 691 369 Unit 2/2 Lorries Court, MALAGA. W.A. 6090. Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: qualcon@iinet.net.au

# CASAGRANDE REPORT

Report Number	QL3699-21	Date of Report	13-Jan-21
Client	Golder Associates Pty Ltd		
Location	Smiths Beach Road, Yalling	up (PD3 - 0.30m to	0.49m)
Test Methods	AS1289.3.1.2, AS1289.3.2.1,	AS1289.3.3.1. AS1	289.3.4.1
Material Description	Clayey Gravelly Sand - Sub	grade (Ex Pavemen	it)

Test Number		7382		
Material Status		Air Dried		
Preparation Method		Dry Sieved		
Liquid Limit ( $w_L$ )	(%)	20		
Plastic Limit (w _P )	(%)	16		
Plasticity Index (I _P )	(%)	4		
Linear Shrinkage (LS)	(%)	1.0		
Cracking		Yes		
Crumbling		-		
Curling		-		

**Authorised Signatory** 

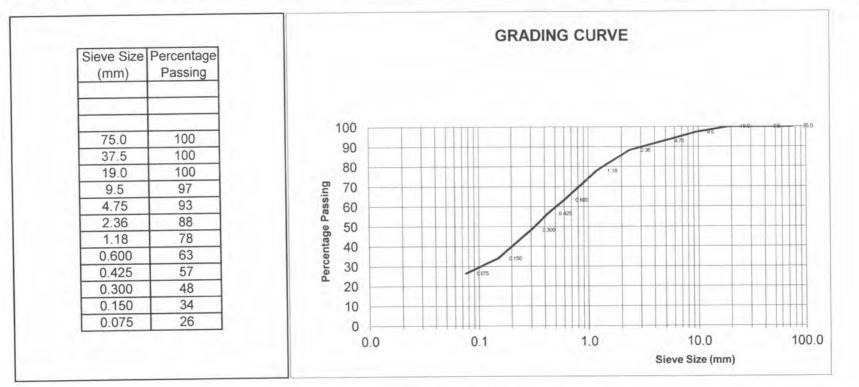
2 le 6 G.J.Donatti

Page

2 of 2

AS1289.3.1.2, AS1289.3.2.1, AS1289.3.3.1. AS1289.3.4.1.REP.JAN2021 Approved By: O. Donetti






N.A.T.A. Accreditation Number: 10731 Unit 2/2 Lorries Court, MALAGA. W.A. 6090. as trustee for Qualcon Unit Trust (ABN: 34 736 601 547 ACN: 068 691 369)

Phone: (08) 9249 9895 Fax: (08) 9248 1822 Emal: qualcon@iinet.net.au

# PARTICLE SIZE DISTRIBUTION REPORT

Client	Golder Associates Pty Ltd	Report Number	QL3700-	-21
Location	Smiths Beach Road, Yallingup (PD4 - 0.49m to 0.99m)	Date of Report	13-Jan-2	21
Sampled By	C Prince	Test Number	7383	
Sample Date	22-Dec-20 (Ex Pavement)	Sample Description	Gravelly	
Test Method	AS1289.3.6.1, AS1289.1.2.1 - 6.4(b)	Moisture Content (%)	11.9	(Below Subgrade)





Authorised Signatory G J Donatti

Page 1_ of 2_

AS1289.3.6.1 RIP.JAN2021 Approved by G Donatti



as trustee for Qualcon Unit Trust ABN: 34 736 601 547 ACN: 068 691 369 Unit 2/2 Lorries Court, MALAGA. W.A. 6090. Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: qualcon@iinet.net.au

# CASAGRANDE REPORT

Report Number	QL3700-21	Date of Report	13-Jan-21
Client	Golder Associates Pty Ltd		
Location	Smiths Beach Road, Yalling	up (PD4 - 0.49m to	0.99m)
Test Methods	AS1289.3.1.2, AS1289.3.2.1,	AS1289.3.3.1. AS1	289.3.4.1
Material Description	Gravelly Clayey Sand - Belo	w Subgrade (Ex Pa	avement)

Test Number		7383	
Material Status		Air Dried	
Preparation Method		Dry Sieved	
Liquid Limit ( $w_L$ )	(%)	30	
Plastic Limit (w _P )	(%)	18	
Plasticity Index (I _P )	(%)	12	
Linear Shrinkage (LS)	(%)	5.0	
Cracking		Yes	
Crumbling		-	
Curling		-	

**Authorised Signatory** 

14 0

G.J.Donatti

Page

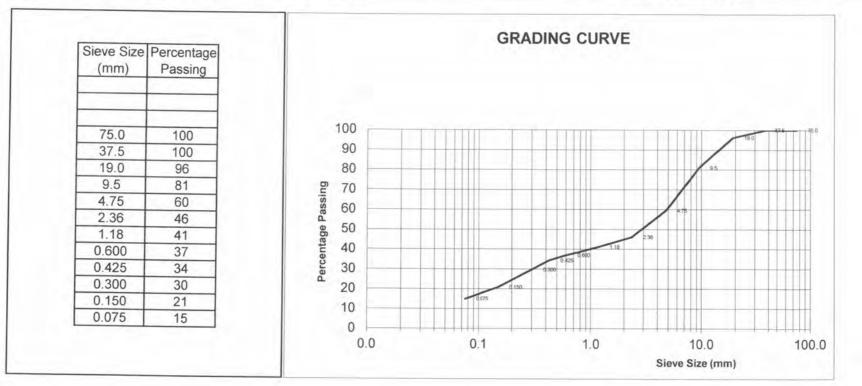
2 of 2

AS1289.3.1.2, AS1289.3.2.1, AS1289.3.3.1, AS1289.3.4.1, REP.JAN2021 Approved Dy. O. Donetti





N.A.T.A. Accreditation Number: 10731 Unit 2/2 Lorries Court, MALAGA. W.A. 6090.


Authorised Signatory :

as trustee for Qualcon Unit Trust (ABN: 34 736 601 547 ACN: 068 691 369)

Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: gualcon@iinet.net.au

# PARTICLE SIZE DISTRIBUTION REPORT

Golder Associates Pty Ltd	Report Number	QL3701-21
Smiths Beach Road, Yallingup (PD6 - 0.03m to 0.29m)		13-Jan-21
C Prince	Test Number	7384
22-Dec-20 (Ex Pavement)	Sample Description	Clayer Sandy Gravel - Base
AS1289.3.6.1, AS1289.1.2.1 - 6.4(b)		
	Smiths Beach Road, Yallingup (PD6 - 0.03m to 0.29m) C Prince 22-Dec-20 (Ex Pavement)	Smiths Beach Road, Yallingup (PD6 - 0.03m to 0.29m)       Date of Report         C Prince       Test Number         22-Dec-20 (Ex Pavement)       Sample Description



G J Donatti



Accredited for compliance with ISO/IEC 17025 - Testing Page _1_ of _2_

AS1289.3.6.1 REP JAN2021 Approved by G Donatti



N.A.T.A. Accreditation Number: 10731 as trustee for Qualcon Unit Trust ABN: 34 736 601 547 ACN: 068 691 369 Unit 2/2 Lorries Court, MALAGA. W.A. 6090. Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: qualcon@iinet.net.au

# CASAGRANDE REPORT

Report Number	QL3701-21	Date of Report 13-Jan-21
Client	Golder Associates Pty Ltd	
Location	Smiths Beach Road, Yalling	up (PD6 - 0.03m to 0.29m)
Test Methods	AS1289.3.1.2, AS1289.3.2.1,	AS1289.3.3.1. AS1289.3.4.1
Material Description	Clayey Sandy Gravel - Base	(Ex Pavement)

Test Number		7384		
Material Status		Air Dried		
Preparation Method		Dry Sieved		
Liquid Limit ( $w_L$ )	(%)	21		
Plastic Limit (w _P )	(%)	16		
Plasticity Index (I _P )	(%)	5		
Linear Shrinkage (LS)	(%)	2.5		
Cracking		Yes		
Crumbling				
Curling		14/		

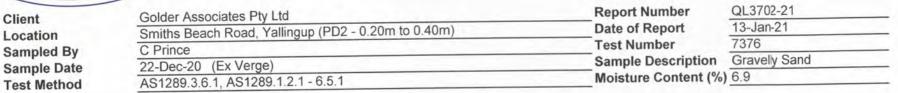
**Authorised Signatory** 

G.J.Donatti

Page

2 of 2

AS1289.3.1.2, AS1289.3.2.1, AS1289.3.3.1, AS1289.3.4.1.REP.JAN2021 Approved Dy: O. Donatti






N.A.T.A. Accreditation Number: 10731 Unit 2/2 Lorries Court, MALAGA. W.A. 6090. as trustee for Qualcon Unit Trust (ABN: 34 736 601 547 ACN: 068 691 369)

Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: qualcon@iinet.net.au

# PARTICLE SIZE DISTRIBUTION REPORT







Authorised Signatory G J Donatti

Page 1_of_5_

AS1289.3.6.1.REP.JAN2021 Approved by: G Donatti



as trustee for Qualcon Unit Trust ABN: 34 736 601 547 ACN: 068 691 369 Unit 2/2 Lorries Court, MALAGA. W.A. 6090. Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: gualcon@iinet.net.au

# CASAGRANDE REPORT

QL3702-21	Date of Report	13-Jan-21
Golder Associates Pty Ltd		
Smiths Beach Road, Yalling	up (PD2 - 0.20m to	0.40m)
AS1289.3.1.2, AS1289.3.2.1,	AS1289.3.3.1. AS1	289.3.4.1
Gravelly Sand (Ex Verge)		
	Golder Associates Pty Ltd Smiths Beach Road, Yalling AS1289.3.1.2, AS1289.3.2.1,	Golder Associates Pty Ltd Smiths Beach Road, Yallingup (PD2 - 0.20m to AS1289.3.1.2, AS1289.3.2.1, AS1289.3.3.1. AS1

Test Number		7376		 
Material Status		Air Dried		
Preparation Method		Dry Sieved		 
Liquid Limit (w _L )	(%)	NO		
Plastic Limit (w _P )	(%)	ND		
Plasticity Index (I P)	(%)	NP		
Linear Shrinkage (LS)	(%)	NO		 _
Cracking		· ·		
Crumbling		-		1
Curling		-		

Notes on Test: Liquid Limt = (NO) Plastic Limit = (ND) Plasticity Index = (NP) Linear Shrinkage = (NO)

Not Obtainable, material slips in cup, test is not applicable. Not Determined, material can not be rolled. Non Plastic, when neither the liquid limit or Plastic Limit can be determined. Not Obtainable, material slips in cup, test is not applicable.

Authorised Signatory

G.J.Donatti

Page

2 of 5

AS1289.3.1.2, AS1289.3.2.1, AS1289.3.3.1, AS1289.3.4.1.REP.JAN2021 Approved By: G. Donatti





as trustee for Qualcon Unit Trust ABN: 34 736 601 547 ACN: 068 691 369

# CALIFORNIAN BEARING RATIO OF REMOULDED SPECIMEN REPORT

Report Number	QL3702-21	Date of Report	13-Jan-21				
Client	Golder Associates Pty Ltd						
Location	Smiths Beach Road, Yallin		m)				
Test Methods	AS1289.6.1.1, AS1289.5.1	2.1, AS1289.2.1.1					
Sampling Method	AS1289.1.2.1 - 6.5.1	Date Sampled	22-Dec-20				
Date Tested	11-Jan-21	Test Number	7376				
Material Description	Gravelly Sand (Ex Verge)						

### LABORATORY COMPACTION DETAILS

Maximum Dry Density (t/m ³ )	1.93
Optimum Moisture Content (%)	11.0
TEST CONDITIONS OF SPECIMEN	
Condition of Specimen	Soaked
Soaking Period	4 Days
Surcharge Mass (kg)	6.75
Dry Density Ratio of Specimen (%)	95
Compactive Effort Used in Remoulding Specimen (mass of rammer (kg)/drop of rammer (mm)/no. of layers/blows per layer	4.9/450/5/10

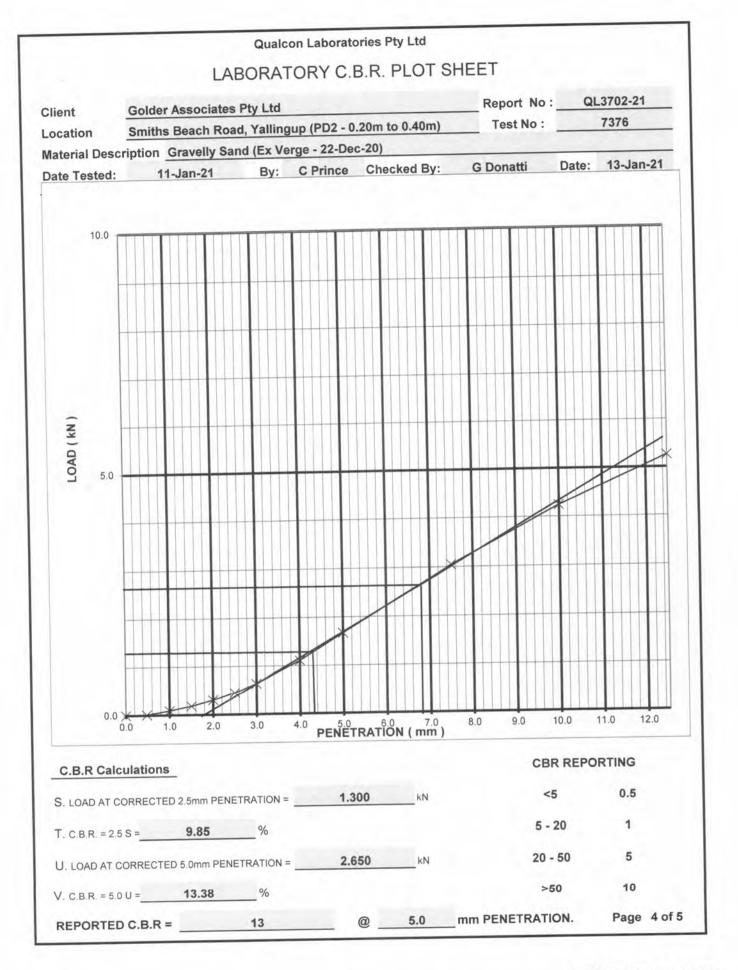
### TEST RESULTS

Dry Density (t/m ³ )	
Specimen after Compaction	1.84
Specimen after Soaking	1.84
Dry Density Ratio (%)	
Specimen after Compaction	95
Specimen after Soaking	96
Moisture Content (%)	
Specimen at Compaction	10
Specimen after Soaking	12
Top 30mm Layer of Specimen after Penetration	14
Entire Depth of Specimen after Penetration	15
Moisture Ratio (%)	
Specimen at Compaction	95
Specimen after Soaking	115
Top 30mm Layer of Specimen after Penetration	132
Entire Depth of Specimen after Penetration	142
Specimen Swell (%)	0.0
CALIFORNIAN BEARING RATIO (%)	13
PENETRATION (mm)	5.0

Note 1 MDD/OMC figures were obtained from Qualcon Laboratories Pty Ltd Report No. QL3702-21, Page 5 of 5.

Note 2 Percentage of material retained on 19.0mm sieve size was 10.

Note 3 : The sample was cured for a minumum of 2 Hours.


Note 4 : The liquid limit as determined by Actual (Not Obtainable - Non Plastic).

Authorised Signatory

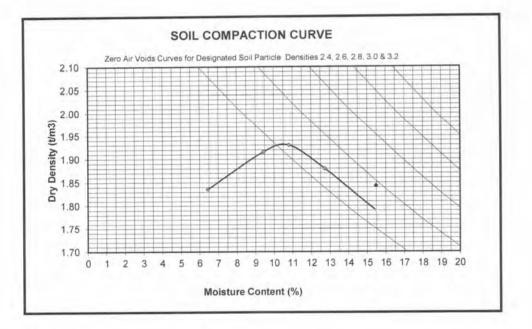
G. J. Donatti

Page 3 of 5 AS1289 6.1.1.REP.JAN2021 Approved by : G Donatti








N.A.T.A. Accreditation Number: 10731

as trustee for Qualcon Unit Trust ABN: 34 736 601 547 ACN: 068 691 369 Unit 2/2 Lorries Court, MALAGA. W.A. 6090. Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: qualcon@iinet.net.au

# SOIL COMPACTION REPORT

Report Number	QL3702-21	Date of Report	13-Jan-21
Client	Golders & Associates Pty Ltd	Test Number	7376
Location	Smiths Beach Road, Yallingup (PD2 -	0.20m to 0.40m)	
Test Methods	AS1289.1.1, AS1289.2.1.1, AS1289.5.	2.1, AS1289.1.2.1.6.4(b)	_
Material Type	Gravelly Sand (Ex Verge - 22-Dec-20)		
Compaction Type	Modified (Small Mould)	Minimum Curing Time	2hrs
Liquid Limit Method	AS1289.3.1.2		
Liquid Limit Value	Sands and granular material		

Maximum Dry Density (t/m ³ )	1.93
Optimum Moisture Content(%)	11.0
Percent Retained on 19.0mm sieve	10
Percent Retained on 37.5mm sieve	0



Notes:

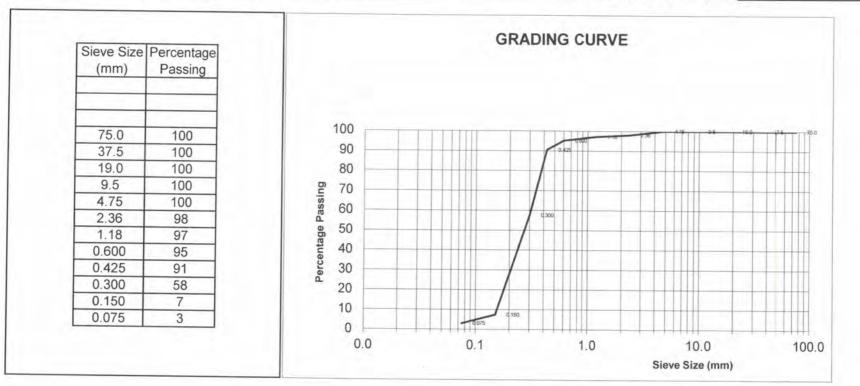
Authorised Signatory:

G. J. Donatti

Page: 5 of 5 AS1289.5.2.1, .5.1.1.REP.JAN2020 Approved By: G. Donatti






Unit 2/2 Lorries Court, MALAGA. W.A. 6090.

as trustee for Qualcon Unit Trust (ABN: 34 736 601 547 ACN: 068 691 369)

Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: qualcon@iinet.net.au

# PARTICLE SIZE DISTRIBUTION REPORT

Client	Golder Associates Pty Ltd	Report Number	QL3703-21
Location	Smiths Beach Road, Yallingup (PD6 - 0.10m to 0.30m)	Date of Report	13-Jan-21
Sampled By	C Prince	Test Number	7377
Sample Date	22-Dec-20 (Ex Verge)	Sample Description	
Test Method	AS1289.3.6.1, AS1289.1.2.1 - 6.5.1	Moisture Content (%)	





Accredited for compliance with ISO/IEC 17025 - Testing

Qualcon Laboratories

de Authorised Signatory 10 G J Donatti

Page 1_ of 4_

AS1289.3.6.1.REP.JAN2021 Approved by : G Donatti



as trustee for Qualcon Unit Trust ABN: 34 736 601 547 ACN: 068 691 369 Unit 2/2 Lorries Court, MALAGA. W.A. 6090. Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: qualcon@iinet.net.au

# CASAGRANDE REPORT

Report Number	QL3707-21	Date of Report	13-Jan-21	
Client	Golder Associates Pty Ltd			
Location	Smiths Beach Road, Yalling	up (PD6 - 0.10m to	0.30m)	
Test Methods	AS1289.3.1.2, AS1289.3.2.1,			
Material Description	Sand (Ex Verge)			

Test Number		7377	
Material Status		Air Dried	
Preparation Method		Dry Sieved	
Liquid Limit (w _L )	(%)	NO	
Plastic Limit (w _P )	(%)	ND	
Plasticity Index (I _P )	(%)	NP	
Linear Shrinkage (LS)	(%)	NO	
Cracking		1. 1. <del>2</del> 00 1. 1.	
Crumbling		-	
Curling		-	

<u>Notes on Test:</u> Liquid Limt = (NO) Plastic Limit = (ND) Plasticity Index = (NP) Linear Shrinkage = (NO)

Not Obtainable, material slips in cup, test is not applicable. Not Determined, material can not be rolled. Non Plastic, when neither the liquid limit or Plastic Limit can be determined. Not Obtainable, material slips in cup, test is not applicable.

**Authorised Signatory** 

G.J.Donatti

Page

2 of 4

AS1289.3.1.2, AS1289.3.2.1, AS1289.3.3.1, AS1289.3.4.1.REP.JAN2021 Approved By: G. Donatti





as trustee for Qualcon Unit Trust ABN: 34 736 601 547 ACN: 068 691 369 Unit 2/2 Lorries Court, MALAGA. W.A. 6090. Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: qualcon@iinet.net.au

# CALIFORNIAN BEARING RATIO OF REMOULDED SPECIMEN REPORT

Report Number	QL3703-21	Date of Report	13-Jan-21
Client	Golder Associates Pty Lt		10 001121
Location		lingup (PD6 - 0.10m to 0.3	()m)
Test Methods	AS1289.6.1.1, AS1289.5	.2.1, AS1289.2.1.1	0111
Sampling Method	AS1289.1.2.1 - 6.5.1	Date Sampled	22-Dec-20
Date Tested	11-Jan-21	Test Number	7377
Material Description	Sand (Ex Verge)		

### LABORATORY COMPACTION DETAILS

Maximum Dry Density (t/m ³ )	1.64
Optimum Moisture Content (%)	16.5
TEST CONDITIONS OF SPECIMEN	6.01
Condition of Specimen	Soaked
Soaking Period	4 Days
Surcharge Mass (kg)	6.75
Dry Density Ratio of Specimen (%)	95
Compactive Effort Used in Remoulding Specimen	
(mass of rammer (kg)/drop of rammer (mm)/no. of layers/blows per layer	4.9/450/5/11
TEST RESULTS	
Dry Density (t/m ³ )	
Specimen after Compaction	1.56
Specimen after Soaking	1.57
Dry Density Ratio (%)	
Specimen after Compaction	95
Specimen after Soaking	95
Moisture Content (%)	
Specimen at Compaction	16
Specimen after Soaking	21
Top 30mm Layer of Specimen after Penetration	23
Entire Depth of Specimen after Penetration	23
Moisture Ratio (%)	
Specimen at Compaction	99
Specimen after Soaking	129
Top 30mm Layer of Specimen after Penetration	143
Entire Depth of Specimen after Penetration	140
Specimen Swell (%)	0.0
CALIFORNIAN BEARING RATIO (%)	17
PENETRATION (mm)	2.5

Note 1 MDD/OMC figures were obtained from Qualcon Laboratories Pty Ltd Report No. QL3703-21, Page 4 of 4.

Note 2 Percentage of material retained on 19.0mm sieve size was 0.

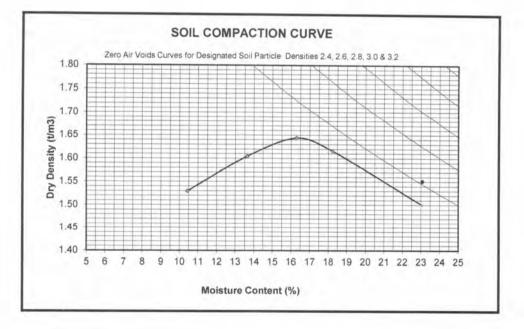
Note 3 : The sample was cured for a minumum of 2 Hours.

Note 4 : The liquid limit as determined by Actual (Not Obtainable - Non Plastic).

Authorised Signatory : 56 G. J. Donatti

Page 3 of 4 AS1289.6.1.1.REP.JAN2021 Approved by : G Donatti






as trustee for Qualcon Unit Trust ABN: 34 736 601 547 ACN: 068 691 369 Unit 2/2 Lorries Court, MALAGA. W.A. 6090. Phone: (08) 9249 9895 Fax: (08) 9248 1822 Email: gualcon@iinet.net.au

# SOIL COMPACTION REPORT

QL3703-21	Date of Papar	12 100 04
Golders & Associates Ptv Ltd		
	D6 = 0.10m to 0.30m)	7377
AS1289.1.1. AS1289.2.1.1. AS12	89 5 2 1 AS1289 1 2 1 6 4/b)	
Sand (Ex Verge - 22-Dec-20)	55.5.2.1, AS1253.1.2.1.6.4(b)	
	Minimum Curing Time	2hrs
AS1289.3.1.2		ZHIS
Sands and granular material		
	Golders & Associates Pty Ltd Smiths Beach Road, Yallingup (P AS1289.1.1, AS1289.2.1.1, AS12 Sand (Ex Verge - 22-Dec-20) Modified (Small Mould)	Golders & Associates Pty Ltd       Test Number         Smiths Beach Road, Yallingup (PD6 - 0.10m to 0.30m)       AS1289.1.1, AS1289.2.1.1, AS1289.5.2.1, AS1289.1.2.1.6.4(b)         Sand (Ex Verge - 22-Dec-20)       Modified (Small Mould)         Modified (Small Mould)       Minimum Curing Time         AS1289.3.1.2       AS1289.3.1.2

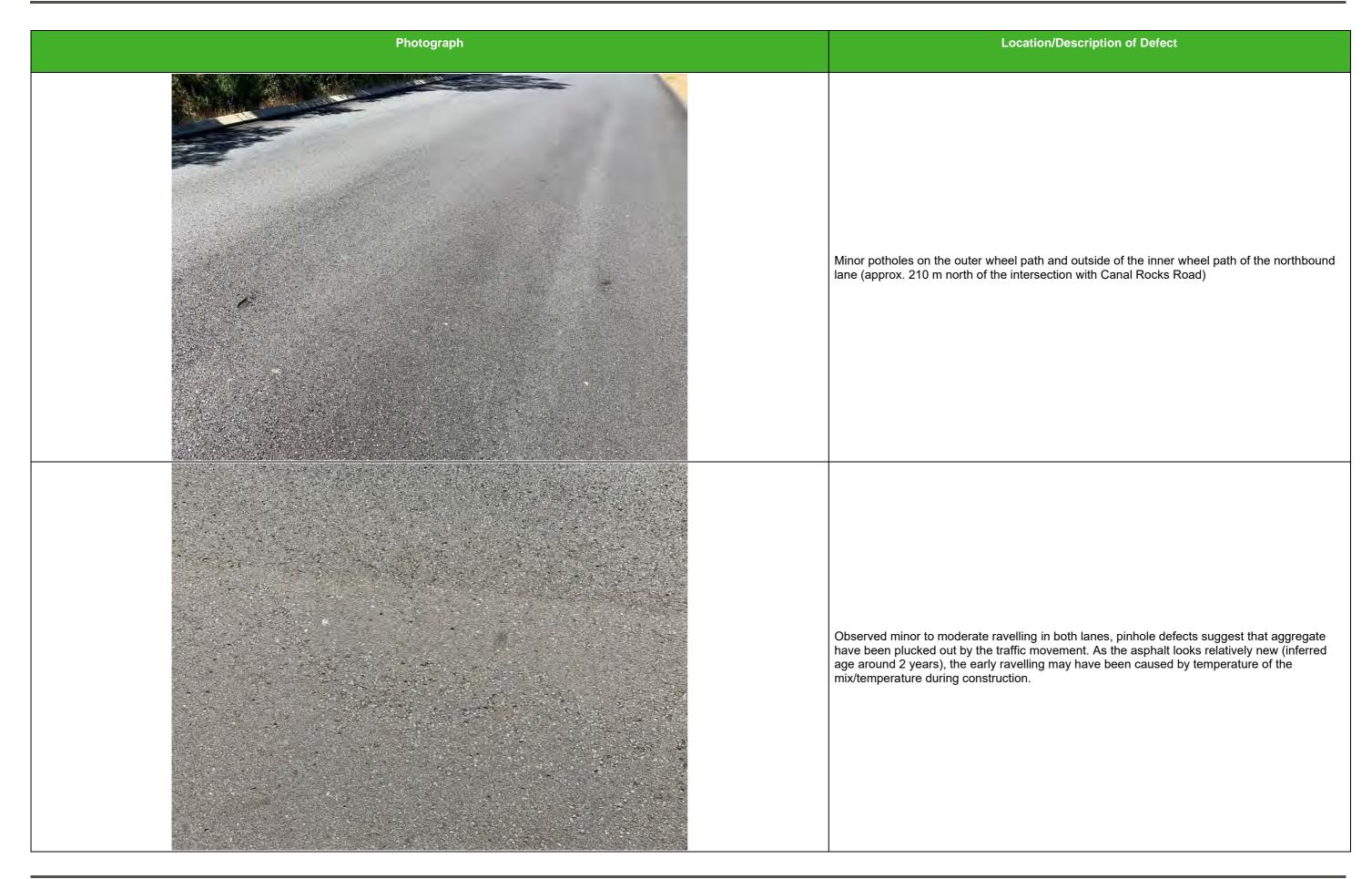
Maximum Dry Density (t/m ³ )	1.64
Optimum Moisture Content(%)	16.5
Percent Retained on 19.0mm sieve	0
Percent Retained on 37.5mm sieve	0

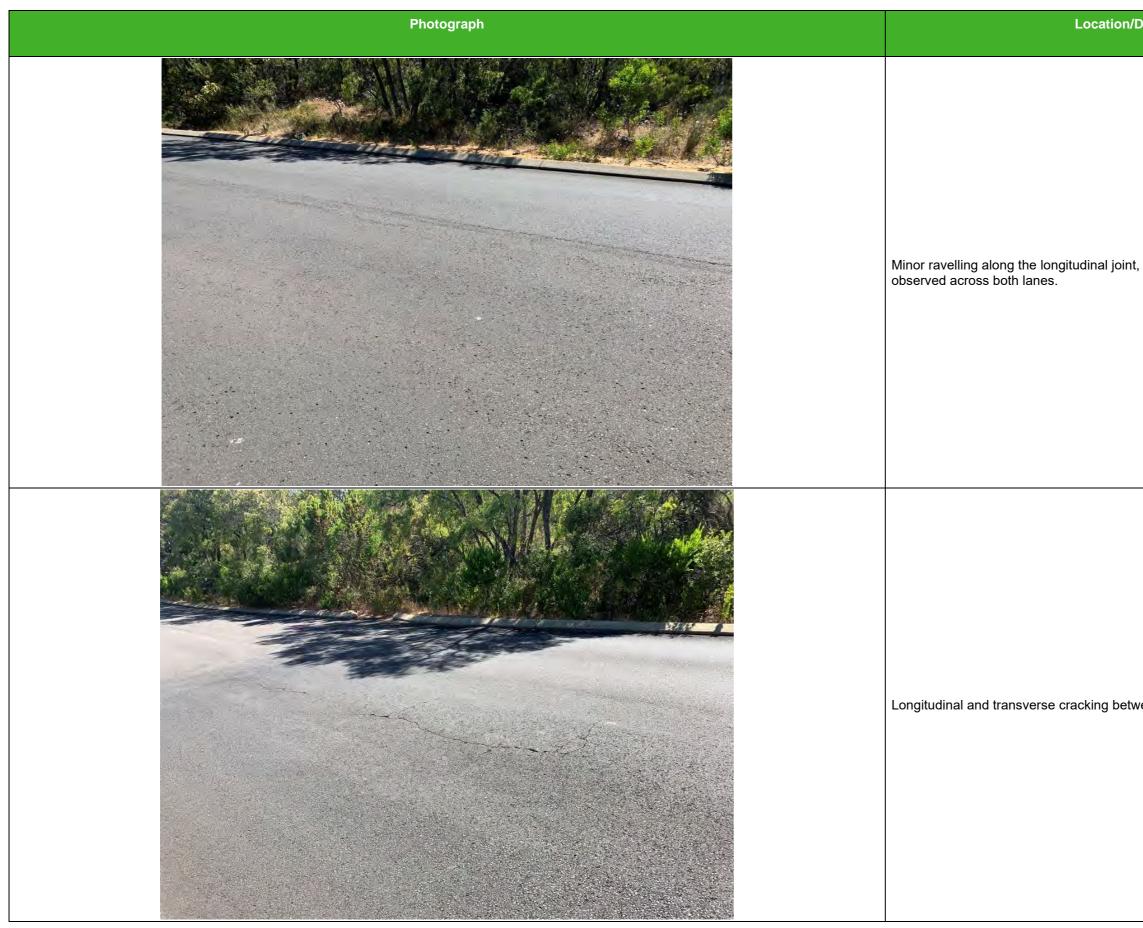


Notes:

Authorised Signatory:

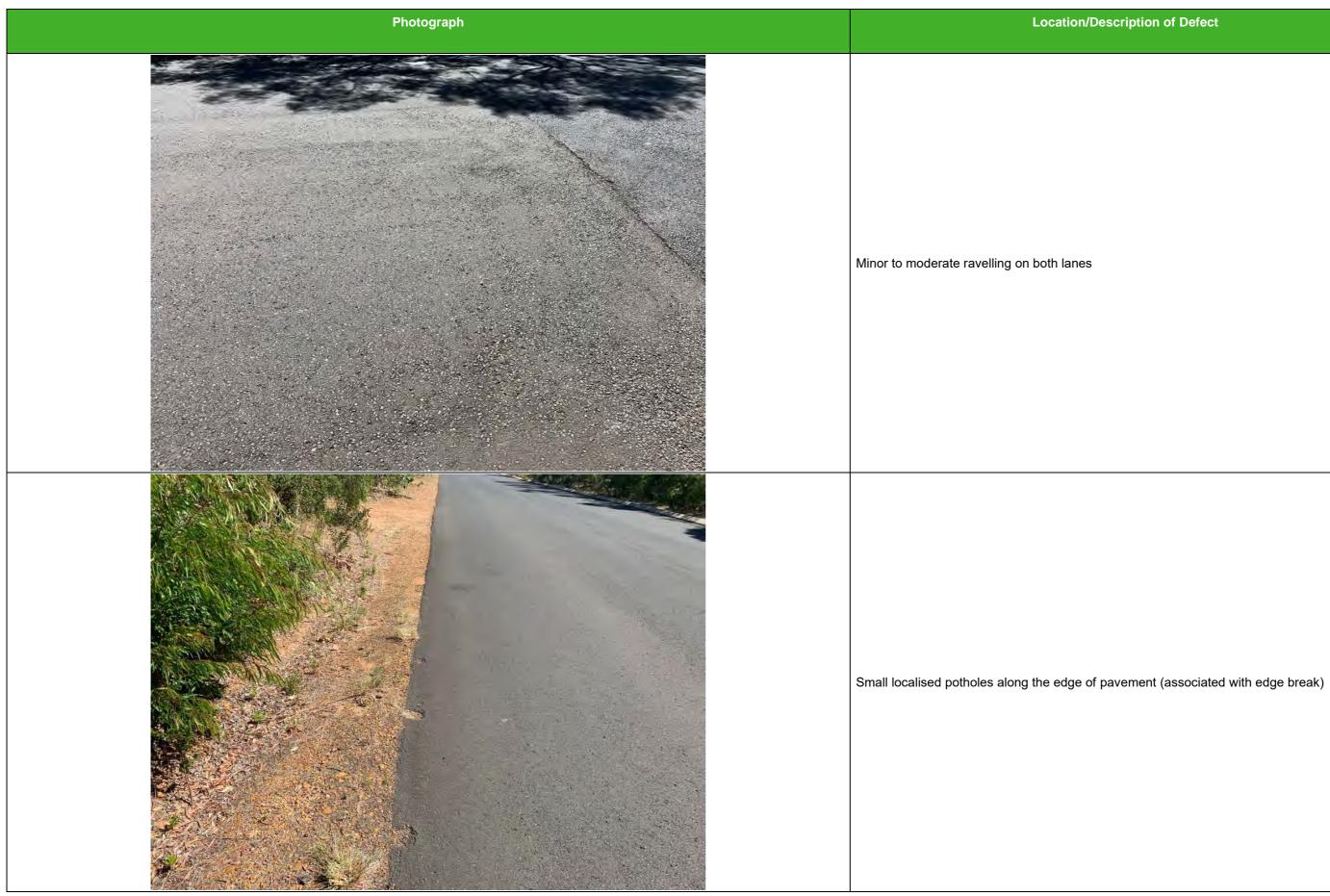
0 G. J. Donatti


Page: 4 of 4 AS1289.5.2.1, .5.1.1.REP.JAN2020 Approved By: G. Donatti




APPENDIX G

# **Pavement Visual Assessment**









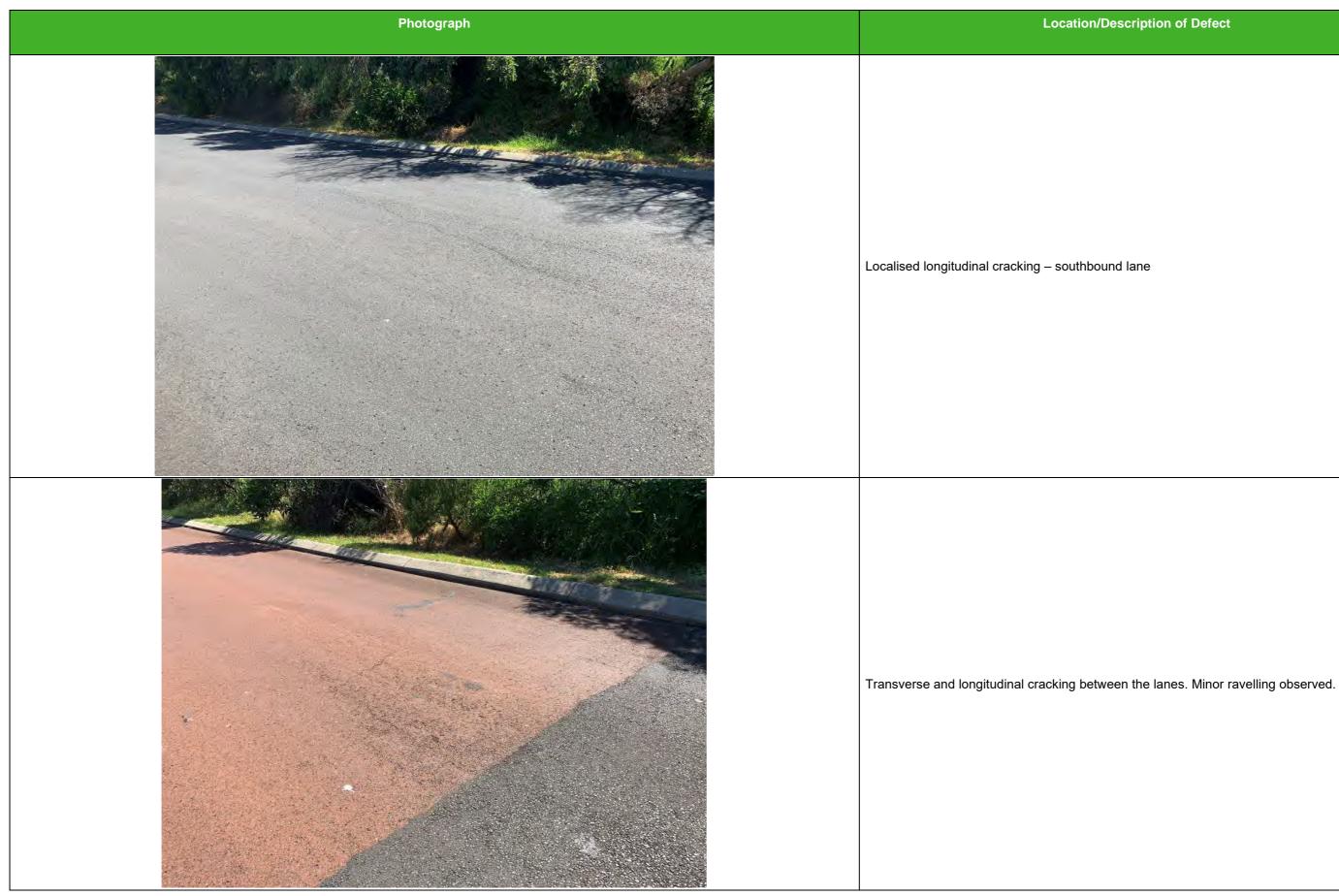

Description of Defect
, could be due to construction practices. Pinholes
veen the two lanes





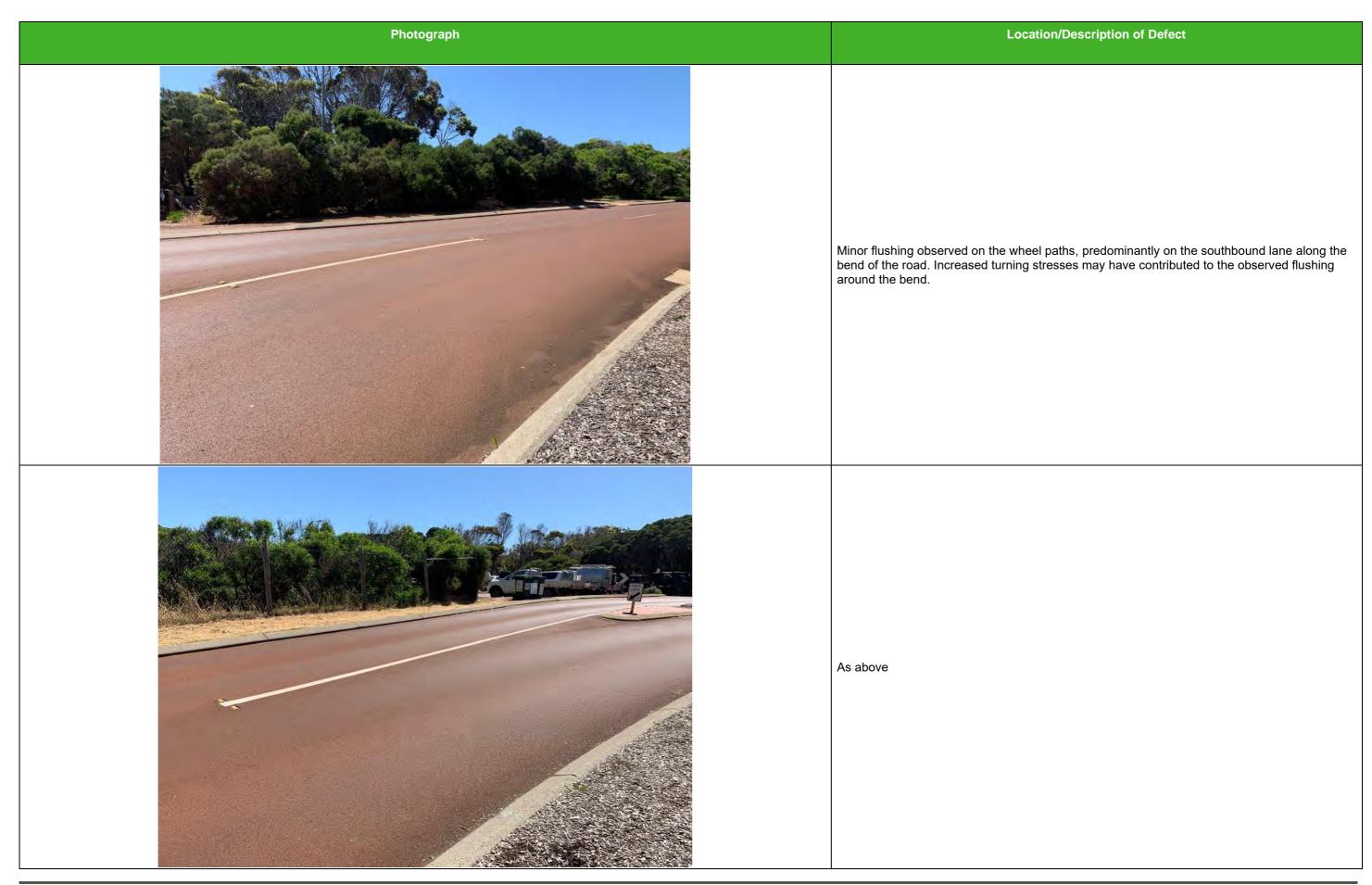
# Location/Description of Defect



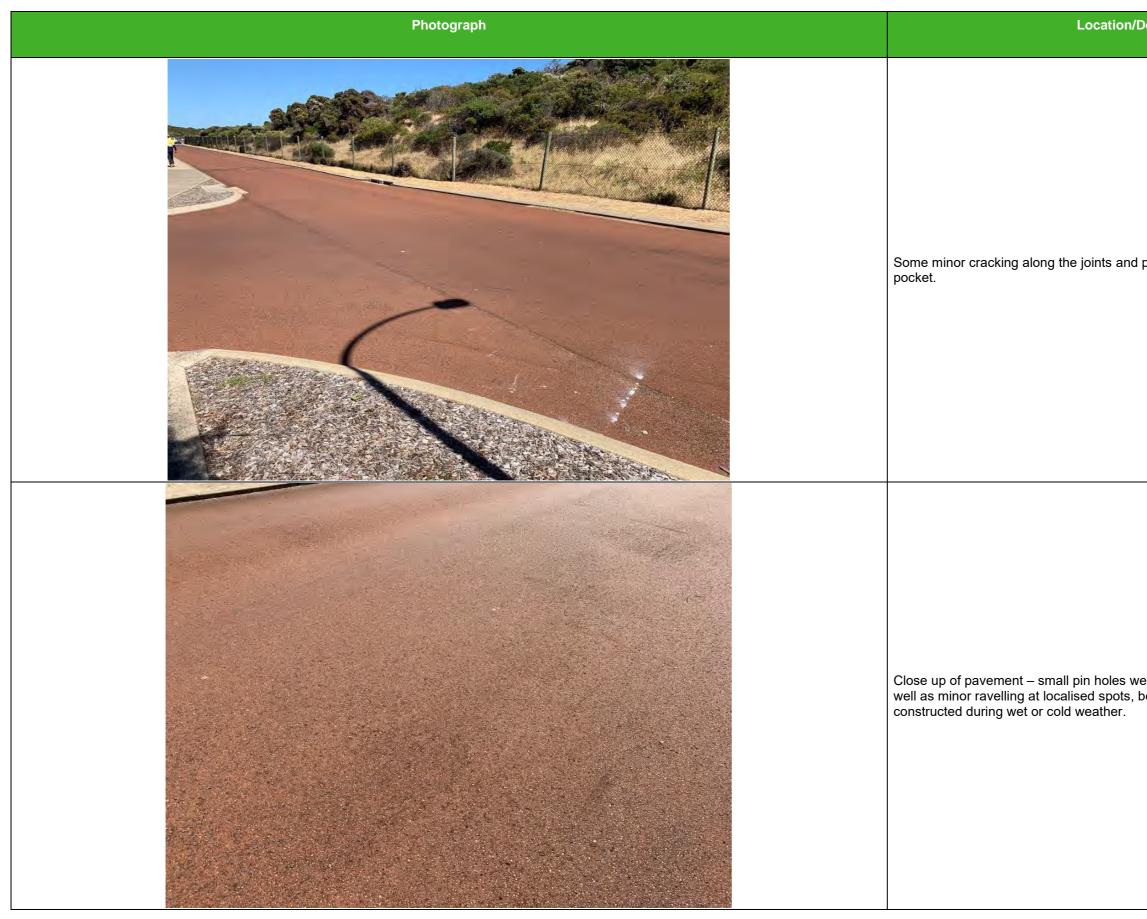



# Location/Description of Defect Observed minor ravelling outside the wheel path and along the joint on the northbound lane.

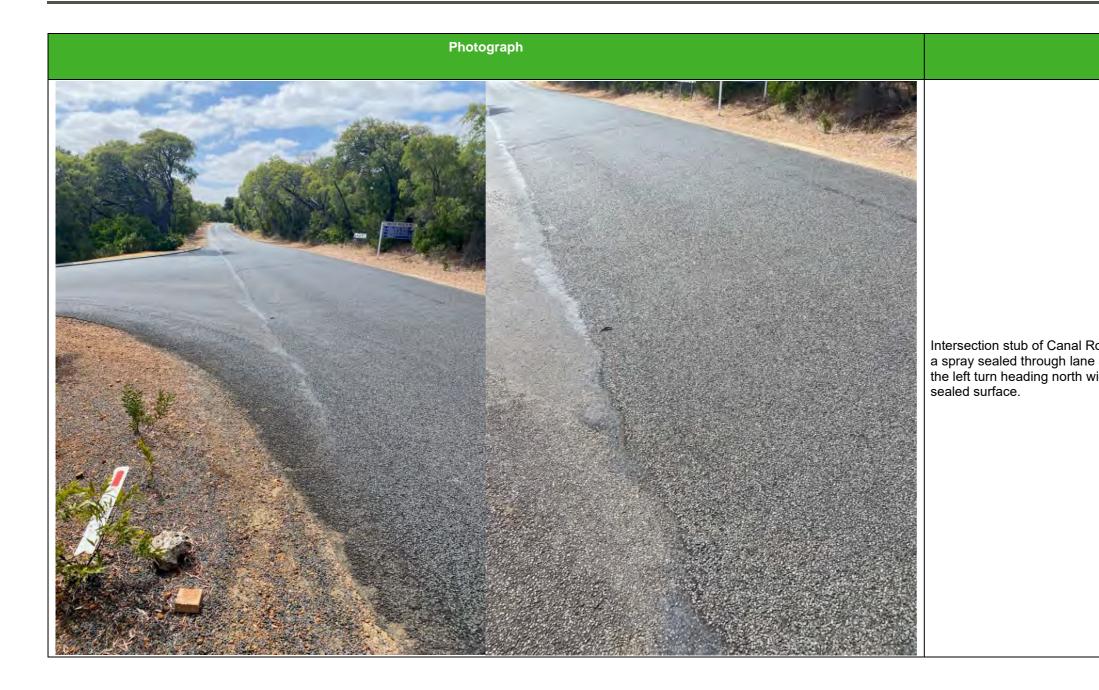





# Location/Description of Defect Pavement shape along the investigated extent of road is good, no crocodile cracking or rutting observed.

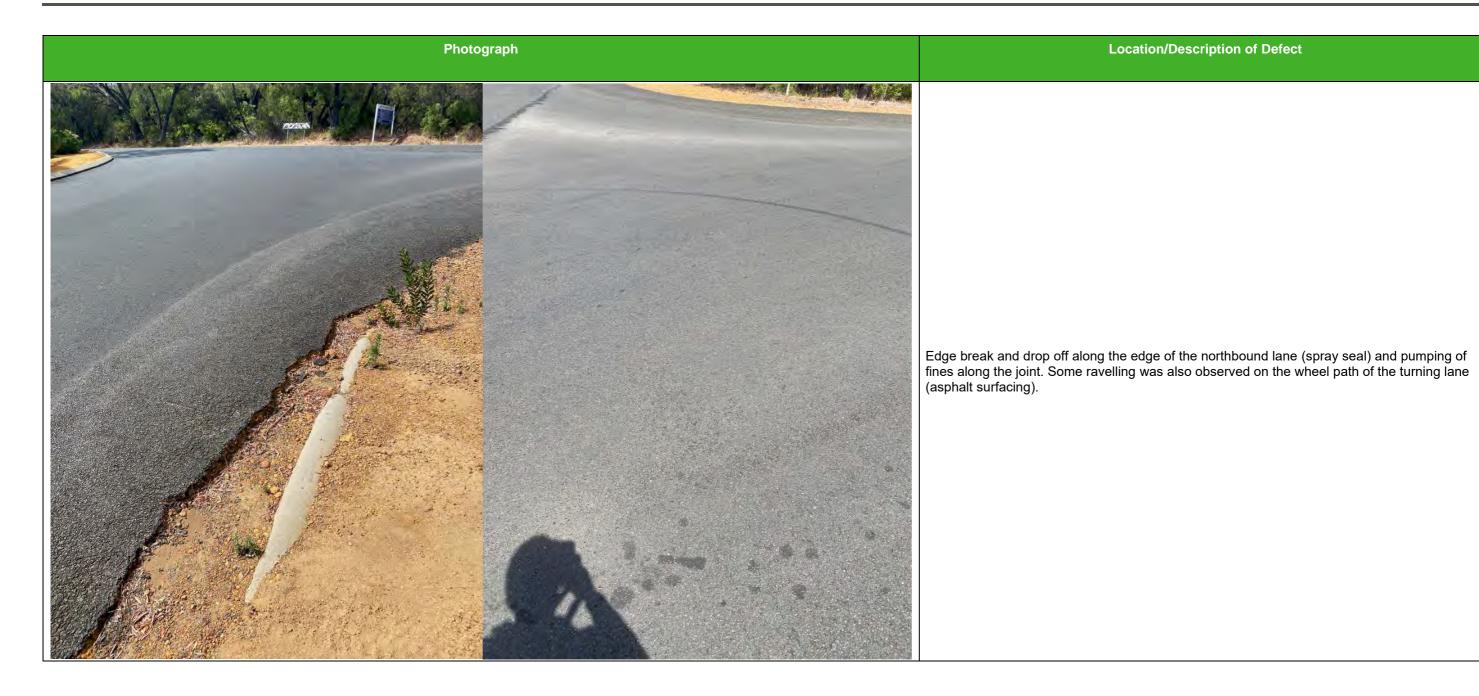






# Location/Description of Defect








Description of Defect	
pumping of fines. Minor ravelling within the turning	
ere generally observed on the pavement surface, as between wheel paths. Pavement may have been	



# Location/Description of Defect

Intersection stub of Canal Rocks Road and Smiths Beach Road – the asphalt surfacing joins to a spray sealed through lane and the joint sealing is relatively poor. Spray sealed shoulder on the left turn heading north widens the intersection stub, some minor stripping observed on the



# Location/Description of Defect

**APPENDIX H** 

# **Design Traffic Calculation**



Site	Location on Smiths Beach Rd	Direction	AADT	Year	Growth	Design AADT	Lane	Heavy Vehicle Composition					R		Des	gn Traffic (ESA	s)							
Site	Location on Smiths Beach Ru	Direction	(1-dir)	real	Rate	(1-dir)	Factor	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	%HV	5	15	40	5	15	40
Linear growth rate	assumed																							
ATC1	West of Canal Rocks Apartment	EB	233	2021	1.0%	233	100	5.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.8	5.1	16.1	48.9	6.16E+03	1.94E+04	5.90E+04
AICI	west of canal nocks Apartment	WB	217	2021	1.0%	217	100	1.7	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9	5.1	16.1	48.9	2.46E+03	7.76E+03	2.36E+04
ATC2	East of Canal Rocks Apartment	EB	477	2021	1.0%	477	100	4.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.5	5.1	16.1	48.9	1.34E+04	4.23E+04	1.28E+05
ATCZ	Last of Canal Nocks Apartment	WB	483	2021	1.0%	483	100	2.1	1.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	5.1	16.1	48.9	2.29E+04	7.23E+04	2.20E+05
ATC3	West of Smiths Beach Resort	EB	506	2021	1.0%	506	100	3.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	5.1	16.1	48.9	9.42E+03	2.97E+04	9.03E+04
AICS	west of similia beach resolt	WB	508	2021	1.0%	508	100	3.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	5.1	16.1	48.9	9.46E+03	2.98E+04	9.06E+04
ATC4	East of Smiths Beach Resort	EB	703	2021	1.0%	703	100	3.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.7	5.1	16.1	48.9	1.34E+04	4.23E+04	1.28E+05
ATC4	East of Sillitins Beach Resolt	WB	707	2021	1.0%	707	100	4.9	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.2	5.1	16.1	48.9	2.20E+04	6.93E+04	2.11E+05
ATC6	South of Off-Street Carpark	NB	993	2021	1.0%	993	100	4.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.5	5.1	16.1	48.9	2.23E+04	7.04E+04	2.14E+05
ATCO	South of On-Street Carpan	SB	978	2021	1.0%	978	100	2.6	0.8	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	5.1	16.1	48.9	3.86E+04	1.22E+05	3.70E+05

Year (assumed) 2021

 ESAs per Heavy Vehicle (Rural Main and Secondary)

 C3
 C4
 C5
 C6
 C7
 C8
 C9
 C10
 C11
 C12

 0.23
 1.09
 3.24
 0.96
 0.6
 2.9
 3.13
 5.64
 7.26
 7.87

APPENDIX I

# **Pavement Design**



# GRANULAR PAVEMENT THICKNESS DESIGN (ERN 9, April 2009)

PROJECT TITLE Smiths Beach Development

DESIGNED BYDGDATE29-01-21PROJECT DETAILEmpirical Pavement Design

# SUBGRADE CBR

Input CBR (%)		
Mean CBR (%)		k value
Standard Deviation		
Design CBR (%)	12	

# **DESIGN TRAFFIC**

1. Initial number of vehicles (AADT) daily in one direct	ction n	0
2. Percentage of heavy vehicles	c (%)	0
3. Annual heavy traffic growth rate r1 for the first Q	r ₁	0
years, and traffic growth rate r2 for the remainder of	Q	0
the design life P years	r ₂	0
4. Percentage of vehicles using design lane	d (%)	0
5. Equivalent number of standard axles per heavy ve	hicle F	0
6. Pavement design life	P (year)	0
7. Cumulative Growth Factor	R	0.00
8. Design Traffic	ESA	3.70E+05
9. Design Traffic at roundabouts or small radius curve	es ESA	1.11E+06

GRANULAR PAVEMENT THICKNESS	Calculatec	Rounded to
1. Minimum Thickness of All Granular Material (m	nm) 205	205
2. Minimum Thickness of Basecourse Material (m	nm) 118	120

CIRCLY Pro - Version 6.0 (20 February 2019)

Job Title: 20435097 Smiths Beach Development

Damage Factor Calculation

Assumed number of damage pulses per movement: Combined pulse for gear (i.e. ignore NROWS)

Traffic Spectrum Details:

Load	Movements
ID	
ESA750-Full	1.22E+05

Details of Load Groups:

Load

No. 1

Load No.	Load ID	Load Category	Loa Typ		Radius	Pressure/ Ref. stress	Exponent
1	ESA750-Full	ESA750-Full		rtical Force	e 92.1	0.75	0.00
Load Lo	ocations:						
Locatio	on Load	Gear	Х	Y	Scaling	Theta	
No.	ID	No.			Factor		
1	ESA750-Full	1	-165.0	0.0	1.00E+00	0.00	
2	ESA750-Full	1	165.0	0.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.0	0.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.0	0.0	1.00E+00	0.00	

Layout of result points on horizontal plane: Xmin: 0 Xmax: 165 Xdel: 165 Y: 0

Details of Layered System:

ID: trial1 Title: trial

Layer No. 1 2 3		Material ID 115003B-02 Gran_500 Sub_CBR12	Isotropy Iso. Aniso. Aniso.	2.31E+03 5.00E+02	P.Ratio (or vvh) 0.40 0.35 0.35		Eh 2.50E+02 6.00E+01	vh 0.35 0.35
Perfor	mance Rel	ationships:						
Laver	Location	Material	Component	Perform.	Perform.	Traffic		
No.		ID	-	Constant	Exponent	Multiplier		
1	bottom	115003B-02	ETH	0.004759	5.000	1.130		
3	top	Sub_CBR12	ΕZΖ	0.009300	7.000	1.530		
Reliab	ility Fac	tors:						
Projec	t Reliabi	lity: Austroads 95%						
Layer	Reliabil	ity Material						
No.	Factor	Туре						
1	1.00	Asphalt						
3	1.00	Subgrade (Austroad	s 2004)					

Details of Layers to be sublayered: Layer no. 2: Austroads (2004) sublayering

#### Results:

Layer	Thickness	Material	Load		Critical	CDF
No.		ID	ID		Strain	
1	30.00	115003B-02	ESA750-Full		-4.45E-04	9.82E-01
2	139.00	Gran 500		n/a		n/a
3	0.00	Sub_CBR12	ESA750-Full		1.60E-03	8.29E-01

CIRCLY Pro - Version 6.0 (20 February 2019)

Job Title: 20435097 Smiths Beach Development

Damage Factor Calculation

Assumed number of damage pulses per movement: Combined pulse for gear (i.e. ignore NROWS)

Traffic Spectrum Details:

Load	Load	Movements
No.	ID ESA750-Full	1.22E+05
1	ESA/JU-FUII	1.226+03

Details of Load Groups:

Load No.	Load ID	Load Category		Load Ivpe		Radius	Pressure/ Ref. stress	Exponent
1	ESA750-Full	ESA750-Full	Ţ	/ertical F	orce	92.1	0.75	0.00
Load L	ocations:							
Locati	on Load	Gear	Х	Y	5	Scaling	Theta	
No.	ID	No.			E	actor		
1	ESA750-Full	1	-165.0	Ο.	0 1	.00E+00	0.00	
2	ESA750-Full	1	165.0	Ο.	0 1	.00E+00	0.00	
3	ESA750-Full	1	1635.0	Ο.	0 1	.00E+00	0.00	
4	ESA750-Full	1	1965.0	Ο.	0 1	.00E+00	0.00	

Layout of result points on horizontal plane: Xmin: 0 Xmax: 165 Xdel: 165 Y: 0

Details of Layered System:

ID: trial1 Title: trial

Layer No.	Lower i/face	Material ID	Isotropy	Modulus (or Ev)	P.Ratio (or vvh)	F	Eh	vh
1	rough	115003B-02	Iso.	2.31E+03	0.40			
2	rough	Gran 500	Aniso.	5.00E+02	0.35	3.70E+02	2.50E+02	0.35
3	rough	Sub_CBR12	Aniso.	1.20E+02	0.35	8.89E+01	6.00E+01	0.35
Perfor	mance Rel	ationships:						
Layer	Location	Material	Component	Perform.	Perform.	Traffic		
No.		ID		Constant	Exponent	Multiplier		
1	bottom	115003B-02	ETH	0.004759	5.000	1.130		
3	top	Sub_CBR12	ΕZΖ	0.009300	7.000	1.530		

Reliability Factors: Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type 1 1.00 Asphalt 3 1.00 Subgrade (Austroads 2004)

Details of Layers to be sublayered: Layer no. 2: Austroads (2004) sublayering

Results:

Layer	Thickness	Material	Load		Critical	CDF
No.		ID	ID		Strain	
1	40.00	115003B-02	ESA750-Full		-4.47E-04	1.00E+00
2	165.00	Gran 500		n/a		n/a
3	0.00	Sub_CBR12	ESA750-Full		1.17E-03	9.20E-02

APPENDIX J

Pavement Work Tip – Treatment of Cracks



Austricatis Paviment Research Group



AUSTROADS



# Treatment of Cracks in Flexible Pavements

# pavement work tips - no. 8

# INTRODUCTION

Pavement cracking may occur as the result of a wide variety of causes, but regardless of the cause, the outcome is a path for the entry of moisture. Unless treated, this will result in the accelerated deterioration of the pavement. Treatment will stop or slow down the rate of deterioration and improve the effectiveness of subsequent surfacing treatments.

This Work Tip provides advice on the treatment of cracks in flexible pavements surfaced with asphalt, sprayed seals or slurry surfacing. Treatment can be applied:

- directly to individual cracks
- as a complete surfacing of the affected area
- as a combination of the two.

The severity and extent of the cracks, as well as the underlying causes, will influence choice and effectiveness of the treatment.

# TREATING INDIVIDUAL CRACKS General

Filling of individual cracks is often regarded as being tedious and time consuming. However, when done correctly, it often provides the most effective treatment in terms of waterproofing and extending the life of the pavement.

# **Crack Filling**

This involves cleaning the cracks and filling with an appropriate crack sealant, and is suitable for all cracks from about 2 - 10mm wide.

# Overbanding

This involves cleaning the surface around the cracks and applying a "band-aid" of sealant over the top of the crack. A band of material about 50 to 100mm wide, 2 to 3mm thick, is applied over the crack using a special applicator. Suitable for cracks from about 5-15mm wide.

If it is intended to overlay the area with dense graded asphalt, overbanding may also be applied in the form of a proprietary, pre-formed strip of binder, highly modified and/or reinforced, about 250 to 300mm wide. A tack coat is sprayed and the strip placed centrally over the crack and rolled, just prior to placing the asphalt. Suitable for cracks from about 5-15 mm width.

Overbanding would be used in preference to filling cracks if crack movement is relatively large and/or cracks to be treated are deep or difficult to clean out.

# **Routing and Filling**

This involves routing the crack and filling with a thick "plug" of joint sealant material. Width to depth ratio should be about 1:2 to minimise tension at the interface at the walls of the crack, and optimise its performance. This is most suitable for use with cracks that are

# Key Summary

May 1998

This issue of 'pavement work tips' provides advice on treating cracks in flexible pavements to stop or slow down deterioration and improve future surfacing treatments

reasonably straight e.g. joints in aged asphalt, or concrete pavements.

Suitable for medium to large cracks. Maximum recommended routing width is about 15mm.

This method may be used to treat cracks in the existing surface or with a dense graded asphalt overlay the routing and filling can be applied in the new asphalt directly over the cracks. It is essential that the location of cracks can be accurately marked prior to placing the overlay. This has been found to be a most cost effective treatment when asphalting over cracked concrete pavements.

# **CRACK AND JOINT SEALANTS**

# General

The material must be able to fill and/or seal the cracks to prevent water entering the pavement at the surface. A typical problem is the thermal contraction and expansion of the pavements with seasonal and/or diurnal temperature variations. This movement can exceed the resilience of normal bitumen when used as a crack sealant, allowing the cracks to reopen. Polymer modified bitumen is often used to address this problem because it has improved cohesive (internal) strength, and is usually more elastic, at normal road surface temperatures.

The practitioner must assess whether the enhanced properties are required, and if modified sealant provides an economic solution.

The following, generally in order of performance and cost, provides a brief description of the materials commonly used:

Bitumen emulsion can be poured into the cracks, or sprayed or spread onto the surface

continued on reverse

# Treatment of Cracks in Flexible Pavements - page 2

with a broom or squeegee, and covered with grit or clean sand. Generally most suitable for small cracks, less than 2mm, with little movement.

- Bitumen emulsion modified with natural rubber, or polymers, provides improved performance over standard emulsions. Suitable for small to medium cracks, 2 5mm, with little movement.
- Hot poured modified bitumen, usually with a high polymer content, is generally used as a sealant in overbanding, and routing and filling treatments. These treatments are suitable for medium to large cracks, about 5 15mm with larger movement.

# PROCEDURES FOR CRACK FILLING

- Cracks must be cleaned out, generally to a depth of about twice the width. Any greater depth may affect the ability of the sealant to remain bonded to the sides if the crack width increases due to any movement in the pavement.
- Compressed air is the most common method of cleaning out cracks, but this may be supplemented by wire brushes etc.
- The cracks should be filled level, or just below the surface, to prevent pick-up and minimise potential bleeding in subsequent reseals.
- If possible, treat cracks when, environmentally, they are at their widest, such as at the end of a long dry spell.
- When applying grit or sand, take care not to fill the full depth of the crack as this will reduce the effectiveness and life of the sealant.
- Bonding of the sealant to the sides of the crack may be a problem when using hot pour sealant. When this occurs, the crack may need to be dried out using a blower, or a primer applied to the sides.

# TREATING THE ENTIRE SURFACE

# General

It is generally more cost effective to treat the entire surface by applying a sprayed seal if cracking



Crack filling with insulated hand lance

is extensive and treating cracks individually would be labour intensive and time consuming.

#### **Sprayed Seals**

These may be either single or two coat seals, with normal binder. Suitable for untreated small cracks, less than 2mm, with very small movement, or over all sizes of treated cracks.

#### Stress Alleviating Membrane (SAM)

These are sprayed seals using a polymer modified binder to provide a thicker and more elastic film of binder, thereby giving improved waterproofing properties. Suitable for small to medium cracks, about 2-5mm.

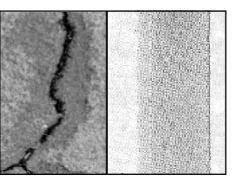
# Strain Alleviating Membrane Interlayer (SAMI)

These are similar to SAM's, but generally with a more highly modified binder at higher rates of application, used over a cracked pavement prior to placing an asphalt overlay. Suitable for small to medium cracks, about 2-5mm.

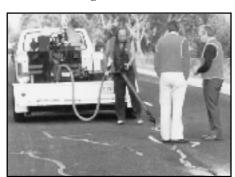
#### **Reinforced Seals**

These are sprayed seals reinforced with glass fibres, or geotextile fabric, to provide an extremely strong and waterproof membrane.

In areas where the cracking or loading is extreme, the performance may be further improved by using a two coat seal, with modified binder.


Suitable for medium to large cracks, about 5-15mm, but has been successfully used in treating larger cracks.

# Choice of Polymer Modified Binder (PMB)


The widths of the cracks and amount/cause of any movement influence the choice of a suitable polymer modified binder. The movement is usually defined in terms of being due to environmental causes or traffic (load) induced. If movement exceeds about 0.5 to 1mm, it is doubtful that a PMB alone will provide a long term solution and it should be used in conjunction with a geotextile. APRG Report No 19 provides guidance as to the selection of a suitable grade of PMB to use.

# SAFETY ASPECTS

Where cracks are evident as crocodile crazing/cracking, and the pattern is closely spaced, overbanding may cause problems due to water ponding, which may cause loss of skid resistance and a rough ride.



Overbanding before (left) and after (right)



Filling and sanding cracks after routing

For more

information on any of the construction practices discussed in "pavement work tips", please contact either your local AUSTROADS Pavement Research Group representative or AAPA — tel (03) 9853 3595; fax (03) 9853 3484; e-mail: info@aapa.asn.au

Additional copies may be obtained from AAPA.

Material may be freely reproduced providing the source is acknowledged.

This edition was prepared by Ian Cossens and Walter Holtrop, in consultation with members of the National Bituminous Surfacings Research Group (NaBSuRG).

APPENDIX K

# **Important Information**





The document ("Report") to which this page is attached and which this page forms a part of, has been issued by Golder Associates Pty Ltd ("Golder") subject to the important limitations and other qualifications set out below.

This Report constitutes or is part of services ("Services") provided by Golder to its client ("Client") under and subject to a contract between Golder and its Client ("Contract"). The contents of this page are not intended to and do not alter Golder's obligations (including any limits on those obligations) to its Client under the Contract.

This Report is provided for use solely by Golder's Client and persons acting on the Client's behalf, such as its professional advisers. Golder is responsible only to its Client for this Report. Golder has no responsibility to any other person who relies or makes decisions based upon this Report or who makes any other use of this Report. Golder accepts no responsibility for any loss or damage suffered by any person other than its Client as a result of any reliance upon any part of this Report, decisions made based upon this Report or any other use of it.

This Report has been prepared in the context of the circumstances and purposes referred to in, or derived from, the Contract and Golder accepts no responsibility for use of the Report, in whole or in part, in any other context or circumstance or for any other purpose.

The scope of Golder's Services and the period of time they relate to are determined by the Contract and are subject to restrictions and limitations set out in the Contract. If a service or other work is not expressly referred to in this Report, do not assume that it has been provided or performed. If a matter is not addressed in this Report, do not assume that any determination has been made by Golder in regards to it.

At any location relevant to the Services conditions may exist which were not detected by Golder, in particular due to the specific scope of the investigation Golder has been engaged to undertake. Conditions can only be verified at the exact location of any tests undertaken. Variations in conditions may occur between tested locations and there may be conditions which have not been revealed by the investigation and which have not therefore been taken into account in this Report.

Golder accepts no responsibility for and makes no representation as to the accuracy or completeness of the information provided to it by or on behalf of the Client or sourced from any third party. Golder has assumed that such information is correct unless otherwise stated and no responsibility is accepted by Golder for incomplete or inaccurate data supplied by its Client or any other person for whom Golder is not responsible. Golder has not taken account of matters that may have existed when the Report was prepared but which were only later disclosed to Golder.

Having regard to the matters referred to in the previous paragraphs on this page in particular, carrying out the Services has allowed Golder to form no more than an opinion as to the actual conditions at any relevant location. That opinion is necessarily constrained by the extent of the information collected by Golder or otherwise made available to Golder. Further, the passage of time may affect the accuracy, applicability or usefulness of the opinions, assessments or other information in this Report. This Report is based upon the information and other circumstances that existed and were known to Golder when the Services were performed and this Report was prepared. Golder has not considered the effect of any possible future developments including physical changes to any relevant location or changes to any laws or regulations relevant to such location.

Where permitted by the Contract, Golder may have retained subconsultants affiliated with Golder to provide some or all of the Services. However, it is Golder which remains solely responsible for the Services and there is no legal recourse against any of Golder's affiliated companies or the employees, officers or directors of any of them.

By date, or revision, the Report supersedes any prior report or other document issued by Golder dealing with any matter that is addressed in the Report.

Any uncertainty as to the extent to which this Report can be used or relied upon in any respect should be referred to Golder for clarification





# golder.com

# APPENDIX C Geophysical Report



# Report

# Smiths Beach Geophysical Investigation, Yallingup Western Australia.

Date: 19th March 2019 Report Ref: 70492



# **DOCUMENT HISTORY**

# DETAILS

Project number	70492
Document Title	Smiths Beach Geophysical Investigation, Yallingup WA
Site Address	Smiths Beach Road, Yallingup WA 6282
Report prepared for	Smiths 2014 Pty Ltd

# **STATUS AND REVIEW**

Revision	Prepared by	Reviewed by	Date issued
0	Stephen Kelly	Andrew Spyrou	19 th March 2019

# DISTRIBUTION

Revision	Electronic	Paper	Issued to
0	1	0	Sam Gill, Smiths 2014 Pty Ltd

# **COMPANY DETAILS**

Business name	GBG MAPS Pty Ltd
ABN	45 129 251 225
Business address	Level 1, 2 Sabre Crescent Jandakot WA 6164
Postal address	PO Box 3562, Success WA 6964
Phone / fax	08 6436 1599 / 08 6436 1500
Email	info@gbgmaps.com.au



# CONTENTS

1.	INTRO	DDUCTION	.4
2.	INVES	TIGATION SITE	.4
3.	SUBS	URFACE TEST METHODS	.5
4.	GEOP	HYSICAL DATA ACQUISITION	.5
5.	GEOP	HYSICAL DATA PROCESSING	.6
6.	RESU	LTS AND INTERPRETATION	.7
	6.1	PRESENTATION OF RESULTS	.7
	6.2	GEOPHYSICAL AND INTERPRETED CROSS-SECTIONS	.7
	6.3	MODELLED LEVEL TO TOP OF ROCK	.8
7.	CONC	CLUSIONS	.9

APPENDIX A: GEOPHYSICAL METHODS	10
APPENDIX B: RESULTS DRAWINGS	11



# 1. INTRODUCTION

At the request of Smiths 2014 Pty Ltd, GBG MAPS Pty Ltd (GBGMAPS) carried out a geophysical subsurface investigation along a 200 metre section of coastal foreshore and dune system at Smiths Beach, Yallingup WA in March 2019. The investigation was carried out as part of the foreshore management plan, in particular to determine the elevation of underlying rock for coastal modelling.

During the investigation, 7 geophysical transects were acquired including 2 Multi-channel Analysis of Surface Waves (MASW) and 5 Seismic Refraction transects within the site boundaries. The acquired data was processed and inverted in order to obtain seismic velocity sections which have been demarcated into geological sections showing the interpreted level to the top of limestone rock and overlying sand strata.

# 2. INVESTIGATION SITE

The geophysical investigation was carried out along a 200 metre section of beach foreshore and coastal dune system on Smiths Beach. An overview of the investigation site is shown in Figure 1 below. A site map showing the acquired geophysical transects is provided in drawing 70492-01 in Appendix B of this Report.



Figure 1: The extent of the geophysical investigation at Smiths Beach (blue polygon). Image supplied by Smiths 2014 Pty Ltd.



# **3.** SUBSURFACE TEST METHODS

During the investigation two subsurface test methods were used so as to provide the required subsurface information within the anticipated geological conditions.

- Multi-channel Analysis of Surface Waves (MASW) was acquired along 2 transects including along the beach foreshore and Smiths Beach Road where surface conditions were suitable for MASW data acquisition. The MASW data was inverted to obtain seismic shear (S-) wave velocity sections
- Seismic Refraction acquired along 5 transects where surface conditions including vegetation and undulating surface topography precluded the use of MASW. The seismic refraction data was inverted to obtain seismic compressional (P-) wave velocity sections

Refer to Appendix A for details on the geophysical methods used during the investigation.

# 4. GEOPHYSICAL DATA ACQUISITION

The geophysical site work was carried out on 5-6 March 2019 by a two person crew from GBGMAPS consisting of a qualified geophysicist and field assistant.

Data was acquired using an Ambrogeo digital seismograph connected with seismic cables to geophones (vibration sensors). Seismic energy was generated using sledgehammer impacts onto a metal base plate. Acquisition parameters are provided in Tables 1 and 2 respectively.

Spatial positioning was achieved by Navcom differential GNSS receiver used to pick up the location of each refraction geophone location and MASW sounding position. Survey accuracy was better than 100mm for horizontal and vertical readings. All positions are given in GDA94 (MGA zone 50), whilst elevations are given in Australian Height Datum (AHD).

Number of geophones	24
Geophone spacing	1 m
Geophone frequency	4.5 Hz
Array length	23 m
Record length	2 s
Sample interval	0.500 ms
Source offset	6 m
Source stacks	5
Sounding interval	6 m

#### Table 1 – MASW acquisition parameters

Number of geophones	24 or 48
Geophone spacing	2 or 3m
Geophone frequency	12 Hz
Array length	46 or 141 m
Record length	200 ms
Sample interval	0.064 ms
Max source offset	12 m
Source stacks	5

# Table 2 – Seismic refraction acquisition parameters

# 5. GEOPHYSICAL DATA PROCESSING

The acquired geophysical datasets were processed and analysed with current industry standard software by qualified geophysicists using GBGMAPS standard processing routines.

The MASW data was processed and inverted using SurfSeis V4 (Kansas Geological Survey, 2014) in order to generate seismic velocity sections showing the variation in modelled S-wave velocity laterally along the transects and with elevation.

The seismic refraction data was processed and inverted using Rayfract version 3.35 (Intelligent Resources Incorporated, 2016) in order to generate seismic velocity sections showing the variation in modelled P-wave velocity laterally along the transects and with elevation.

Seismic S-wave and P-wave velocities are governed by the elastic properties of the medium they propagate through including bulk modulus, shear modulus and density as shown in the equations below. As such calculated seismic velocities provide a useful guide to the subsurface material condition with increasing velocity an indication of increasing material hardness and stiffness.

Seismic P-wave velocity

$$V_p = \sqrt{\frac{K + \frac{4}{3}G}{\rho}}$$

Seismic S-wave velocity

$$V_s = \sqrt{\frac{G}{\rho}}$$

where;

- K = Bulk modulus
- G = Shear modulus
- $\rho$  = In-situ material density



# 6. **RESULTS AND INTERPRETATION**

# 6.1 PRESENTATION OF RESULTS

The results of the geophyiscal investigation to determine rock profile along the beach foreshore and dune system along Smiths Beach are provided in Appendix B of this report as follows:

- 70492-01. Site map showing acquired geophysical transects
- 70492-02. Transects M-01 and M-02, S-wave velocity and interpreted sections
- 70492-03. Transects R-01 and R-02, P-wave velocity and interpreted sections
- 70492-04. Transects R-03, R-04 and R-05, P-wave velocity and interpreted sections
- 70492-05. Site map with modelled level (mAHD) to top of interpreted rock
- **70492-06.** Site map with modelled thickness (m) of sand overlying interpreted rock

# 6.2 GEOPHYSICAL AND INTERPRETED CROSS-SECTIONS

The results of the geophysical transects are presented as drawings 70492-02 to -04 in Appendix B. At the top of each drawing are the seismic velocity sections generated from the MASW and refraction data. The images show the variations in the seismic S-wave or P-wave velocity as a contour plot as per the colour scale with increasing velocity from blue, green, yellow, orange, red then brown.

Below the seismic velocity sections are geological sections giving the interpreted layering of the subsurface based on detectable seismic velocity contrasts. The calculated seismic velocity values have been classed into four categories representing different subsurface conditions:

- 1. Very low seismic wave velocity. Regions with very low seismic wave velocity are interpreted as sand of low compaction.
- 2. Low seismic wave velocity. Regions with low seismic wave velocity are interpreted as moderately compacted sand with possible lithified sand or calcarenite lenses.
- 3. **Moderate seismic wave velocity**. Regions with moderate seismic wave velocity are interpreted as extremely weathered to weathered limestone with low rock strength. It is likely that this class represents a highly variable weathered limestone and transitional zone to stronger, more competent limestone below.
- 4. **Moderate to high seismic wave velocity**. Regions with moderate to high seismic wave velocity are interpreted as limestone of low to moderate rock strength. It is postulated that this class represents competent or slightly weathered limestone.



# 6.3 MODELLED LEVEL TO TOP OF ROCK

The level to the interpreted top of rock profile and overlying sand thickness along the geophysical transects are presented in Drawings 70492-05 and -06 respectively. These has been generated by digitising the interface between the interpreted sand dune strata and the underlying rock profile as modelled from the geophysical transects.

The resulting x = Easting, y = Northing, and z = mAHD values for the top of rock have been shown as a classed post map giving the level to top of rock as eight classes from less than -1.0mAHD to greater than 5.0mAHD at 1m increments.

The modelled sand thickness was generated by subtracting the interpreted rock level from the surface elevation and plotted into eight classes from less than 1.0m to greater than 8.0m at 1.0m increments.



# 7. CONCLUSIONS

A geophysical investigation has been carried out by GBGMAPS along a 200m section of coastal foreshore and dune system at Smiths Beach in Yallingup, Western Australia.

The objective of the geophysical investigation was to provide information on the subsurface material at the site in particular to model the interface between the sand strata and underlying limestone rock. The results of the investigation are to be used as part of the Smiths Beach foreshore management plan.

As part of the investigation scope, Multi-channel Analysis of Surface Waves (MASW) and Seismic Refraction datasets were acquired along a series of transects. The acquired datasets were processed and analysed to provide colour cross sections showing variations in the seismic wave velocity of the subsurface material. The seismic velocity sections were demarcated into velocity ranges representing different subsurface conditions for the generation of interpreted geological sections showing the modelled depth to top of rock.

The methods used during the investigation are geophysical and as such the results are based on indirect measurements and the processing and interpretation of seismic wave signals. The findings in this report represent the best professional opinions of the authors, based on experience gained during previous similar investigations and with correlation to known and assumed subsurface ground conditions at the site.

We trust that this report and the attached drawings provide you with the information required. If you require clarification on any points arising from this geophysical investigation, please do not hesitate to contact the undersigned on (08) 6436 1599.

For and on behalf of GBGMAPS PTY LTD

ANDREW SPYROU Senior Geophysicist



# **APPENDIX A: GEOPHYSICAL METHODS**



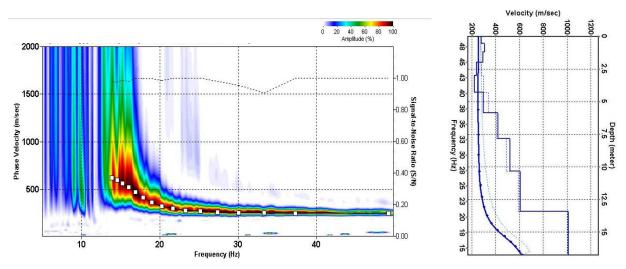
# **APPLICATIONS**

- ✓ Bedrock mapping
- ✓ Degree of sediment compaction
- ✓ Determination of geotechnical parameters (e.g. shear modulus)
- ✓ Void detection
- ✓ Liquefaction potential
- ✓ Subsurface profiling
- ✓ Imaging velocity inversions (hard layer overlying softer layer)

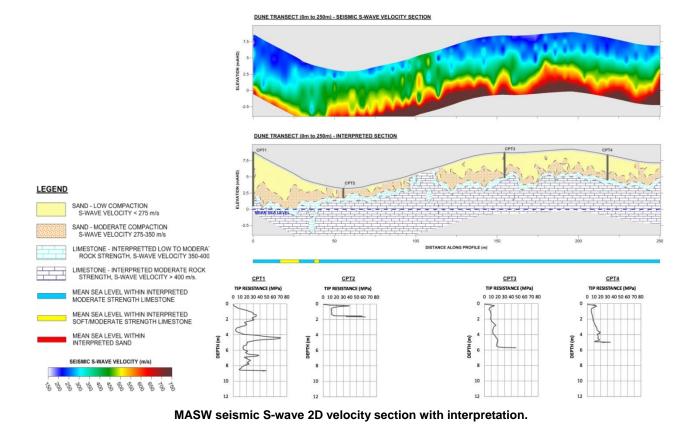
# METHOD

The Multi-channel Analysis of Surface Waves method (MASW) is a non-destructive seismic method which uses the elastic properties of subsurface materials to determine subsurface structure. By analysis of the dispersive properties of varying frequencies from a single seismic source, shear-wave velocity (Vs) and associated geotechnical parameters can be determined.

MASW uses an active seismic source such as a hammer or weight drop impact to produce seismic energy consisting predominantly of Pressure (P-) waves and Shear (S-) waves. MASW uses the S-wave dispersion component to provide information on the shear velocity to a depth determined by frequency range of the energy source and array configuration.


Seismic surface waves have dispersion properties that traditionally utilized body waves lack. Differing wavelengths/frequencies have different depth of penetration, and therefore propagates with different phase velocity, with an increase in wavelength being proportional to increased depth of penetration. As the surface wave is the dominant wave generated from any seismic source, MASW data quality (signal to noise) tends to be higher than other seismic methods such as seismic reflection or refraction.






#### **DATA ANALYSIS & PRESENTATION**

Analysis of the collected MASW seismic records is concentrated on the S-wave dispersion component. Dispersion curves are extracted for each collected record from the overtone image showing the percentage intensity of phase velocity versus frequency. These curves are then inverted to produce 1D S-wave soundings typically to a depth of up to 30 m. The calculated 1D soundings can then be compiled and gridded to produce 2D sections showing the variation in S-wave velocity both laterally along the profile and with depth.



Dispersion curve generated from an MASW sounding (left image), modelled S-wave velocity sounding generated from inversion of the picked dispersion curve



**GBGMAPS Pty Ltd** 



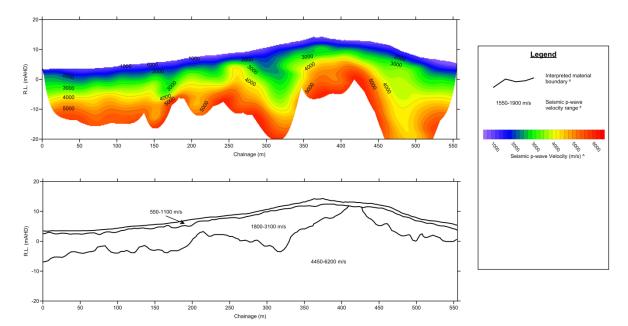
# **APPLICATIONS**

- ✓ Bedrock mapping
- ✓ Mapping weathered zones
- ✓ Stratigraphic mapping
- ✓ Indicative material hardness for piling, tunnelling and excavation works
- Identification of fault / fractured zones

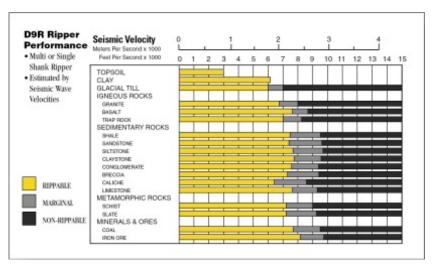
# METHOD

The Seismic Refraction method involves the measurement of travel times of seismic compressional waves (P-waves) that are generated at the surface, propagate through the subsurface and return to the surface after being refracted at the interface between layers of contrasting seismic velocity. Seismic wave velocities are controlled by the fundamental parameters of elastic strength and density of the material it propagates through.

For near surface investigations seismic energy is generated on the surface using a sledge hammer. More powerful sources such as accelerated drop weight, down-hole airguns, or explosives are required for deeper investigations. The generated seismic waves propagate through the subsurface at a certain velocity. On reaching a geological boundary marked by an increase in seismic velocity, at a specific angle the wave is critically refracted and travels along the top of the lower layer at a greater velocity. This generates head waves in the upper layer which return to the surface where it is detected as vibrations by a linear array of geophones spaced at regular intervals.


By measuring the travel times of these refracted waves from multiple source points to multiple receivers, the seismic refraction method can resolve lateral changes in the depth to the top of a refracting interface as well as the seismic velocity within it. Furthermore being related to elastic strength and density, the velocities calculated from a seismic refraction survey can be a useful guide to the rippability of a rock for excavation.




#### **DATA ANALYSIS & PRESENTATION**

Processing and analysing seismic refraction data can be carried out using a layered model assuming distinct refractive boundaries or tomographic approach assuming a gradual increase in seismic velocity with depth. Both approaches have benefits and are typically carried out in unison to generate the most detailed geological model possible.

The output is a cross-section showing lateral changes in the depth to the various refracting interfaces and the seismic velocities within them. When correlated with core logs, this information can be related to geological boundaries in the subsurface. This can be particularly useful for planning excavation with the depth to the different layers giving an idea of quantity of rock needed to be removed and the seismic velocities giving an idea of the rock's hardness and hence rippability.



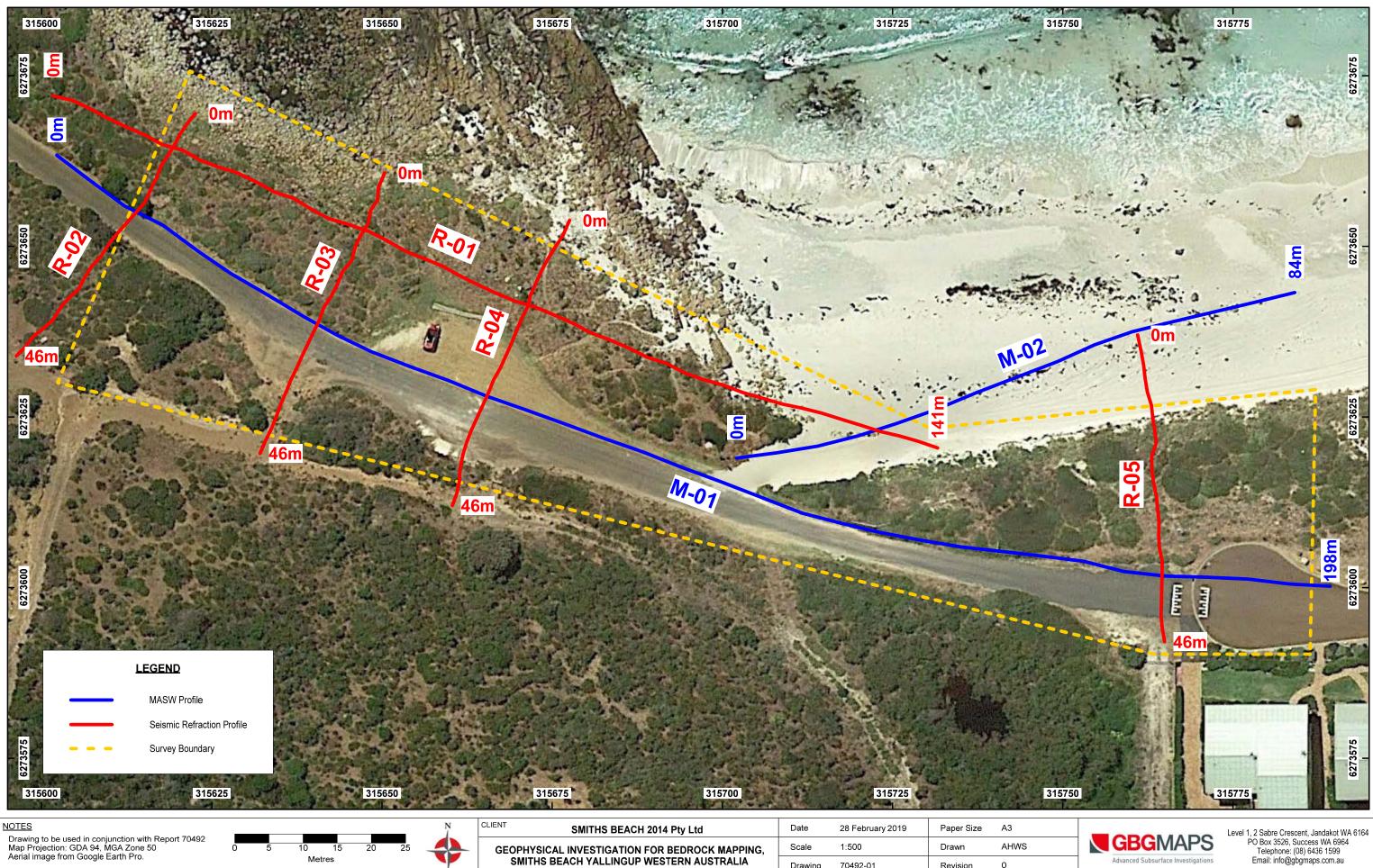
Modelled seismic p-wave velocity section (top) and corresponding layer model section (bottom)



Rippability chart, displays the relationship between rippability and P-wave velocity, taken from Handbook of Ripping, Twelfth Edition, Caterpillar Inc. 2000.



# **APPENDIX B: RESULTS DRAWINGS**




## SMITHS BEACH, YALLINGUP WESTERN AUSTRALIA - GEOPHYSICAL INVESTIGATION

ACQUIRED SEISMIC GEOPHYSICAL TRANSECTS

Drawing

70492-01



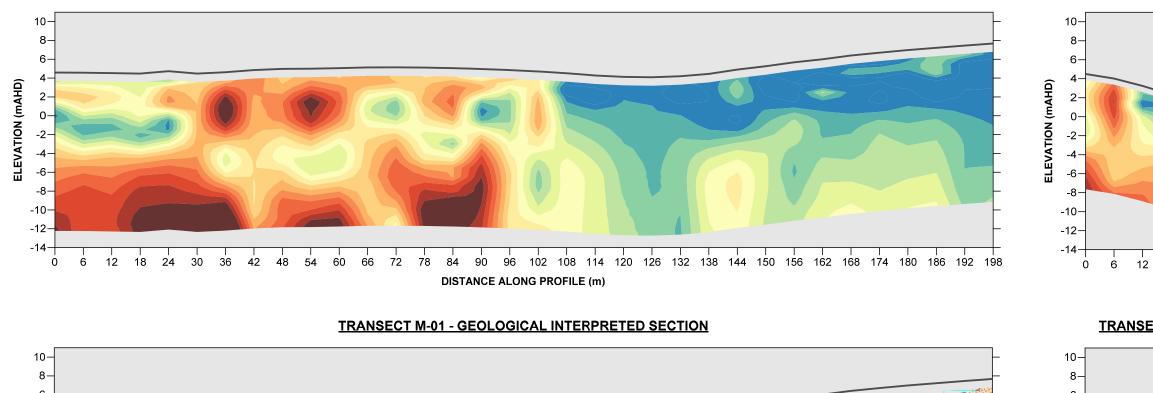
Advanced Subsurface Investigation

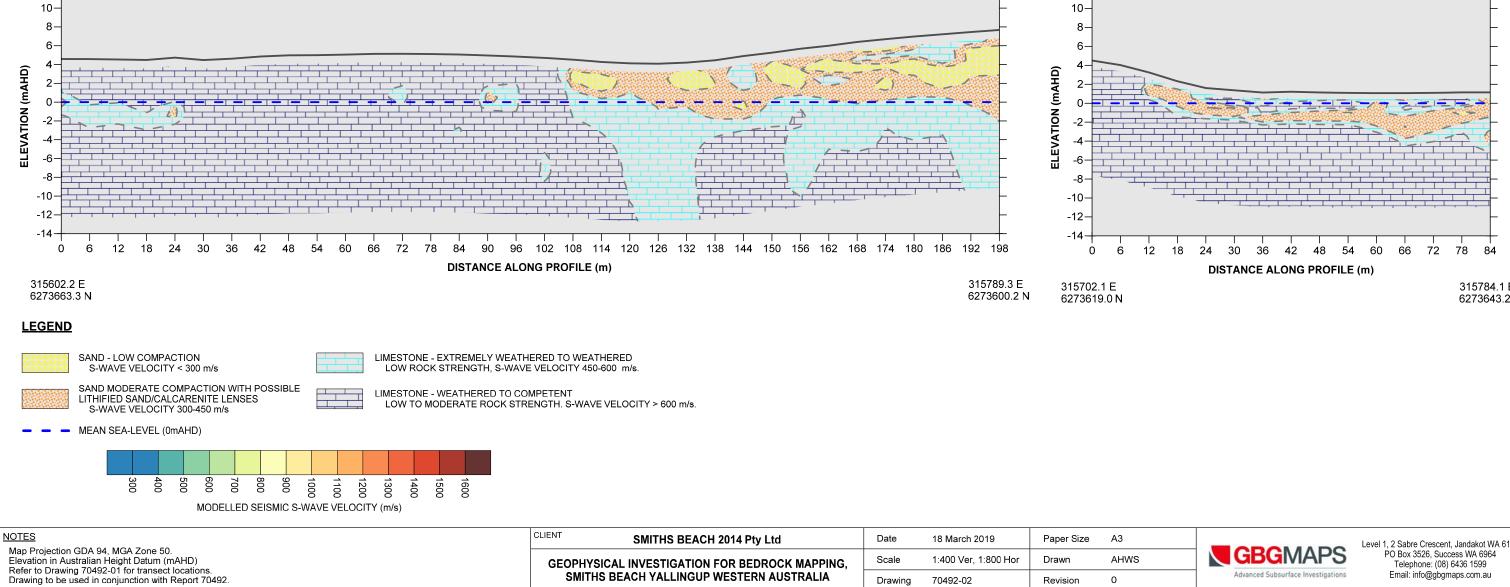
0

Revision

Level 1, 2 Sabre Crescent, Jandakot WA 6164 PO Box 3526, Success WA 6964 Telephone: (08) 6436 1599 Email: info@gbgmaps.com.au

SMITHS BEACH, YALLINGUP WESTERN AUSTRALIA - GEOPHYSICAL INVESTIGATION


#### SEISMIC GEOPHYSICAL AND INTERPRETED TRANSECTS


#### TRANSECT M-01 - SEISMIC S-WAVE VELOCITY SECTION

**GBGMAPS** 

Advanced Subsurface Investigations







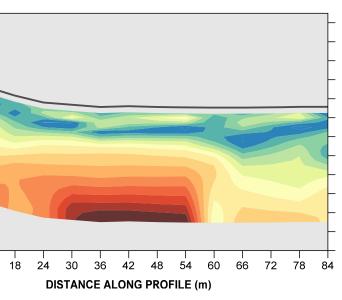
**GEOPHYSICAL INVESTIGATION FOR BEDROCK MAPPING,** 

SMITHS BEACH YALLINGUP WESTERN AUSTRALIA

1:400 Ver, 1:800 Hor

70492-02

Scale


Drawing

Drawn

Revision

AHWS

0



## TRANSECT M-02 - SEISMIC S-WAVE VELOCITY SECTION



315784.1 E 6273643.2 N





#### SEISMIC GEOPHYSICAL AND INTERPRETED TRANSECTS

TRANSECT R-01 - SEISMIC P-WAVE VELOCITY SECTION

10-

8-

6-

4

2.

0-

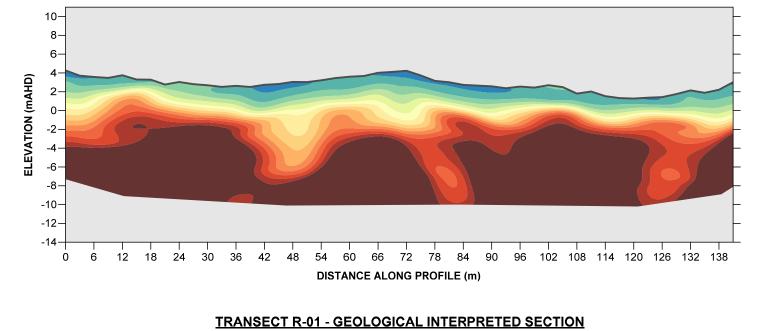
-2-

-4-

-6-

-8-

-10-


-12-

-14-

0

6

ELEVATION (mAHD)



10-

8-

6.

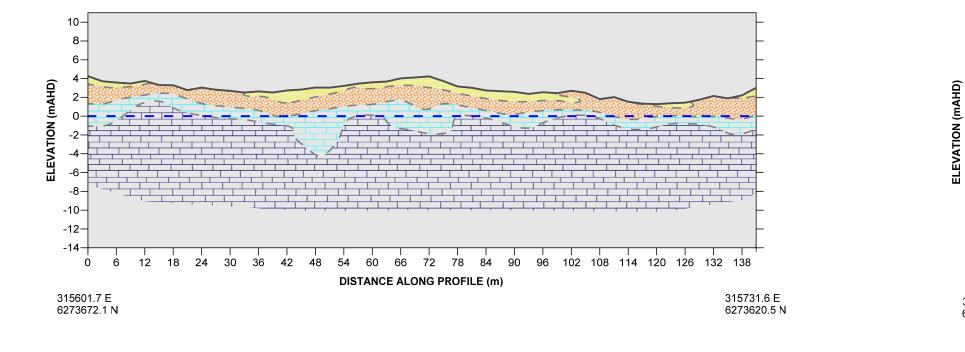
-2

-4

-6

-8

-10


-12-

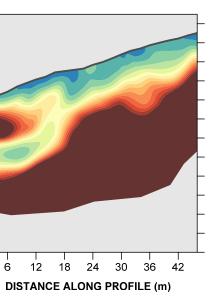
-14-

0

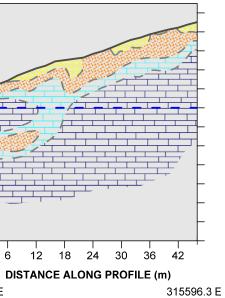
315622.6 E

6273669.5 N





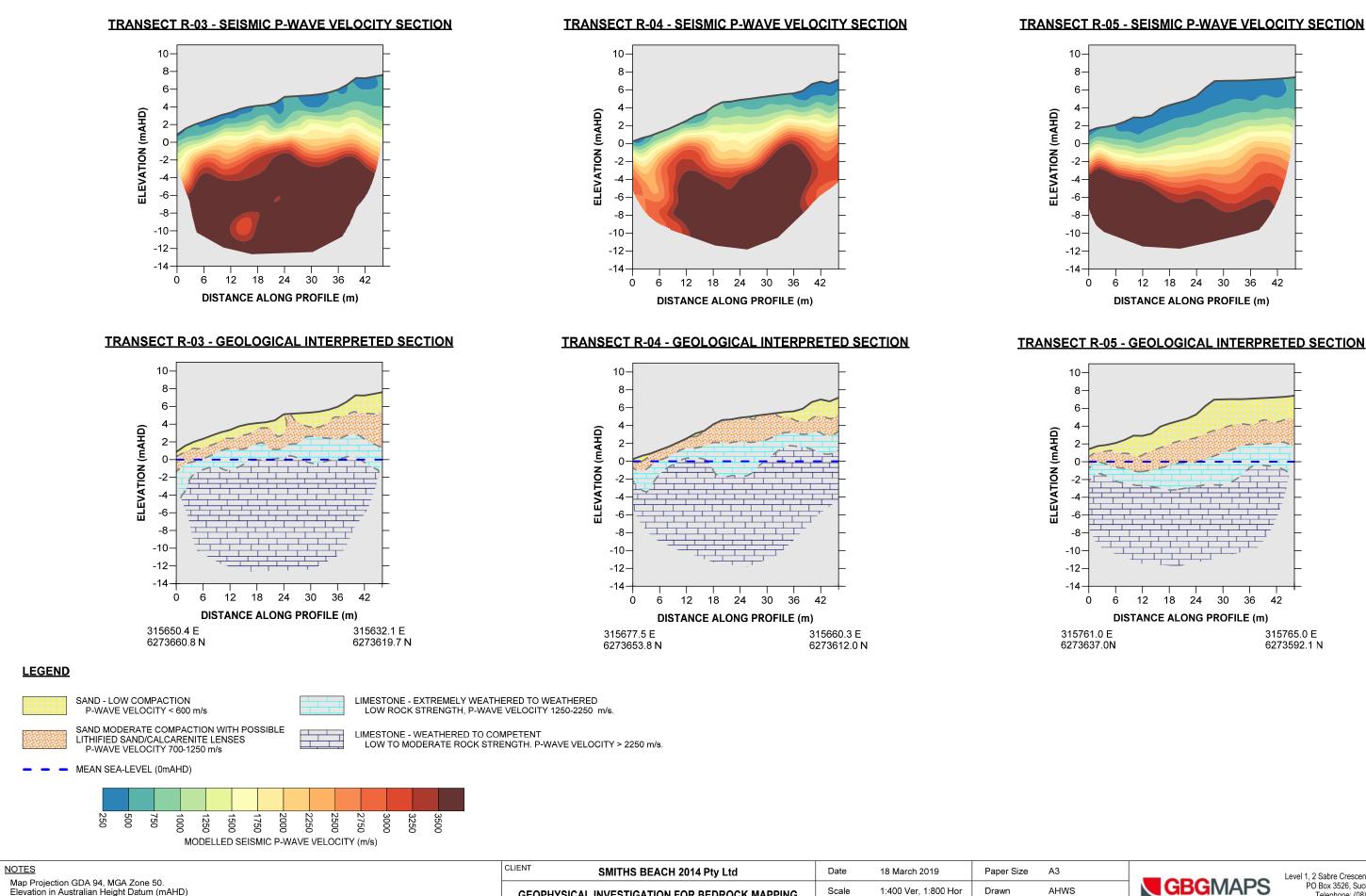

Map Projection Elevation in Au Refer to Drawin Drawing to be L	stralian Hei ng 70492-01	ght Datu I for trar	um (mA nsect lo	cation											G	EOPHYS SMITH			IGATION		
<u>NOTES</u>															CLIEN	NT		SMITH	S BEACH	H 2014	Pty
				MC	DDELLE	ED SE	ISMIC	P-WA	VE VE	LOCIT	Y (m/s	i)									
	250	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500							
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																	
	MEAN SE	A-LEVI	EL (0m/	AHD)																	
	SAND MC LITHIFIEI P-WAV	O SAND	/CALC	ARENI	ITE LEI	NSES		BLE							COMPET STRENGT	ENT H. P-WAV	E VELO	CITY > 2	250 m/s.		
	SAND - L P-WAV				n/s											TO WEAT					


SMITHS BEACH 2014 Pty Ltd	Date	18 March 2019	Paper Size	A3	
SICAL INVESTIGATION FOR BEDROCK MAPPING,	Scale	1:400 Ver, 1:800 Hor	Drawn	AHWS	
HS BEACH YALLINGUP WESTERN AUSTRALIA	Drawing	70492-03	Revision	0	1



## TRANSECT R-02 - SEISMIC P-WAVE VELOCITY SECTION




## **TRANSECT R-02 - GEOLOGICAL INTERPRETED SECTION**



6273633.9 N



#### SEISMIC GEOPHYSICAL AND INTERPRETED TRANSECTS

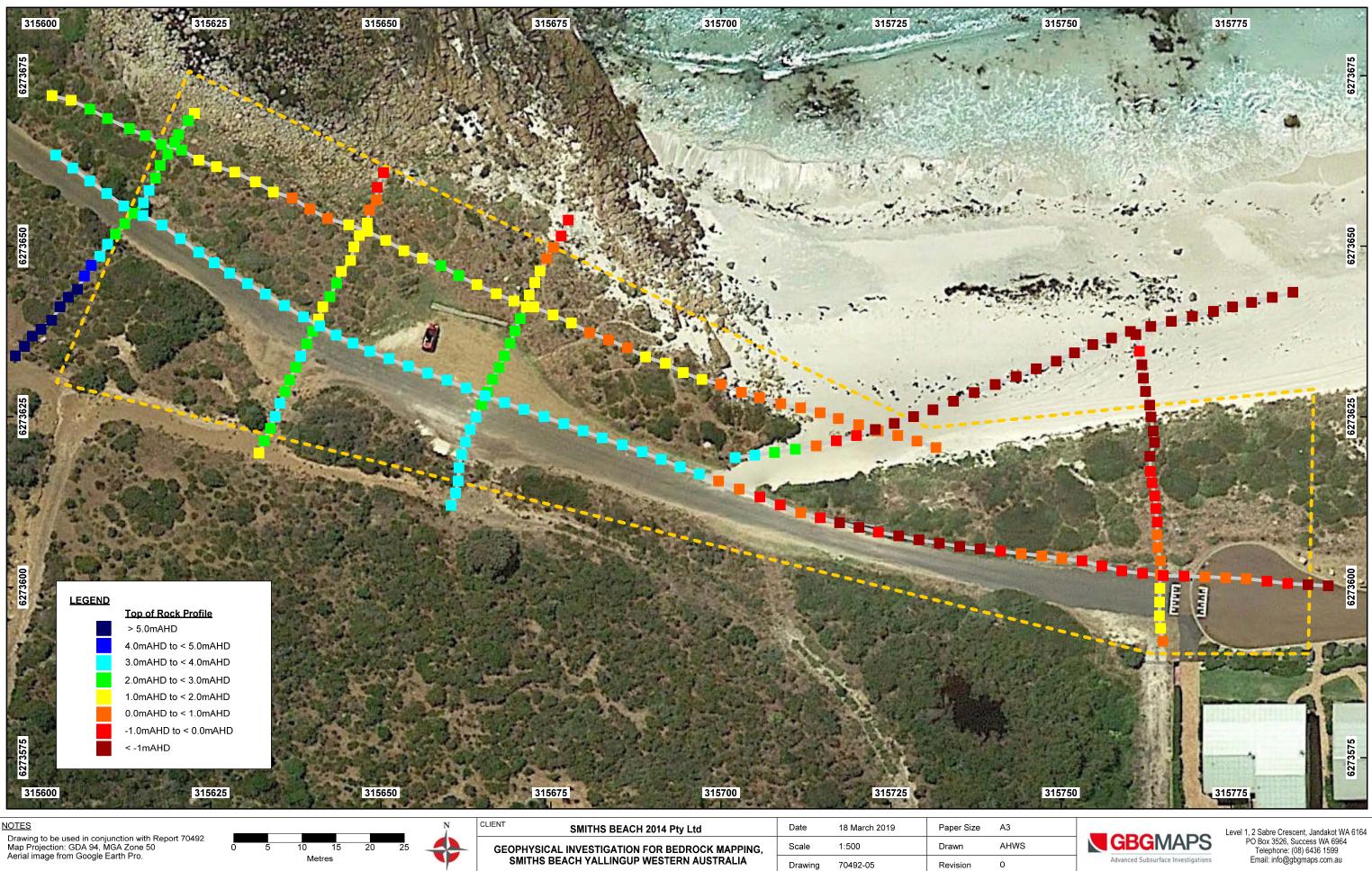


Eleva	Projection GDA 94, MGA Zone 50. ation in Australian Height Datum (mAHD) r to Drawing 70492-01 for transect locations.	GEOPHYSICAL INVESTIGATION FOR BEDROCK MAPPING,	Scale	1:400 Ver, 1:800 Hor
	ving to be used in conjunction with Report 70492.	SMITHS BEACH YALLINGUP WESTERN AUSTRALIA	Drawing	70492-04

**GBG**MAPS

Advanced Subsurface Investigations

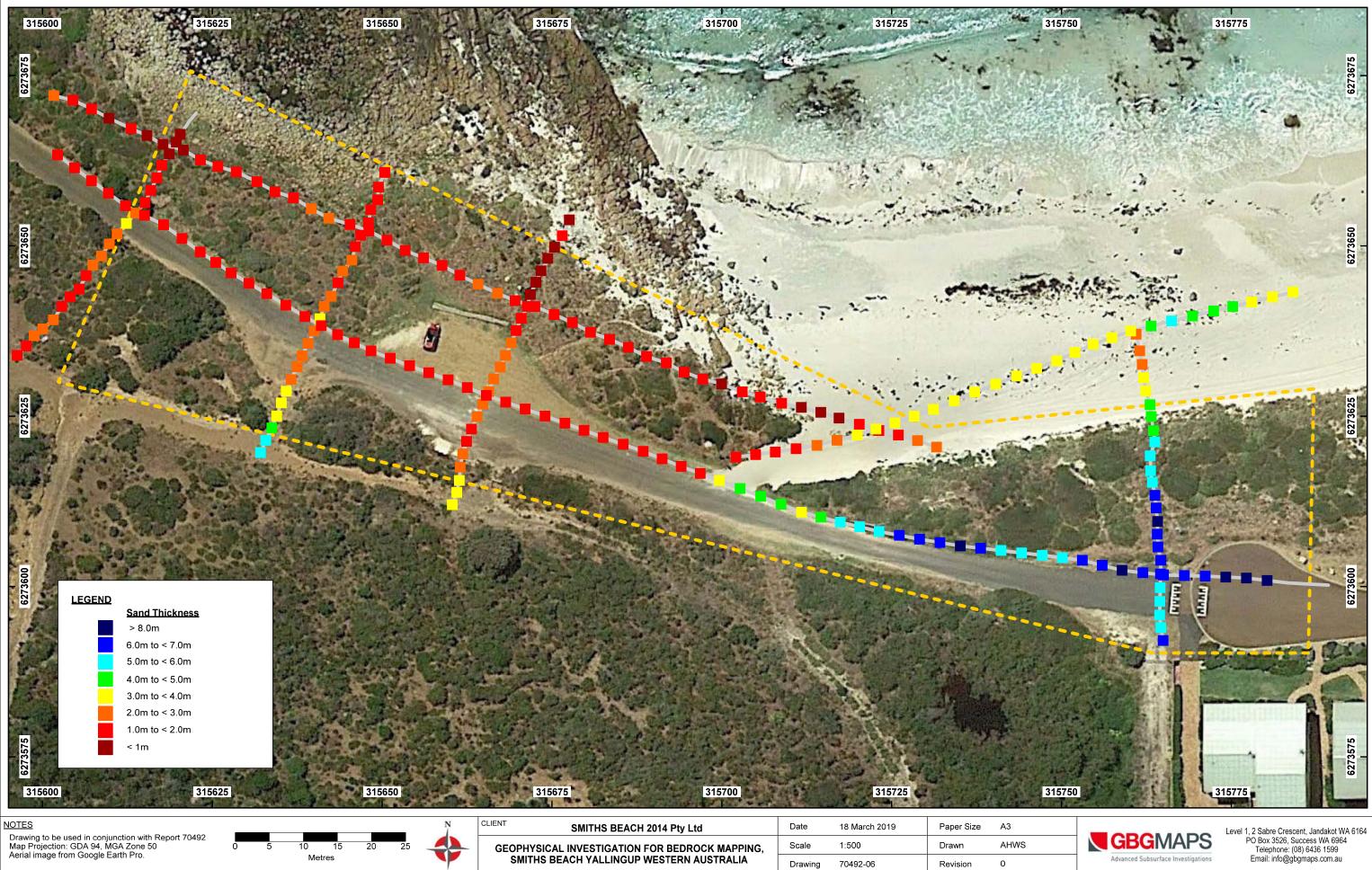



0

Revision



SMITHS BEACH, YALLINGUP WESTERN AUSTRALIA - GEOPHYSICAL INVESTIGATION


MODELLED LEVEL TO TOP OF INTERPRETED ROCK





## SMITHS BEACH, YALLINGUP WESTERN AUSTRALIA - GEOPHYSICAL INVESTIGATION

MODELLED SAND THICKNESS OVERLYING ROCK



# APPENDIX D Hyd2o Permeability Testing

Project/Site Soil Descrip Location Smiths Beach Test Site HS1 (Main Basin) Dark brown-black fine grained 315719 mE

6273585 mN

	62/3585	THIN	
TEST 1			TES
r	4.0		
Н	20.0	cm	
time step	10	secs	ti
H/r	5.00		
С	1.67		
		_	
Time (sec)	Level (cm)	Diff (cm)	Ti
0	3.3		
10	12.4	9.1	
20	16.4	4.0	
30	21.2	4.8	
40	27.8	6.6	
50	34.3	6.5	
60	38.5	4.2	
70	44.5	6.0	
80	50.9	6.4	
90	56.0	5.1	
100	62.0	6.0	
110	67.0	5.0	
120	73.5	6.5	
		5.9	
	q (cm³/s)	5.1	

TEST 2			
	4.0		
r	4.0		
H	20.0		
time step		secs	
H/r	5.00		
С	1.67		
Time (sec)	Level (cm)	Diff (cm)	
0	5.9		
10	15.5	9.6	
20	20.5	5.0	
30	26.7	6.2	
40	33.5	6.8	
50	40.3	6.8	
60	47.5	7.2	
70	54.0	6.5	
80	57.5	3.5	
90	64.7	7.2	
100	75.5	10.8	
	<b>D</b> 100 ( )		
A۱	/g Diff (cm)	7.0	
	q (cm³/s)	6.1	

TEST 3		
r	4.0	cm
Н	20.0	cm
time step		secs
H/r	5.00	
С	1.67	
Time (sec)	Level (cm)	Diff (cm)
0	3.5	
10	12.1	8.6
20	18.0	5.9
30	26.9	8.9
40	33.2	6.3
50	38.7	5.5
60 70	47.0 52.7	8.3 5.7
		5.7 6.6
80 90	59.3	
100	66.0 73.4	6.7 7.4
100	73.4	7.4
-		
-		
A	/g Diff (cm)	7.0
	q (cm ³ /s)	6.2

METHOD 1 : Elrick and Reynolds (1992)

Ks	(cm/s)
Ks	(m/day)

0.0033 Ks (cm/s) 2.86 Ks (m/day)

3.2

308.9

20.0

0.82

-0.54

0.20

0.49

4.1

4

0.0039

Ks (cm/s) Ks (m/day) 0.0040 3.41

Average (m/day)

#### METHOD 2 : Talsma and Hallam Method (for low Ks only <2.9)

q (cm3/min) r (cm) H (cm)	
0.5sinh ⁻¹ (H/2r) -sqrt((r/H)^2+0.25) r/H Sum	
Sum*4 4*a	Γ

Sum*4.4*q 2*pi*H²

Ksat (cm/min)	
Ksat (m/day)	

Average (m/day)

659.28
2513.27
0.3
3.78

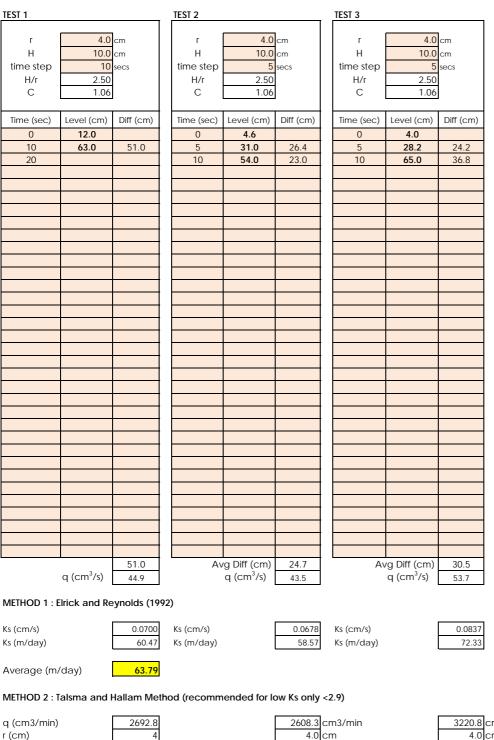
-		
	367.5	cm3/min
	4.0	cm
	20.0	cm





0.3
4.49

369.1	cm3/min
4.0	cm
20.0	cm


0.82
-0.54
0.20
0.49

	787.76
	2513.27
-	

0.3
4.51



Smiths Beach Site HS2 (Uphill West) Light brown sand fine to medium 315558 mE 6273339 mN





q (cm3/min)	2692.8
r (cm)	4
H (cm)	10.0
0.5sinh ⁻¹ (H/2r)	0.52
-sqrt((r/H)^2+0.25)	-0.64
r/H	0.40
Sum	0.28
Sum*4.4*q	3358.81
2*pi*H ²	628.32
Ksat (cm/min)	5.3
Ksat (m/day)	76.98

81.20

Average	(m/day)
---------	---------

2000.5 CITIS/
4.0 cm
10.0 cm
0.52
-0.64
0.40
0.28
3253.44
628.32



3220.8	cm3/min
4.0	cm
10.0	cm

-0.64 0.40 0.28	0.52
0.40	-0.64
0.28	0.40
	0.28



6.4
92.07

Project/Site	Smiths Beach Site HS2 (Behind Beach Resort)	
Soil Descrip	Dark brown sand fine	
Location	315860	mE
	6273478	mN



TEST 1			TEST 2				TEST 3			
r H time step H/r C	4.0 20.0 10 5.00 1.67	cm secs	r H time step H/r C	4.0 20.0 10 5.00 1.67			r H time step H/r C	4.0 20.0 10 5.00 1.67		
Time (sec)	Level (cm)	Diff (cm)	Time (sec)	Level (cm)	Diff (cm)	•	Time (sec)	Level (cm)	Diff (cm)	
0	6.5		0	5.5			0	8.5		
10	17.2	10.7	10	15.1	9.6		10	19.5	11.0	
20	24.1	6.9	20	22.1	7.0		20	26.0	6.5	
30	31.5	7.4	30	32.0	9.9		30	33.5	7.5	
40	40.7	9.2	40	39.5	7.5		40	43.5	10.0	
50	48.0	7.3	50	46.6	7.1		50	51.0	7.5	
60	55.5	7.5	60	55.0	8.4		60	61.0	10.0	
70	64.9	9.4	70	62.6	7.6		70	69.5	8.5	
80	71.7	6.8	80	70.0	7.4					
		0.5						DIG	0.5	
	. 3	8.2	Av	g Diff (cm)	8.1		Av	/g Diff (cm)	8.7	
Method 1 : I	q (cm ³ /s) Elrick and Re	7.2 eynolds (199	2)	q (cm³/s)	7.1			q (cm³/s)	7.7	
Ks (cm/s) Ks (m/day)		0.0046	Ks (cm/s) Ks (m/day)		0.0046		Ks (cm/s) Ks (m/day)		0.0049 4.25	
Average (m.	/day)	4.06								
METHOD 2 : 1	alsma and l	Hallam Meth	nod (recomm	ended for lo	ow Ks only	<2	2.9)			
q (cm3/min) r (cm)		430.3			425.7 4.0		m3/min m			cm3/min cm
H (cm)		20.0			20.0	сп	n		20.0	cm
0.5sinh ⁻¹ (H/2ı	r)	0.82			0.82				0.82	

Ē

-0.54 0.20

0.49

908.63

2513.27

0.4 5.21



-0.54 0.20

0.4
5.63

Average (m/day)

Ksat (cm/min) Ksat (m/day)

-sqrt((r/H)^2+0.25)

r/H

Sum

Sum*4.4*q

 $2^* pi^* H^2$ 

-0.54 0.20

0.49

918.49

2513.27

0.4 5.26

5.37

Project/Site Soil Descrip Location

Smiths Beach Site HS4 (Uphill East) Reddish brown fine slightly loamy 315899 mE 6273295 mN

TEST 1		
r	4.0	cm
Н	20.0	cm
time step	20	secs
H/r	5.00	
С	1.67	
Time (sec)	Level (cm)	Diff (cm)
0	5.0	
20	8.5	3.5
40	12.3	3.8
60	15.0	2.7
80	18.2	3.2
100	21.5	3.3
120	25.0	3.5
140	28.5	3.5
160	32.0	3.5
180	33.6	1.6
200	37.0	3.4
220	40.2	3.2
240	43.7	3.5
260	47.3	3.6
280	50.9	3.6
300	54.5	3.6
320	56.2	1.7
340	60.0	3.8
360	63.5	3.5
380	65.0	1.5
400	69.0	4.0
420	73.0	4.0
440	74.9	1.9
		3.2
	q (cm ³ /s)	1.4

TEST 2		
r	4.0	
н.	20.0	
time step		secs
H/r	5.00	
С	1.67	
Time (sec)	Level (cm)	Diff (cm)
0	9.0	
20	14.7	5.7
40	17.5	2.8
60	20.2	2.7
80	23.0	2.8
100	25.7	2.7
120	28.8	3.1
140	31.5	2.7
160	34.0	2.5
180	36.3	2.3
200	42.0	5.7
220	44.3	2.3
240	47.3	3.0
260	50.5	3.2
280	53.4	2.9
300	56.2	2.8
320	56.2	0.0
340	58.6	2.4
360	61.5	2.9
380	64.5	3.0
400	67.3	2.8
420	70.0	2.7
440	72.2	2.2
460	75.0	2.8
۸.	Diff (ora)	2.0
A۱	rg Diff (cm)	2.9
	q (cm³/s)	1.3

METHOD 1 : Elrick and Reynolds (1992)

Ks	(cm/s)
Ks	(m/day)

#### 0.0009 0.78

Ks (cm/s)

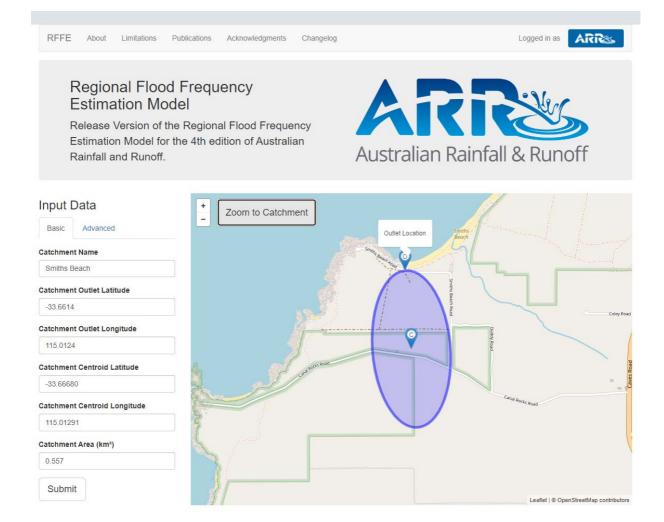
Ks (m/day)

0.0008

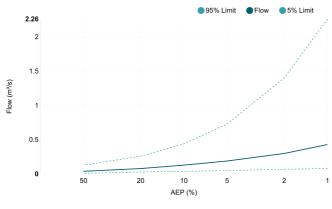
Average (m/day)

#### METHOD 2 : Talsma and Hallam Method (for low Ks only <2.9)

0.7


1.0

	-
q (cm3/min)	83.9
r (cm)	4
H (cm)	20.0
0.5sinh ⁻¹ (H/2r)	0.82
-sqrt((r/H)^2+0.25)	-0.54
r/H	0.20
Sum	0.49
Sum*4.4*q	179.04
2*pi*H ²	2513.27
Ksat (cm/min)	0.1
Ksat (m/day)	1.03


,		
	75.8	cm3/min
	4.0 20.0	cm
	20.0	cm
	0.82 -0.54	
	-0.54	
	0.20	
	0.20	
	161.70	
	2513.27	
	0.1	
	0.93	

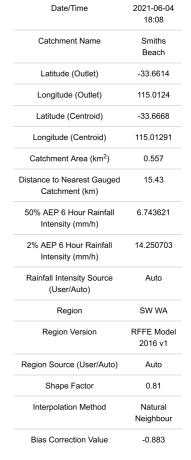
0.70



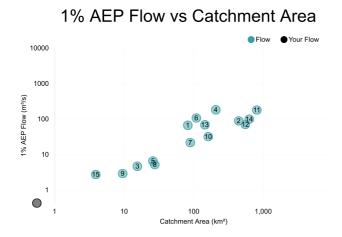


# Results | Regional Flood Frequency Estimation Model



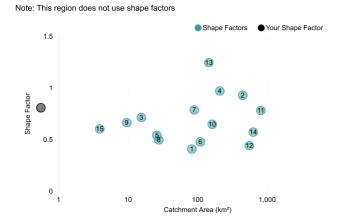

AEP (%)	Discharge (m ³ /s)	Lower Confidence Limit (5%) (m³/s)	Upper Confidence Limit (95%) (m³/s)
50	0.0400	0.0100	0.130
20	0.0800	0.0300	0.260
10	0.130	0.0400	0.440
5	0.190	0.0500	0.730
2	0.300	0.0700	1.40
1	0.430	0.0800	2.26

# Statistics

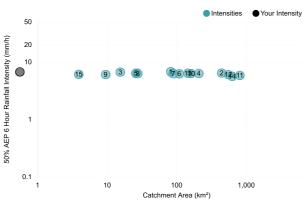

Variable	Value	Standard Dev		
Mean	-3.246	0.658		
Standard Dev	0.749	0.349		
Skew	0.394	0.091		
Note: These statistics come from the nearest gauged catchment.				

	Correlation			
1.000				
-0.280	1.000			
-0.050	-0.070	1.000		

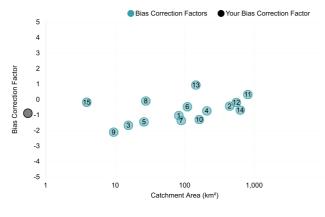
: These statistics are common to each region. Details




Input Data







Shape Factor vs Catchment Area







## Bias Correction Factor vs Catchment Area





Method by Dr Ataur Rahman and Dr Khaled Haddad from Western Sydney University for the Australian Rainfall and Runoff Project. Full description of the project can be found at the project page (http://arr.ga.gov.au/revision-projects/project-list/projects/project-5) on the ARR website. Send any questions regarding the method or project here (mailto:admin@arr-software.org).



WESTERN SYDNEY (http://www.uws.edu.au)



## **CERTIFICATE OF ANALYSIS 258675**

Client Details	
Client	Hyd2O
Attention	Sasha Martens
Address	Suite 6B, 103 Rokeby Rd, Subiaco, WA, 6008

Sample Details	
Your Reference	H19053 - H20045 Smith
Number of Samples	1 Water
Date samples received	15/03/2021
Date completed instructions received	15/03/2021

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	22/03/2021
Date of Issue	22/03/2021
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with Is	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Heram Halim, Operations Manager

#### Authorised By

Ml. n

Michael Kubiak, Laboratory Manager



Miscellaneous Inorganics			
Our Reference			258675-1
Your Reference	UNITS	PQL	SBL1
Date Sampled			14/03/2021
Type of sample			Surface Water
Date prepared	-		15/03/2021
Date analysed	-		15/03/2021
рН	pH Units		8.1
Electrical Conductivity (EC)	μS/cm	1	3,600
Total Suspended Solids	mg/L	5	5

Nutrients in Water			
Our Reference			258675-1
Your Reference	UNITS	PQL	SBL1
Date Sampled			14/03/2021
Type of sample			Surface Water
Date prepared	-		15/03/2021
Date analysed	-		15/03/2021
Total Nitrogen	mg/L	0.1	6.6
Ammonia as N	mg/L	0.005	0.093
Nitrate as N	mg/L	0.005	<0.005
Nitrite as N	mg/L	0.005	<0.005
Total Kjeldahl Nitrogen	mg/L	0.1	6.6
NOx as N	mg/L	0.005	<0.005
Total Phosphorus	mg/L	0.05	0.08
Phosphate as P	mg/L	0.005	<0.005

Metals in Water - Low Level			
Our Reference			258675-1
Your Reference	UNITS	PQL	SBL1
Date Sampled			14/03/2021
Type of sample			Surface Water
Date prepared	-		19/03/2021
Date analysed	-		19/03/2021
Arsenic-Dissolved	mg/L	0.001	0.002
Cadmium-Dissolved	mg/L	0.0001	<0.0001
Chromium-Dissolved	mg/L	0.001	<0.001
Copper-Dissolved	mg/L	0.001	0.017
Lead-Dissolved	mg/L	0.001	<0.001
Mercury-Dissolved	mg/L	0.00005	<0.00005
Nickel-Dissolved	mg/L	0.001	<0.001
Zinc-Dissolved	mg/L	0.001	0.011

Method ID	Methodology Summary
INORG-001	pH - Measured using pH meter and electrode base on APHA latest edition, Method 4500-H+. Please note that the results for water analyses may be indicative only, as analysis can be completed outside of the APHA recommended holding times. Soils are reported from a 1:5 water extract unless otherwise specified.
INORG-002	Conductivity and Salinity - measured using a conductivity cell at 25°C based on APHA latest edition Method 2510. Soils reported from a 1:5 water extract unless otherwise specified.
INORG-019	Suspended Solids - determined gravimetrically by filtration of the sample. The solids are dried at $104\pm5^\circ$ C
INORG-055	Nitrite - determined colourimetrically. Soils are analysed from a water extract.
INORG-055	Nitrate - determined colourimetrically. Soils are analysed from a water extract.
INORG-055	NOx - determined colourimetrically. Soils are analysed from a water extract.
INORG-057	Ammonia by colourimetric analysis based on APHA latest edition 4500-NH3 F.
INORG-060	Phosphate- determined colourimetrically. Soils are analysed from a water extract.
INORG-062	TKN by calculation from Total Nitrogen and NOx using APHA methodology.
INORG-110	Total Nitrogen by high temperature catalytic combustion with chemiluminescence detection. Dissolved/Total Carbon and Dissolved/Total Organic and Inorganic Carbon by high temperature catalytic combustion with NDIR
METALS-020	Determination of various metals by ICP-AES.
METALS-021	Determination of Mercury by Cold Vapour AAS.
	For urine samples total Mercury is determined, however, mercury in urine is almost entirely in the inorganic form (CDC).
METALS-022	Determination of various metals by ICP-MS.

QUALITY CONTROL: Miscellaneous Inorganics					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	
Date analysed	-			15/03/2021	1	15/03/2021	15/03/2021		15/03/2021	
рН	pH Units		INORG-001	[NT]	1	8.1	[NT]		102	
Electrical Conductivity (EC)	μS/cm	1	INORG-002	<1	1	3600	[NT]		103	
Total Suspended Solids	mg/L	5	INORG-019	<5	1	5	5	0	94	[NT]

QUALITY CONTROL: Nutrients in Water						Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			15/03/2021	[NT]		[NT]	[NT]	15/03/2021	
Date analysed	-			15/03/2021	[NT]		[NT]	[NT]	15/03/2021	
Total Nitrogen	mg/L	0.1	INORG-110	<0.1	[NT]		[NT]	[NT]	96	
Ammonia as N	mg/L	0.005	INORG-057	<0.005	[NT]		[NT]	[NT]	105	
Nitrate as N	mg/L	0.005	INORG-055	<0.005	[NT]		[NT]	[NT]	103	
Nitrite as N	mg/L	0.005	INORG-055	<0.005	[NT]		[NT]	[NT]	110	
Total Kjeldahl Nitrogen	mg/L	0.1	INORG-062	<0.1	[NT]		[NT]	[NT]	[NT]	
NOx as N	mg/L	0.005	INORG-055	<0.005	[NT]		[NT]	[NT]	103	
Total Phosphorus	mg/L	0.05	METALS-020	<0.05	[NT]		[NT]	[NT]	88	
Phosphate as P	mg/L	0.005	INORG-060	<0.005	[NT]		[NT]	[NT]	120	

QUALITY CON	QUALITY CONTROL: Metals in Water - Low Level					Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			19/03/2021	[NT]		[NT]	[NT]	19/03/2021	
Date analysed	-			19/03/2021	[NT]		[NT]	[NT]	19/03/2021	
Arsenic-Dissolved	mg/L	0.001	METALS-022	<0.001	[NT]		[NT]	[NT]	105	
Cadmium-Dissolved	mg/L	0.0001	METALS-022	<0.0001	[NT]		[NT]	[NT]	103	
Chromium-Dissolved	mg/L	0.001	METALS-022	<0.001	[NT]		[NT]	[NT]	102	
Copper-Dissolved	mg/L	0.001	METALS-022	<0.001	[NT]		[NT]	[NT]	105	
Lead-Dissolved	mg/L	0.001	METALS-022	<0.001	[NT]		[NT]	[NT]	105	
Mercury-Dissolved	mg/L	0.00005	METALS-021	<0.00005	[NT]		[NT]	[NT]	104	
Nickel-Dissolved	mg/L	0.001	METALS-022	<0.001	[NT]		[NT]	[NT]	106	
Zinc-Dissolved	mg/L	0.001	METALS-022	<0.001	[NT]		[NT]	[NT]	105	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

DA APPENDIX O - Engineering Report (Stantec)

## APPENDIX H Water Register Extracts

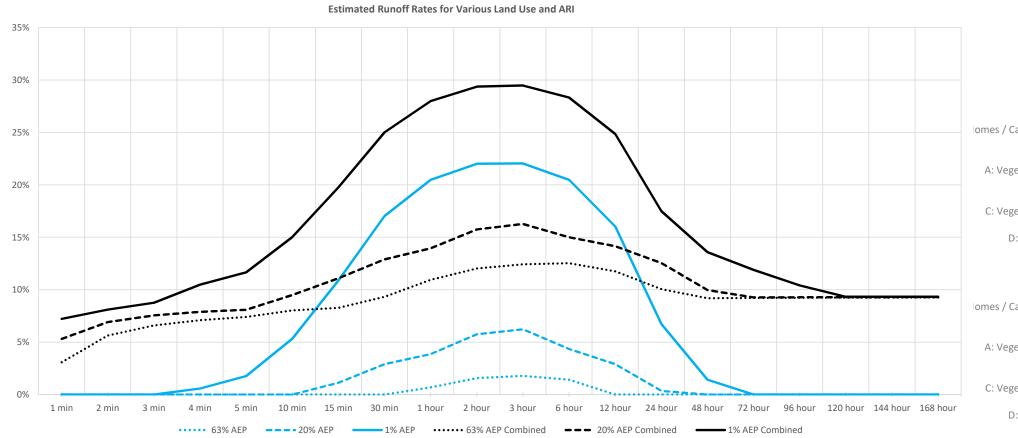
#### **DWER WATER REGISTER EXTRACTS**



# **CURRV**

CONNV								AR&R				م ام بيما
Calculator for Urban Runoff Rates & Volumes			Imperv	Perv	Perv			EIA/TIA				hyd ₂ o
09-09-21			Initial	Initial	Continue			System				
	Area	Use in	Loss	Loss	Loss	On Site	Empty	Connect	Roof	Ext Imp	Ext Perv	
Land Use Description	(ha)	Calc	mm	mm	mm/hr	Soak (mm)	(days)	Ratio	%	%	%	Comment HYDROLOGY
1 A: Holiday Homes / Camping	7.97	Yes	1.5	28.0	4.1	15.0	0.25	40%	20	5	75	Inclusive of impervious and pervious areas
2 A: Holiday Homes / Camping: Shallow Rock & Clay Area	3.25	Yes	1.5	14.0	1.5	0.0	1.00	70%	20	5	75	Inclusive of impervious and pervious areas
3 A: Private Road / Carpark	3.89	Yes	1.5	28.0	4.1	0.0	1.00	95%	0	70	30	Total road reserve inclusive of pervious shoulders
4 A: Vegetation : Sand Area	7.23	Yes	1.5	28.0	4.1	0.0	1.00	30%	0	0	100	Based on calibrated pre development model
5 A: Vegetation : Shallow Rock & Clay Area	2.53	Yes	1.5	14.0	1.5	0.0	1.00	65%	0	0	100	Based on calibrated pre development model
6 B: Community Hub	0.66	Yes	1.5	28.0	4.1	0.0	1.00	60%	70	15	15	Inclusive of impervious and pervious areas
7 C: Hotel Complex	0.83	Yes	1.5	28.0	4.1	0.0	1.00	100%	90	10	0	Impervious portion (roof/paving) of site only
8 C: Vegetation : Shallow Rock & Clay Area	2.03	Yes	1.5	14.0	1.5	0.0	1.00	65%	0	0	100	Based on calibrated pre development model
9 D: Upstream Catchment : Road	0.97	Yes	1.5	28.0	4.1	0.0	1.00	95%	0	70	30	Based on calibrated pre development model
10 D: Upstream Catchment Vegetation	23.45	Yes	1.5	28.0	4.1	0.0	1.00	30%	0	0	100	Based on calibrated pre development model

AR&R


EIA : Effective Impervious Area, TIA : Total Impervious Area

Land Use Graph Selector

1

#### (11 - combined total)

#### A: Holiday Homes / Camping



# Dura 1 1 2 2 3 3 4 4 5 5 6 10 7 15 8 30 9 1 10 2 11 3 12 6 13 12 14 24 15 48 16 72 17 96 18 120 168 20

A: Holiday Homes / Camping lomes / Camping: Shallow Rock & Clay Area A: Private Road / Carpark 66% A: Vegetation : Sand Area A: Vegetation : Shallow Rock & Clay Area 24% C: Hotel Complex C: Vegetation : Shallow Rock & Clay Area D: Upstream Catchment : Road 66% D: Upstream Catchment Vegetation

#### Event S

A: Holiday Homes / Ca omes / Camping: Shallow Rock & Cla A: Private Road / C A: Vegetation : San A: Vegetation : Shallow Rock & Cla B: Communi C: Hotel Co C: Vegetation : Shallow Rock & Cla D: Upstream Catchment D: Upstream Catchment Vege

#### Project

## H20045 Smiths Beach Yallingup

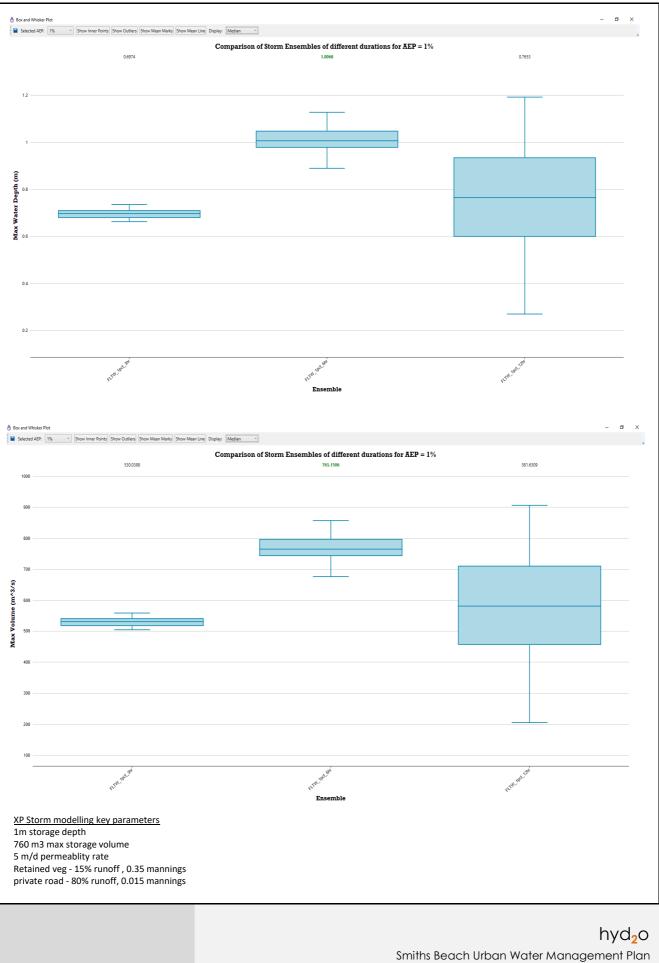
#### Rainfall IFD Data

		Exceede		,			
	63.2%	50%	20%	10%	5%	2%	1%
iration	1.00	1.44	4.48	10	20	50	100
1 min	2.23	2.52	3.45	4.11	4.78	5.70	6.44
2 min	3.74	4.17	5.66	6.77	7.96	9.59	10.90
3 min	5.03	5.63	7.64	9.13	10.70	12.80	14.60
4 min	6.11	6.86	9.35	11.20	13.00	15.60	17.70
5 min	7.05	7.93	10.80	12.90	15.00	18.00	20.30
10 min	10.3	11.7	16.0	19.1	22.1	26.3	29.7
15 min	12.4	14.0	19.3	23.0	26.7	31.8	35.8
30 min	16.2	18.2	25.0	29.8	34.7	41.6	47.0
1 hour	20.4	22.8	31.0	37.0	43.2	52.0	59.1
2 hour	25.5	28.4	38.0	45.2	52.8	63.4	72.3
3 hour	29.2	32.3	42.9	50.9	59.2	71.0	80.7
6 hour	36.7	40.5	53.1	62.4	72.0	85.7	97.0
.2 hour	45.7	50.3	65.5	76.3	87.2	103.0	116.0
4 hour	55.7	61.3	79.3	91.8	104.0	122.0	137.0
8 hour	66.6	73.1	93.6	108.0	122.0	143.0	159.0
2 hour	74.2	81.0	103.0	118.0	133.0	155.0	172.0
6 hour	81.0	88.2	111.0	127.0	142.0	164.0	180.0
20 hour	87.8	95.4	119.0	135.0	150.0	171.0	187.0
44 hour	95.0	103.0	127.0	143.0	158.0	178.0	192.0
68 hour	103.0	111.0	136.0	152.0	166.0	184.0	196.0

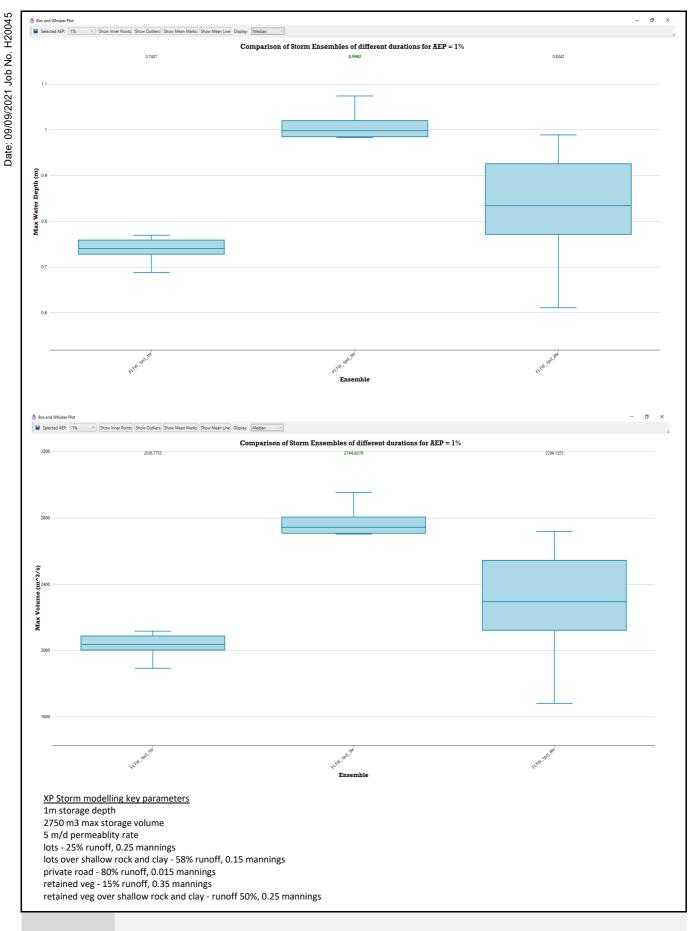
#### **Estimated Runoff Rates**

#### Annual Exceedence Probability 63.2% 50% 20% 10% 5% 2% 1% Maximum of All Events 1.00 1.44 4.48 10 20 50 100 6% 12% 2% 3% 169 20% 22% 36% 40% 47% 569 58% 66% 66% 80% 74% 77% 709 0% 0% 2% 109 13% 15% 69 28% 37% 419 45 48% 50% B: Community Hub 50% 55% 50% 50% 51% 53 54% 99% 99% 999 50% 24% 37% 48% 289 419 45 66% 66% 74 77% 80% 709 0% 0% 2% 10% 13% 15% 6% combined total 13% 13% 16% 21% 24% 27% 29%

Selector	8	30 min					
Camping	0%	0%	3%	4%	9%	14%	17%
lay Area	21%	26%	38%	43%	47%	51%	53%
Carpark	60%	61%	<b>63%</b>	<b>63%</b>	67%	72%	75%
ind Area	0%	0%	0%	0%	4%	8%	11%
lay Area	<mark>6%</mark>	12%	27%	33%	37%	42%	45%
nity Hub	46%	47%	48%	48%	50%	52%	53%
Complex	<b>91%</b>	92%	94%	95%	96%	96%	97%
lay Area	<mark>6%</mark>	12%	27%	33%	37%	42%	45%
nt : Road	<b>60%</b>	61%	<b>63%</b>	<mark>63%</mark>	67%	72%	75%
getation	0%	0%	0%	0%	4%	8%	11%

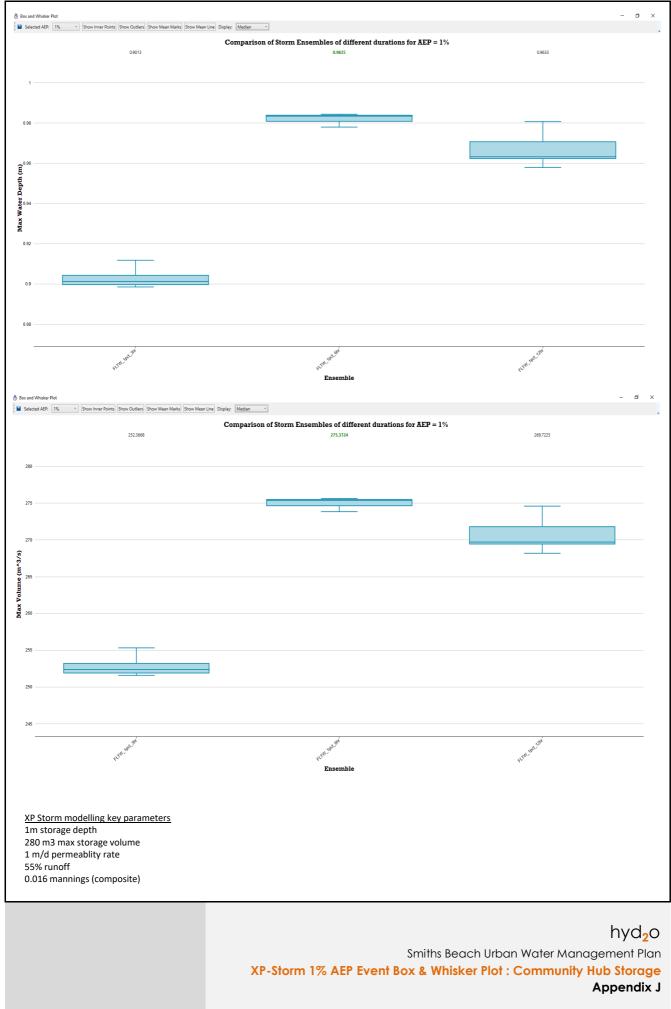

# APPENDIX J PONDS Modelling Outputs



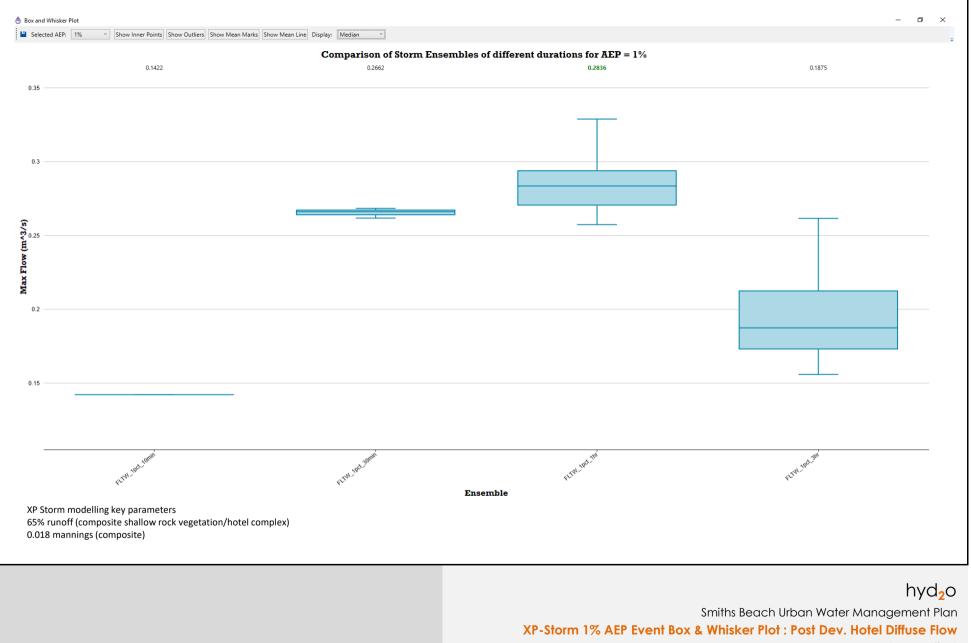

# SUMMARY OF INDIVIDUAL MODELLED STORAGE AREAS & VOLUMES

StorageID	Туре	Base Area (m2)	TWL Area (m2)	Volume (m3)
BA1	Bioretention Area	20	56	11
BA2	Bioretention Area	15	42	9
BA3	Bioretention Area	15	42	9
BA4	Bioretention Area	16	45	10
BA5	Bioretention Area	16	45	10
BA6	Bioretention Area	16	45	10
BA7	Bioretention Area	28	78	16
BA8	Bioretention Area	300	480	117
BS1	Bioretetion Swale	35	121	27
BS2	Bioretetion Swale	169	583	132
BS3	Bioretetion Swale	154	531	120
BS4	Bioretetion Swale	42	145	33
BS5	Bioretetion Swale	79	273	62
BS6	Bioretetion Swale	52	179	41
BS7	Bioretetion Swale	130	449	101
BS8	Bioretetion Swale	275	949	214
BS9	Bioretetion Swale	50	173	39
5YrA	20% AEP Underground Storage	8	8	8
5YrB	20% AEP Underground Storage	7.5	7.5	7.5
5YrC	20% AEP Underground Storage	7.5	7.5	7.5
5YrD	20% AEP Underground Storage	9	9	9
5YrE	20% AEP Underground Storage	9	9	9
5YrF	20% AEP Underground Storage	9	9	9
100YrA	1% AEP Underground Storage	2750	2750	2750
100YrB	1% AEP Underground Storage	760	760	760
100YrC	1% AEP Underground Storage	280	280	280
TOTAL		5252	8075	4798



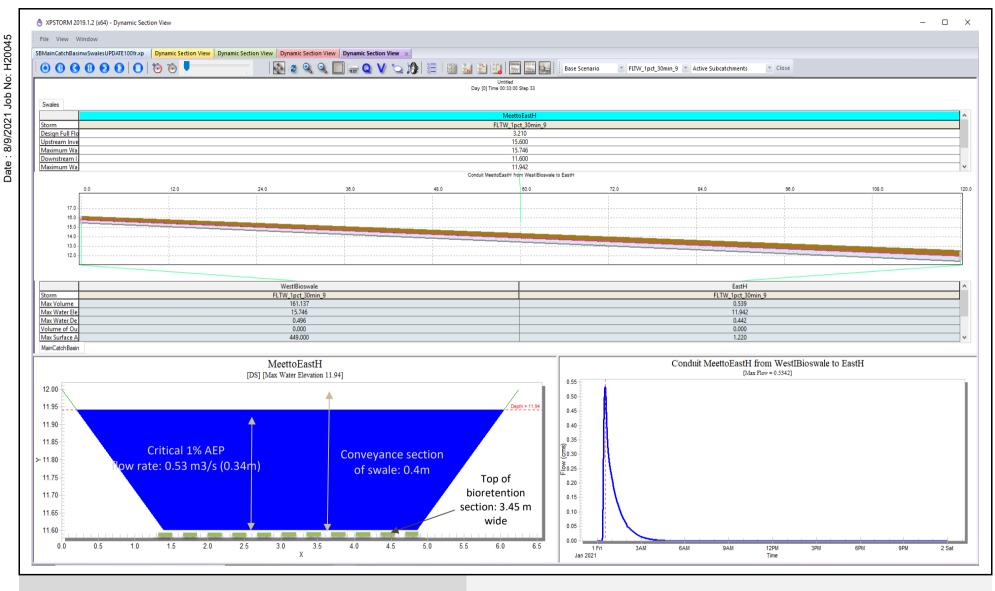



Smiths Beach Urban Water Management Plan XP-Storm 1% AEP Event Box & Whisker Plot : Upstream Flood Storage Appendix J




hyd20

Smiths Beach Urban Water Management Plan XP-Storm 1% AEP Event Box & Whisker Plot : Holiday Home/Camping Flood Storage Appendix J



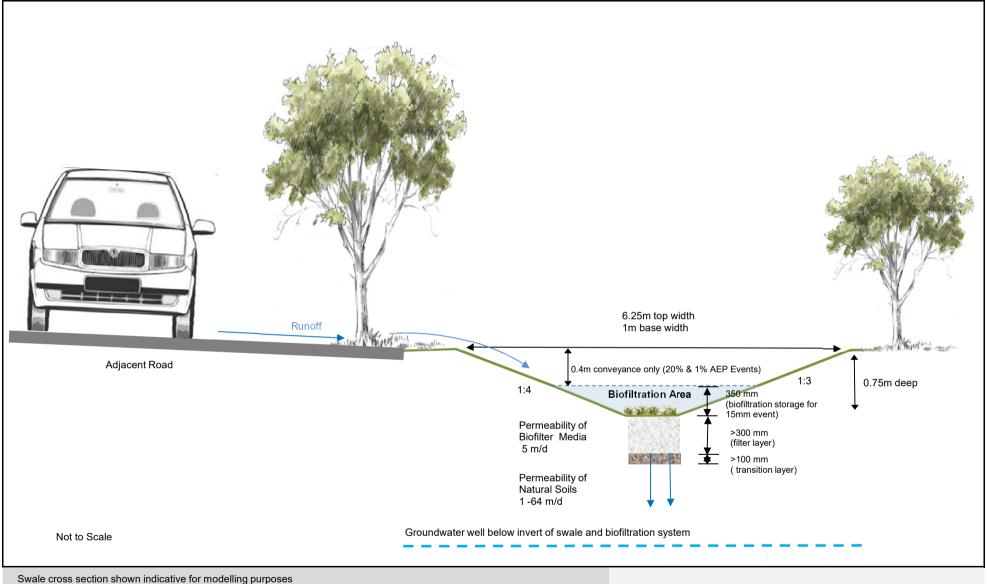

Date: 8/09/2021 Job No. H20045



Date: 16/6/2021 Job No: H20045

Appendix J




## hyd<mark>2</mark>0

Smiths Beach Urban Water Management Plan

XP-Storm 1% AEP Event Road Swale Conveyance Section: Bioretention Swale 7

Appendix J

# APPENDIX K Indicative Storage Cross Sections



Actual flood depth and width may vary based on location within network and contributing catchment Biofilter media below swale may not be possible in shallow rock areas - these areas operate as conveyance systems only Rock pitched weirs or crossover culverts to be used within swales to reduce velocities and detain flows

## hyd₂o

Smiths Beach Urban Water Management Plan
Typical Two Way Road Reserve Swale Cross Section

#### Appendix K