DEPARTMENT OF PLANNING, LANDS AND HERITAGE

DATE 29-Jan-2021 FILE SDAU-012-20

88 Mill Point Road, South Perth

Acid Sulfate Soil and Dewatering

Management Plan

88 Mill Point Road, South Perth

Acid Sulfate Soil and Dewatering Management Plan

Report No:

P20.227-RPT-ASSDMP_0

Issue Date: 18-Dec-2020

Status FINAL

Prepared for:

CMW Geosciences Suite 1, Level 3/29 Flynn St WEMBLEY WA 6014

Prepared by

Western Environmental Pty Ltd Level 3, 25 Prowse Street West Perth WA 600 www.westenv.com.au

Internal Review

Author	Reviewed by	Approved by
the	1. (Bart	1. (But
Leah Petrie Environmental Scientist	Philip Brand Associate Environmental Scientist	Philip Brand Associate Environmental Scientist
17-Dec-2020	18-Dec-2020	18-Dec-2020

Distribution Record

Copies	Document ID / Version	Date	Received by
1 (E)	P20.227-RPT-SDMP_A / PRELIMINARY	17-Dec-2020	CMW Geosciences
1 (E)	P20.227-RPT-ASSDMP_0 / FINAL	18-Dec-2020	CMW Geosciences

Statement of Limitations

Copyright Statement

© Western Environmental Pty Ltd. All rights reserved. No part of this work may be produced in any material form or communicated by any means without the permission of the copyright owner. The unauthorised copying or reproduction of this report or any of its contents is prohibited.

Scope of Services

This environmental report ("this report") has been prepared for the sole benefit and exclusive use of the Client for the purpose for which it was prepared in accordance with the agreement between the Client and Western Environmental Pty Ltd ("the Agreement"). Western Environmental Pty Ltd (WEPL) disclaims any and all liability with respect to any use of or reliance upon this report for any other purpose whatsoever.

In particular, it should be noted that this report is based on a scope of services defined by the Client, and is limited by budgetary and time constraints, the information supplied by the Client (and its agents) and, in some circumstances, access and/or site disturbance constraints.

The scope of services did not include any assessment of the title to or ownership of the properties, buildings and structures referred to in this report, or the application or interpretation of laws in the jurisdiction in which those properties, buildings and structures are located.

Reliance on Data

In preparing this report, WEPL has relied on data, surveys, analyses, designs, plans and other information provided by the Client (or its agents), other individuals and organisations ("the data"). Except as otherwise stated in this report, WEPL has not verified the accuracy or completeness of the data. WEPL does not represent or warrant that the data is true or accurate, and disclaims any and all responsibility or liability with respect to the use of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in this report ("conclusions") are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. WEPL does not accept any responsibility or liability for any incorrect or inaccurate conclusions should any data be incorrect, inaccurate or incomplete or have been concealed, withheld, misrepresented or otherwise not fully disclosed to WEPL.

The conclusions must also be considered in light of the agreed scope of services (including any constraints or limitation therein) and the methods used to carry out those services, both of which are as stated or referred to in this report.

Environmental Conclusions

In accordance with the scope of services, WEPL has conducted environmental field monitoring and/or testing in the preparation of this report. The nature and extent of monitoring and/or testing conducted is described in this report.

On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling technique can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or groundwater conditions encountered. The conclusions are based on the data and the environmental field monitoring and/or testing actually undertaken, and are therefore merely indicative of the environmental condition of the site at the time of preparing this report, including the presence or otherwise of contaminants or emissions. It should be recognised that site conditions, including the extent and concentration of contaminants, can change.

Within the limitations imposed by the scope of services, the monitoring, testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. To the maximum extent permitted by law, no other warranty, express or implied, is made.

Report for Benefit of Client

This report is confidential. Neither the whole nor any part of this report, or any copy or extract thereof, may be disclosed or otherwise made available to any third party without the prior written approval of WEPL.

WEPL accepts no liability or responsibility whatsoever in respect of any use of or reliance upon this report, by any person or organisation who is not a party to the Agreement. Reliance on this report by any person who is not a party to the Agreement is expressly prohibited. Any representation in this report is made only to the parties to the Agreement.

WEPL assumes no responsibility and disclaims any and all liability to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in this report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in this report (including without limitation matters arising from any negligent act or omission of WEPL or for any loss or damage suffered by any other party using or relying on the matters dealt with or conclusions expressed in this report, even if WEPL has been advised of the possibility of such use or reliance).

Other parties should not rely on this report or the accuracy or completeness of any conclusions contained in this report, and should make their own enquiries and obtain independent advice in relation to such matters.

If an Auditor is engaged by the Client to undertake review of this report, it shall be made available subject to the terms and conditions of the agreement between the Client and WEPL and the caveats in this statement.

Other Limitations

This report is intended to be read in its entirety, and sections or parts of this report should therefore not be read and relied on out of context.

WEPL will not be liable to update or revise this report to take into account any events or circumstances or facts becoming apparent after the date of this report.

Executive Summary

Introduction

Western Environmental Pty Ltd (WEPL) was commissioned by CMW Geosciences (the Client) to undertake a contamination and Acid Sulfate Soil (ASS) investigation and prepare an ASS and Dewatering Management Plan (ASSDMP) for 88 Mill Point Road, South Perth (the Site). The Site is located approximately 2 km south of the CBD (Figure 1). The Site is comprised of the following cadastral lots:

- Lot 2 on Plan D000812 86 Mill Point Road
- Lot 15 on Plan D018674 88 Mill Point Road
- Lot 16 on Plan D018674 90 Mill Point Road.

This report documents the investigative works undertaken at the Site and includes a soil and dewatering management plan, prepared in compliance with current DWER guidelines. Note that at the time of this report, WEPL had only received 50% of the confirmatory ASS testing results for the Site; this management plan should be revised in the event that the final data set suggests that additional management is required in accordance with the ASS management guidelines (DER, 2015b).

Objectives

The objectives of the ASSDMP are as follows:

- To undertake an ASS investigation report for the site, that is consistent with the current ASS investigation guidelines (DER, 2015a).
- To provide appropriate management and monitoring measures for ASS in compliance with the management guidelines (DER, 2015b).
- To undertake an assessment of potential contamination within the onsite fill material in general accordance with NEPM guidelines.

Scope of Work

The scope of work comprised the following:

- A desktop review of historical environmental reports and available online datasets in relation to ASS and groundwater at the Site.
- Collection of soil samples by CMW Geosciences from four soil bores and submitted for field and laboratory testing to confirm the nature and extent of ASS. A limited number of samples were also submitted to the laboratory and tested for a broad suite of contaminants, in order to confirm the nature and extent of any contamination in fill material and implications for management.
- Conversion of two soil bores to groundwater monitoring wells by CMW Geosciences. WEPL collected
 groundwater samples from these two groundwater monitoring wells with samples subject to field
 testing and laboratory analysis.
- Preparation of an ASSDMP outlining all soil, groundwater and dewatering effluent investigation results, management and monitoring requirements.

Results

The Site is situated within an area identified as 'moderate to low risk of ASS occurring within 3 m of natural soil surface but high to moderate risk of ASS beyond 3 m of natural soil surface', according to DWER (Figure 2). The ASS field testing results indicate that ASS is likely present across the Site and preliminary SPOCAS results confirmed the presence of PASS at the Site in sand material from approximately 2.5 m below ground level (mbgl) to 6 mbgl within the target excavation zone and below the observed groundwater level. As such ASS management of Site works will be required.

Contamination assessment results indicate one zinc concentration in exceedance of applied EILs, however, the EIL exceedances are not considered to be significant in regard to ecological receptors as the most conservative EILs were applied. If a background sample was collected to determine the ambient background concentration (ABC), the results would likely have been within the Site specific EIL. There are currently no ecological receptors onsite as the Site is cleared and the proposed land use will have minimal opportunities for soil access. The closest sensitive receptor (Swan River) is approximately 200 m to the east and 330 m to the west. Given the current and proposed land use, and lack of identified risk to human health, the ecological exceedance is considered to present a negligible risk.

Field groundwater monitoring results indicate the groundwater beneath the Site to be of moderate buffering capacity and to be vulnerable to acidification. This is based on an assessment of groundwater pH, acidity, alkalinity and the presence of ASS in the target excavation zone. Chemical indicators based on the DER ASS guidelines suggest that groundwater beneath the Site has a moderate buffering capacity and has been slightly affected by ASS (based on the alkalinity to sulfate ratio).

Conclusions

Based on the results of this investigation, ASS is considered present within the Site, including in areas that will likely require dewatering for construction purposes. Groundwater beneath the Site is considered vulnerable to acidification during Site works.

An ASSDMP has been produced to facilitate the Site works, outlining strategies that will be used to ensure that excavated material is adequately managed and that the local ground and surface waters are not adversely affected by the proposed works.

A monitoring programme is in place to ensure that the management strategies are effective, and contingency measures are proposed to enable rapid response should the water quality fall below set action criteria. In potential situations where acidity is generated as a result of Site works, the proposed contingency measures will minimise any adverse impact and there is a commitment by the developer to employ these contingencies should any of the action criteria be triggered.

Recommendations

WEPL recommends the following:

- Review the final reported SPOCAS dataset and revise this management plan in the event that the complete dataset suggests that additional management is required to manage ASS in accordance with the ASS management guidelines (DER, 2015b).
- Installation of one additional groundwater monitoring well on the southern corner of the Site.
- Conduct a baseline groundwater monitoring event immediately prior to the commencement of site works.
- Adherence to the ASSDMP at all times during construction to ensure proper management of environmental risks.
- At the conclusion of works, preparation of an Initial Closure Report as per the guideline requirements, outlining the works, management undertaken and results of monitoring.

Table of Contents

1.	Introd	uction	. 1
	1.1	Project Background	1
	1.1.1	Proposed Site Works	1
	1.1.2	Preliminary Acid Sulfate Soil Assessment	1
	1.2	Objectives	2
	1.3	Scope of Work	2
2.	Site Co	onditions	. 3
	2.1	Site Identification	3
	2.2	Sensitive Receptors	3
	2.3	Land Use	3
	2.3.1	Historical	3
	2.3.2	Zoning	4
	2.3.3	Contaminated Sites	4
	2.4	Topography	. 4
	2.5	Geology	. 4
	2.6	Surface Water and Drainage	5
	2.7	Groundwater	5
	2.7.1	Groundwater Level and Flow Direction	5
	2.7.2	Groundwater Discharge Locations	5
	2.7.3	Registered Groundwater Bores	5
	2.8	Potential Impacts	5
3.	Investi	gation Methodology	. 7
	3.1	Sampling Locations	. 7

	3.1.1	Soil - ASS	7
	3.1.2	Soil - Contamination	7
	3.1.3	Groundwater	7
	3.2	Soil Testing and Analysis	8
	3.2.1	Field Testing	8
	3.2.2	Laboratory Analysis - ASS	8
	3.2.3	Laboratory Analysis - Contamination	8
	3.3	Groundwater Testing and Analysis	8
	3.4	Quality Assurance and Quality Control	9
	3.4.1	Soils	9
	3.4.2	Groundwater	9
4.	Results	S	. 10
	4.1	Adopted Assessment Criteria	10
	4.1.1	Soils - ASS	10
	4.1.2	Soils - Contamination	10
	4.1.3	Groundwater	12
	4.2	Soil Profile	12
	4.3	Results	13
	4.3.1	Soil - ASS Results	13
	4.3.2	Soil - Contamination Results	13
	4.3.3	Groundwater	14
	4.4	QA/QC Results	15
	4.4.1	Soil	15
	4.4.2	Groundwater	15
	4.5	Discussion	15

5.	Manag	gement Overview	17
	5.1	Scope and Objectives	17
	5.2	Roles and Responsibilities	17
	5.2.1	Competent and Independent Management	18
	5.3	Soil Management	18
	5.3.1	Staging of Works	18
	5.3.2	Site Bunding	18
	5.3.3	ASS Material Not Identified During Investigation	18
	5.3.4	Timeframe	18
	5.3.5	Extent of ASS Management	18
	5.3.6	Soil Excavation	19
	5.3.7	Soil Management	19
	5.4	Dewatering Management	20
	5.4.1	General Measures	20
	5.4.2	Dewatering Drawdown	20
	5.4.3	Dewatering Abstraction Volumes	20
	5.4.4	Cone of Depression	21
	5.4.5	Dewatering Management Level	21
	5.4.6	Effluent Disposal	21
	5.4.7	Effluent Treatment Procedure	22
	5.4.8	Basin Commissioning and Decommissioning	23
6.	Monito	oring Programme	24
7.	Conclu	sions and Recommendations	26
	7.1	Conclusions	26
	7.2	Recommendations	26

8.	Refere	nces
Table	es	
Table	A: Site De	tails3
Table	B: Ground	dwater Field Monitoring Data14
Table	C: Roles a	nd Responsibilities
Table	D: Soil M	anagement and Validation19
Table	E: Estima	ted Abstraction Volume21
Table	F: Ground	dwater Monitoring Programme24
Table	G: Dewat	ering Effluent Monitoring Programme25
Figure	es	
Figure	e 1	Site Location
Figure	2	ASS Risk Mapping and Groundwater Contours
Figure	2 3	Local Sensitive Environments
Figure	<u>4</u>	Surrounding Land Use
Figure	2 5	Surrounding Geology and Topography
Figure	e 6	Proposed Site Layout During Works and Sampling Locations
Table	es (post t	ext)
Table	1	ASS Field Test and SPOCAS Laboratory Results
Table	2	Soil Analytical Results - Metals
Table	3	Soil Analytical Results - Organochlorine Pesticides
Table	4	Soil Analytical Results - Monocyclic Aromatic Hydrocarbons, Total Petroleum Hydrocarbons, & Total Recoverable Hydrocarbons
Table	5	Soil Analytical Results - Polycyclic Aromatic Hydrocarbons
Table	6	Groundwater Analytical Results
Appe	ndices	
Apper	ndix A	Site and Development Information
Apper	ndix B	Water Information Reporting Data
Apper	ndix C	Soil Bore and Well Construction Logs
Apper	ndix D	Laboratory Documentation
Apper	ndix E	Groundwater Field Monitoring Logs

1. Introduction

1.1 Project Background

Western Environmental Pty Ltd (WEPL) was commissioned by CMW Geosciences (the Client) to undertake a contamination and Acid Sulfate Soil (ASS) investigation and prepare an ASS and Dewatering Management Plan (ASSDMP) for 88 Mill Point Road, South Perth (the Site). The Site is located approximately 2 km south of the CBD (Figure 1). The Site is comprised of the following cadastral lots:

- Lot 2 on Plan D000812 86 Mill Point Road
- Lot 15 on Plan D018674 88 Mill Point Road
- Lot 16 on Plan D018674 90 Mill Point Road.

This report documents the investigative works undertaken at the Site and includes a soil and dewatering management plan, prepared in compliance with current DWER guidelines. Note that at the time of this report, WEPL had only received 50% of the confirmatory ASS testing results for the Site; this management plan should be revised in the event that the final data set suggests that additional management is required in accordance with the ASS management guidelines (DER, 2015b).

1.1.1 Proposed Site Works

The proposed development includes the construction of multi-storey apartment building. Ground disturbing activities will be undertaken for the construction of two basement levels and services, as per the plans provided in Appendix A. Activities which may require excavation and dewatering include foundation works, construction of two basement levels, lift pits and crane bases. Maximum anticipated excavation depth is assumed to be approximately 6 m below ground level (mbgl) (4 mAHD).

1.1.2 Preliminary Acid Sulfate Soil Assessment

The Site is in an area of moderate to low ASS risk (Figure 2). It is noted that the mapping is based on regional interpretation of existing geological, topographic and other data sets. The margins and extent of the mapped units are therefore indicative only.

1.2 Objectives

The objectives of the ASSDMP are as follows:

- To undertake an ASS investigation report for the Site, that is consistent with the current ASS investigation guidelines (DER, 2015a).
- To provide appropriate management and monitoring measures for ASS in compliance with the management guidelines (DER, 2015b).
- To undertake an assessment of potential contamination within the onsite fill material in general accordance with NEPM guidelines.

1.3 Scope of Work

The scope of work comprised the following:

- A desktop review of historical environmental reports and available online datasets in relation to ASS and groundwater at the Site.
- Collection of soil samples by CMW Geosciences from four soil bores and submitted for field and laboratory testing to confirm the nature and extent of ASS. A limited number of samples were also submitted to the laboratory and tested for a broad suite of contaminants, in order to confirm the nature and extent of any contamination in fill material and implications for management.
- Conversion of two soil bores to groundwater monitoring wells by CMW Geosciences. WEPL collected
 groundwater samples from these two groundwater monitoring wells with samples subject to field
 testing and laboratory analysis.
- Preparation of an ASSDMP outlining all soil, groundwater and dewatering effluent investigation results, management and monitoring requirements.

2. Site Conditions

2.1 Site Identification

A summary of site identification details is provided in Table A.

Table A: Site Details

Identifier	Response
Street Address	88 Mill Point Road, South Perth, WA
Proponent	CMW Geosciences
Proponent's Representative	Tristan Menzies
Certificate of Title: Lot/Plan	Lot 2, Plan D000812 Lot 15, Plan D018674 Lot 16, Plan D018674
Local Government Authority	City of South Perth
Metropolitan Region Scheme Zoning	Urban
Site Coordinates GDA 94	Z50 E: 391400 N: 6462114

2.2 Sensitive Receptors

Sensitive receptors at and close to the Site are identified using the Department of Biodiversity, Conservation and Attractions (DBCA) Geomorphic Wetlands - Swan Coastal Plain dataset. These receptors are presented in Figure 3; however, the only sensitive receptor within 1 km of the Site is Swan River (UFI: 13316), approximately 200 m to the east and 330 m to the west (Figure 3).

2.3 Land Use

2.3.1 Historical

<u>Site</u>

The Site comprised of residential properties between 1953 to 1961. By 1965, the residential property on Lot 15 has been removed and part of the Site has been cleared. By 1974, residential buildings consisting of units had been established on Lot 2 and 15 and the eastern end of the Site utilised for parking. In 2016, Lot 2 has been partly cleared and is utilized for parking. By late 2018 the units on Lot 15 and the residential building on Lot 16 had been demolished and the entire site cleared except what is assumed to be the sales office building and carpark. No further onsite changes are noted.

Surrounds

In 1953 (earliest available historical aerial), the Site was surrounded by residential properties. The foreshore land appeared to be predominantly comprised of grass. The Narrows Bridge and Kwinana Freeway are evident from 1961. Continued development is evident from 1953 onwards, including construction of nearby apartment buildings. In 2006, the site immediately to the north-east had been cleared and by 2011 was being developed into apartments. In 2014, the site immediately south-east had been cleared and by 2018, had been developed into apartments.

2.3.2 Zoning

The Metropolitan Region Scheme zoning for the Site and surrounds is identified using the Department of Planning, Lands and Heritage (DPLH) Perth Region Scheme - Zones and Reserves dataset (Figure 4). The zoning of the Site and surrounds can be summarised as follows:

- Site Urban.
- Surrounds The Site surrounds are zoned Urban, with areas of Parks and Recreation to the east and west, bordering Swan River. A Primary Regional Road (Kwinana Freeway) lies to the west.

2.3.3 Contaminated Sites

The Contaminated Sites Database holds information on confirmed contaminated sites (those classified as 'contaminated-remediation required', 'contaminated - restricted use' and 'remediated for restricted use'). No confirmed contaminated Site are located onsite or within 1 km of the Site.

2.4 Topography

The topography over the Site is generally flat and ranges from approximately 2.0 metres Australian Height Datum (mAHD) to 2.8 mAHD. The Site and surrounding topography is presented in Figure 5.

2.5 Geology

The geology of the Site and surrounds is shown in Figure 5. The Site consists of the following unit (GSWA, 1986):

• S14 - SAND - white to pale grey, subangular to subrounded, medium to coarse-grained quartz sand, abundant shells and shell fragments of alluvial origin.

The results of the geotechnical investigation undertaken by CMW Geosciences in November and December 2020 identified variability in the thickness of the underlying clay layer (encountered at approximately 8.5 mbgl at BH01 and 13.5 mbgl at BH02), comprised of a mixture of soil types including CLAY, sandy and silty CLAY, SAND, clayey and silty SAND, with occasion GRAVEL at depth.

2.6 Surface Water and Drainage

Surface water is not present at the Site.

2.7 Groundwater

2.7.1 Groundwater Level and Flow Direction

The Perth Groundwater Atlas (DWER, n.d.) reports that the local groundwater level is approximately 1.0 mAHD across the Site, representing a depth of 1.0 m below ground level (m BGL). The saturated thickness of the aquifer is estimated to be 31 m. Groundwater flow is anticipated to be in a north-easterly direction, flowing towards Swan River.

2.7.2 Groundwater Discharge Locations

Groundwater is likely to discharge into Swan River, approximately 200 m north-east of the Site.

2.7.3 Registered Groundwater Bores

Fourteen groundwater bores exist within 1 km of the Site. DWER Water Information Reporting (WIR) database outputs are included in Appendix B.

2.8 Potential Impacts

Potential onsite and offsite impacts related to the disturbance of ASS and dewatering during the site works include:

- Adverse changes to the water quality and metal concentrations of soil water, groundwater, surface water and other environmental receptors.
- Deterioration of any ecosystems of adjacent wetlands, rivers/estuaries and other environmental receptors.
- The potential to oxidise subsurface PASS materials during the temporary lowering of the groundwater table adjacent to excavation areas and in surrounding soils during dewatering activities, with potential for the onset of impacts described above.
- Temporary lowering of the groundwater table by dewatering adjacent to excavation areas can impact the groundwater levels and quality in adjacent third-party bores.
- Cumulative effects of groundwater reduction, including structural effects, particularly the lowering of the groundwater table through dewatering combined with private and public/local government abstraction of groundwater, adjacent to excavation areas.

- Odour and possible human health impacts associated with the release of reduced sulfurous gases (hydrogen sulfide) from ASS during excavation.
- The use of ASS as fill material can affect plant growth and future landscaping.
- Corrosion of concrete, iron, steel and aluminium structures including underground services in the local area and foundations of nearby buildings.
- The loss of visual amenity from staining, scum, slime within local standing waters.
- Costs associated with minimising impacts and repairing disturbed areas.

3. Investigation Methodology

CMW Geosciences undertook soil sampling in conjunction with geotechnical investigations on 25 and 30 November, and 1 and 2 December 2020. Two bore holes (BH01 and BH02) were installed to 30 mbgl and two bore holes (BH03 and BH04) were installed to 8 mbgl. BH03 and BH04 were converted to groundwater monitoring wells (Figure 6) and were installed using a direct push probe method.

3.1 Sampling Locations

3.1.1 Soil - ASS

The ASS sampling locations were designed to test subsurface conditions within the area of planned disturbance to allow for effective interpretation of the underlying substrate. Soil samples were recovered at 0.25 m intervals from all bore holes, with analysis targeting surface soils through to anticipated maximum excavation depth (6 mbgl).

3.1.2 Soil - Contamination

The contamination sampling pattern and locations were designed to target uncontrolled fill material across the Site, within the areas of planned disturbance. Samples were recovered from the top two metres at the following intervals:

- 0.0 mbgl
- 0.5 mbgl
- 1.0 mbgl
- 1.5 mbgl
- 2.0 mbgl.

3.1.3 Groundwater

The locations of groundwater monitoring wells (BH03 and BH04, Figure 6) were selected to include assessment of both up- and down-hydraulic gradient conditions, and to provide an appropriate assessment of baseline groundwater conditions prior to the commencement of Site works. The groundwater monitoring wells were converted from the soil bores installed in the northern and south-western boundaries of Site.

3.2 Soil Testing and Analysis

3.2.1 Field Testing

Soil samples were recovered at 0.25 m intervals from surface to termination depth in all bore holes. Samples were immediately deposited into eskies and kept chilled before being sent to a National Association of Testing Authorities (NATA)-accredited laboratory for field testing (Eurofins-MGT).

A total of 100 samples were tested for pH_{FIELD} and pH_{FOX} , as per the approved laboratory methodology. The classification parameters for field test results are referenced in Section 4.

3.2.2 Laboratory Analysis - ASS

Seventeen primary samples were submitted for confirmatory laboratory analysis based on interpretation of soil logs, water table depth and the results of the field pH testing.

These samples were analysed using the Suspension Peroxide Oxidation Combined Acidity Sulfur (SPOCAS) suite according to the ASS guideline (DER, 2015a) requirements.

3.2.3 Laboratory Analysis - Contamination

Eight primary samples were submitted for laboratory analysis based on interpretation of soil logs, fill material depth and field observations.

These samples were analysed for a broad range of contaminants which included the following analytes:

- Metals arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc.
- Organochlorine pesticides (OCP).
- Benzene, toluene, ethylbenzene and xylene (BTEX), total petroleum hydrocarbons (TPH) and total recoverable hydrocarbons (TRH).
- Polycyclic aromatic hydrocarbons (PAH).

3.3 Groundwater Testing and Analysis

Following the installation of BH03 and BH04, one week was allowed for groundwater around the wells to stabilise, after which sampling of the wells was undertaken on 9 December 2020. Groundwater quality was monitored in the field for physical and ASS indicator parameters.

Samples from both wells (including one duplicate) were collected into laboratory issued sample bottles following the stabilisation of field parameters and were immediately deposited into eskies. Samples were chilled and sent to a NATA-accredited laboratory for testing using the ASS Groundwater Quality Suite, according to the requirements of the current ASS guidelines (DER, 2015a and DER, 2015b).

3.4 Quality Assurance and Quality Control

3.4.1 Soils

All sampling procedures were undertaken in accordance with the methodology prescribed in the guidelines and relevant Australian Standards for soil sampling (Standards Australia, 2005), which includes provisions for sample collection and decontamination of sampling equipment, storage, transport and data collection. Soil bore logs are included in Appendix C.

CMW Geosciences did not collect any duplicate soil samples during the installation of bore holes 1 to 4.

Analyses of primary samples were conducted at a NATA-accredited laboratory (Eurofins-MGT), under recognised Chain of Custody (CoC) procedures. Quality assurance/quality control (QA/QC) sample results are discussed in Section 4.

3.4.2 Groundwater

Groundwater well installation was undertaken in accordance with the methodology prescribed in the guidelines and relevant Australian Standards (Standards Australia/Standards New Zealand, 1998), which includes provisions for well construction methods, materials and screen lengths. Well construction logs are included in Appendix C.

Groundwater sampling was undertaken in accordance with the low-flow sampling methodology prescribed in the guidelines and relevant Australian Standards, which includes provisions for equipment, parameters to be monitored, sample collection and decontamination of sampling equipment, storage, transport and data collection. All equipment and instruments are owned and maintained by WEPL and were calibrated in accordance with manufacturer's specifications prior to use. Calibration certificates are recorded on file and can be provided upon request.

Field duplicate samples were collected at the minimum rate of one duplicate per 20 primary samples, for a total of one duplicate sample for two primary samples collected.

Analyses of primary and duplicate samples were conducted at Eurofins-MGT, under recognised CoC procedures. QA/QC sample results are discussed in Section 4.

4. Results

4.1 Adopted Assessment Criteria

Assessment of potential risks to human health and/or the environment is made through the comparison of analytical results to established threshold levels or acceptance criterion. These criteria are dependent mainly on the proposed ongoing use of the Site (in this case high density residential), potentially sensitive re-use, the associated risks (either on or offsite), and the soil profile encountered (fine to coarse). Assessment criteria have been largely sourced from the following guidelines:

- Identification and Investigation of Acid Sulfate Soils and Acidic Landscapes (DER, 2015a).
- Treatment and Management of Soil and Water in Acid Sulfate Soils Landscapes (DER 2015b).
- Assessment and Management of Contaminated Sites (DER, 2014).
- National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPC, 2013).
- CRC CARE (2011) Technical Report no. 10 Health screening levels for petroleum hydrocarbons in soil and groundwater.

4.1.1 Soils - ASS

The following assessment criteria have been adopted for soils:

• 0.03 %S (equal to or greater than) DER (2015a).

4.1.2 Soils - Contamination

Health Investigation Levels

Health investigation levels (HILs) are scientifically based, generic assessment criteria designed to be used in the first stage (Tier 1 or 'screening') of an assessment of potential risks to human health from chronic exposure to contaminants. They are intentionally conservative and are based on a reasonable worst-case scenario for generic land use settings. Soil analytical results were compared with criteria provided in the NEPM (NEPC, 2013) as follows:

HIL-B – High Density Residential.

Health Screening Levels for Petroleum Hydrocarbons

Health screening levels (HSLs) have been developed for selected petroleum hydrocarbon compounds and fractions and are applicable to assessing human health risk via inhalation and direct contact pathways. HSLs are applied from surface soils to depths > 4 mbgl and are dependent on specific soil physiochemical properties, land use scenarios and the characteristics of building structures. Soil analytical results were compared with CRC CARE (2011) Technical Report No. 10 HSL criteria as follows:

- HSL-B Direct Contact- Residential (High Density).
- HSL Direct Contact Intrusive Maintenance Worker.
- HSL A&B Vapour Intrusion (Sand) Low-high density residential, Sand (0 <1m).
- HSL Vapour Intrusion (Sand) Intrusive Maintenance Worker, Sand (0 <2m).

Ecological Investigation Levels

Ecological investigation levels (EILs) are applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physiochemical properties and land use scenarios and generally apply to the top 2 m of soil. Soil analytical results will be compared with criteria provided in the NEPM (NEPC, 2013) as follows:

EILs – for urban residential and public open space (POS) land uses.

EILs presented in the NEPM (NEPC, 2013) have been derived for certain analytes. EILs principally apply to contaminants in the top 2 m of soil at the finished surface/ground level which generally corresponds to the root zone and habitation zone of many species. This methodology assumes that the ecosystem is adapted to the ambient background concentration (ABC) for the locality and that it is only adding contaminants over and above this background concentration which has an adverse effect on the environment. An added contaminant limit (ACL) is the added concentration of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required. ACLs are based on the soil characteristics of pH, cation exchange capacity (CEC) and clay content. Site-specific EILs for certain analytes can then be derived by adding the ACL and ABC; however, a background sample was not collected as part of this investigation and the most conservative values associated with the proposed land use have been adopted.

Ecological Screening Levels

Ecological screening levels (ESLs) have been developed for selected petroleum hydrocarbon compounds and total petroleum hydrocarbon (TPH) fractions and are applicable to assessing risk to terrestrial ecosystems generally applicable to the top 2 m of soil. Soil analytical results will be compared with criteria presented in the NEPM (NEPC, 2013) as follows:

• ESLs (fine and coarse soil) – for urban residential and POS land uses.

4.1.3 Groundwater

The following assessment criteria have been adopted for groundwater:

- ANZG (2018) Fresh Water 95 % Guidelines (FWG).
- ANZG (2018) Marine Water 95 % Guideline (MWG).
- Department of Health (2014) Domestic Non-Potable Groundwater Use (NPUG).
- Department of Water and Environmental Regulation (2015a) ASS Indicators.
- Water Corporation acceptance criteria for trade waste.

4.2 Soil Profile

Soil bore logs are included in Appendix C. The observed soil profile across the Site within the anticipated excavation depth (6 mbgl) broadly consists of the following:

BH01

- 0 2.9 mbgl: FILL, sand with traces of silt and/or gravel, brown, fine to coarse grained.
- 2.9 6.0 mbgl: SAND, grey, fine to coarse grained.

BH02

- 0 0.5 mbgl: Silty SAND with traces of gravel, brown, fine to medium grained.
- 0.5 3.0 mbgl: SAND, occasionally with traces of silt, grey, fine to medium grained.
- 3.0 to 6.0 mbgl: SAND, grey, fine to coarse grained.

BH03

- 0 0.3 mbgl: FILL, gravelly sand, dark brown, fine to medium grained.
- 0.3 3.0 mbgl: SAND, occasionally with traces of silt, yellowish brown, fine to medium grained.
- 3.0 6.0 mbgl: SAND, grey, fine to coarse grained.

BH04

- 0 0.6 mbgl: FILL, sand with trace silt and trace gravel, brown, fine to medium grained, some trace organics material (roots).
- 0.6 3.0 mbgl: SAND, grey to brown with depth, fine to medium grained, with some trace organic material (roots) to 1.2 mbgl.
- 3.0 6.0 mbgl: SAND, pale brown, fine to medium grained.

4.3 Results

4.3.1 Soil - ASS Results

Field and laboratory soil ASS results are provided in Table 1, with the laboratory CoCs and Certificates of Analysis (CoAs) provided in Appendix D.

A summary of the ASS field and laboratory results is given as follows:

- pH_{FIELD} values ranged from 5.2 to 9.8. No exceedances of the DER ASS indicator criteria (pH_{FIELD} < 4) were observed.
- pH_{FOX} values ranged between 2.1 and 7.8. Twenty-six exceedances of the DER ASS indicator criteria (pH_{FOX}< 3) were observed (26% of primary samples). Exceedances were observed in BH01, BH02 and BH04, at depths ranging from 2.0 mbgl to 6 mbgl. No exceedances were observed in BH03.
- Exceedances of the indicative field test criteria for pH Δ (>2) were observed in 67 of the 100 primary samples analysed (67 % of primary samples).
- At the time of this report, WEPL had received 50% of the SPOCAS results for the Site. Following SPOCAS analysis, concentrations of titratable peroxide acidity (TPA), sulfur peroxide oxidisable sulfur (SPOS) and SPOCAS in exceedance of the DER ASS action criteria (0.03 %S) were observed in BH04 samples at the following intervals:
 - o BH04_3.0: TPA (0.13 %S), SPOS (0.12 %S) and SPOCAS (0.14 %S).

4.3.2 Soil - Contamination Results

Laboratory soil contamination results and associated QA/QC data are provided in Tables 2 - 5. Associated laboratory documentation is included in Appendix D.

A summary of the contamination analytical results is given as follows:

- All metal results were below adopted assessment criteria and/or laboratory limits of reporting (LOR)
 with the following exceptions:
 - The zinc concentration observed at BH03_0.5 (95 mg/kg) exceeded the adopted EIL guideline criteria (70 mg/kg).
- All OCP concentrations were reported below laboratory LORs and applicable assessment criteria.
- All petroleum hydrocarbons (TRH, BTEX and PAH) concentrations were reported below laboratory LORs and applicable assessment criteria.

4.3.3 Groundwater

Laboratory ASS groundwater results and associated QA/QC results are provided in Table 6. Laboratory documentation is included in Appendix D. Field monitoring data is presented in Table B below, with the field monitoring logs presented in Appendix E.

Table B: Groundwater Field Monitoring Data

Date	Well ID	рН	EC (μs/cm)	ORP (mV)	DO (%)	TTA (mg/L)	TAIk (mg/L)	Groundwater Level (mTOC)
09/12/2020	BH03	7.78	760	-35.7	30.2	10	14	2.44
	BH04	7.78	617	-61.3	44.3	22	6	2.03

A summary of the groundwater field and laboratory results is given as follows:

- All dissolved metal concentrations were below assessment criteria, expecting dissolved zinc which
 exceeded the MWG criteria (0.015 mg/L) at all locations. Concentrations ranged from 0.016 mg/L
 (BH04) to 0.025 mg/L (BH03).
- Total metal concentrations remained below applicable assessment criteria with the following exceptions noted:
 - The aluminium concentration observed at BH03 (0.34 mg/L), exceeding the DER ASS indicator criteria (0.15 mg/L).
- The pH at all locations was outside of the MWG criteria range (8 to 8.4 pH units).
- The alkalinity to sulfate ratio exceeded the DER ASS indicator criteria (< 5) at BH04.

4.4 QA/QC Results

Duplicate samples were submitted to a Relative Percentage Difference (RPD) calculation. The RPD calculation is used to normalise each pair of results to allow for better QA/QC data interpretation. For those RPD values which exceed a generally acceptable 30% (NEPC, 2013) data correlation is considered poor; however, consideration needs to be given to sample homogeneity and the concentrations detected.

The laboratory is normally required to meet these criteria before reporting results. In some circumstances if the RPD % or the spike recovery rate exceed the relevant threshold, but the measured concentrations are close to the detection limit and well below guideline concentrations, the laboratory may not be required to re-analyse the sample. If the calculated RPD exceeds 30 %, then the highest value will be used for assessment purposes.

4.4.1 Soil

No duplicate soil samples were collected by CMW Geosciences during the sampling and construction of soil bores 1 to 4.

4.4.2 Groundwater

The duplicate groundwater sample subject to RPD analysis identified no exceedances of acceptable criteria (30%).

4.5 Discussion

The Site is situated within an area identified as 'moderate to low risk of ASS occurring within 3 m of natural soil surface but high to moderate risk of ASS beyond 3 m of natural soil surface', according to DWER (Figure 2). The ASS field testing results indicate that ASS is likely present across the Site and preliminary SPOCAS results confirmed the presence of PASS at the Site in sand material from approximately 2.5 m below ground level (mbgl) to 6 mbgl within the target excavation zone and below the observed groundwater level. As such ASS management of Site works will be required.

Contamination assessment results indicate one zinc concentration in exceedance of applied EILs, however, the EIL exceedances are not considered to be significant in regard to ecological receptors as the most conservative EILs were applied. If a background sample was collected to determine the ambient background concentration (ABC), the results would likely have been within the Site specific EIL. There are currently no ecological receptors onsite as the Site is cleared and the proposed land use will have minimal opportunities for soil access. The closest sensitive receptor (Swan River) is approximately 200 m to the east and 330 m to the west. Given the current and proposed land use, and lack of identified risk to human health, the ecological exceedance is considered to present a negligible risk.

Field groundwater monitoring results indicate the groundwater beneath the Site to be of moderate buffering capacity and to be vulnerable to acidification. This is based on an assessment of groundwater pH, acidity, alkalinity and the presence of ASS in the target excavation zone. Chemical indicators based on the DER ASS guidelines suggest that groundwater beneath the Site has a moderate buffering capacity and has been slightly affected by ASS (based on the alkalinity to sulfate ratio).

5. Management Overview

5.1 Scope and Objectives

The ASSDMP has been produced to manage site works and has the following objectives:

- Provide guidance for ASS management during excavation and dewatering at the site to minimise risk of adverse impact to soil, groundwater and sensitive receptors.
- Implement a monitoring programme to track the quality of soil, groundwater and abstracted dewatering effluent.
- Define contingency measures to address the potential adverse impacts.

5.2 Roles and Responsibilities

Table C: Roles and Responsibilities

Responsible Party	Task	Reporting to	Timeframe / Frequency
ASS Soil Excavation	Programme		
Earthworks Contractor	A clear method statement of proposed treatment regime for ASS material.	Western Environmental	Prior to commencement of works
Earthworks Contractor	Track the total volume of ASS disturbed, dates of disturbance, quantity of neutralising agent used and location of stockpile.	Western Environmental	At the end of each week.
Western Environmental	Soil validation and sampling results and advice.	Contractor's Representative	5 working days after sample collection
Dewatering Program	nme		
Dewatering Contractor	Continuously monitor dewatering discharge rate, pH, TTA, TALK and water clarity of dewatering effluent.	Western Environmental	Daily during dewatering works.
Western Environmental	Monitoring of field parameters: SWL, pH, DO, EC, ORP, TTA, TALK of three groundwater monitoring wells	Client / Regulator	Three times per week during dewatering works.
Western Environmental	Submission of groundwater and effluent samples for pH, EC, TTA, TALK, TDS, sulfate, chloride, metals, TN, TP, FRP.	Client / Regulator	Fortnightly during dewatering works.
Western Environmental	Initial Closure Report, detailing all aspects of groundwater, surface water and dewatering management.	Client / Regulator	On completion of dewatering program.
Western Environmental	Post-dewatering Monitoring and Final Closure Report (if the task requirement is identified upon the cessation of ASS disturbance activities).	Client / Regulator	On completion of post- dewatering groundwater monitoring program

5.2.1 Competent and Independent Management

The supervision of site works and monitoring of soil, groundwater and dewatering activities must be undertaken by a qualified, independent consultant who meets the following minimum criteria:

- All personnel utilised on the project must be suitably trained and have specific experience in the management of ASS in the construction and land development sector.
- All personnel are required to have the minimum tertiary qualifications (B.Sc. or equivalent).
- Consultants responsible for the collection and interpretation of data and compliance reporting must be demonstrably independent of site contractors to ensure transparency and accountability, and avoid potential conflicts of interest.

5.3 Soil Management

5.3.1 Staging of Works

The timeline for excavation and backfilling of soil will be minimised by ensuring excavation activities are as efficient as possible. Earthwork staging will minimise the area of disturbance and minimise the length of time in situ ASS are exposed.

5.3.2 Site Bunding

Stockpiling areas will be bunded in accordance with Table D. If surface water run-off is observed onsite, bunding will be installed using non-ASS materials with testing as per Table D. The location of stockpiled ASS material and infiltration basins will also be chosen to best minimise this risk.

5.3.3 ASS Material Not Identified During Investigation

If any previously unidentified coffee rock/sands, strongly organic/peaty soils or soils exhibiting a sulfurous odour are identified by the contractor during works, WEPL is to be notified immediately to assess.

5.3.4 Timeframe

Works are anticipated to commence at the Site in mid to late 2021 and ground disturbing activities may take up to six months to complete.

5.3.5 Extent of ASS Management

The following categories define the extent of ASS management required. These are based on the SPOCAS results for BH04 and the preliminary results for BH01 and BH02 and may be subject to change once WEPL receive the final SPOCAS analytical results for the Site.

• Non- ASS: All soils from the surface to the depth of confirmed PASS at groundwater level (2.0 mbgl).

• ASS: All soils from 2.0 mbgl and deeper.

5.3.6 Soil Excavation

Site works will involve the excavation of soil, including soils from below the water table. Controls to minimise the risks associated with the disturbance of ASS will include:

- Separation of Non-ASS substrate from AASS/PASS zone substrate during excavation.
- Lining the base of any AASS/PASS zone excavations with 100 mm of lime media prior to construction of basement.
- Limiting the extent of excavations and dewatering activities as much as possible. Once the deepest
 excavations are completed, maintenance will begin and groundwater levels will be reinstated as
 quickly as possible.

5.3.7 Soil Management

Due to site constraints, there is only one option for soil management, being offsite disposal. Soils may be stored onsite temporarily until they can be loaded for haulage. All material must be disposed to a facility licensed to receive and treat ASS, and accurate records of haulage must be kept and provided to WEPL for reporting.

These activities above must be managed in accordance with Table D.

Table D: Soil Management and Validation

Activity	Controls
1. Stockpiling	 Stockpiles will be kept small (approximately 100 m³). Treatment pads will be 300 mm compacted limestone base with 150 mm bunding to all sides. Surface water run-off from stockpiles will be contained within the bunded area. At the conclusion of works the treatment pad must be validated by WEPL prior to decommissioning.
2. Landfill Disposal	 WEPL will test all material for offsite disposal as per Landfill Waste Classification and Waste Definitions 2019, prior to disposal. All material must be disposed to a facility licenced to receive ASS, with all haulage dockets to be retained and provided to WEPL for reporting.
3. Stockpile Pad Decommissioning	 Once site works have concluded, the treatment pad at the site will require decommissioning. Sampling and analysis of the residual liming media will be required to determine whether it is suitable for retention onsite or should be disposed of offsite. Assessment for offsite disposal should be according to the Landfill Waste Classification and Waste Definitions 2019, including at least analysis for metals, but in addition should include ASS analyses (e.g. SPOCAS) to determine the residual sulfidic nature of the material. Positive identification of residual ASS material in the sludge may require disposal to facilities licensed to treat ASS.

5.4 Dewatering Management

5.4.1 General Measures

The management measures prescribed herein are intended to minimise any environmental impact. If unacceptable environmental impact occurs, remediation of groundwater may be required. General measures are as follows:

- Dewatering operations will involve the temporary abstraction of groundwater by use of a dewatering spear array / open pump. The general objective of managing dewatering is to minimise its duration and localise the consequent cone of groundwater depression as much as possible.
- The timeline for dewatering will be minimised by ensuring excavations occur in a staged approach and in the fastest timeframe possible, with dewatering ceasing as soon as construction works are completed along each segment of sewer installation.
- Excavation plans will be designed to minimise the vertical and lateral extent of groundwater drawdown and also to minimise the amount of time ASS material is exposed to the atmosphere.
- The site engineer will be briefed on the potential problems associated with dewatering in ASS areas and subsequently dewatering contractors will be instructed and supervised for adherence to the dewatering protocols.
- Site contractors must be supervised by qualified environmental personnel to ensure that soil and water management occurs in accordance with the management plan.

5.4.2 Dewatering Drawdown

Comparison of finished infrastructure levels (plus an additional 0.5 m buffer) with measured groundwater levels has confirmed that dewatering will be required. Maximum drawdown in groundwater levels during the project will be approximately 5.0 m below current groundwater levels. In the absence of detailed development plans, the maximum excavation depths have been assumed to be approximately 6.5 mbgl.

5.4.3 Dewatering Abstraction Volumes

Abstraction rates and durations are based on information provided by the client or their representatives, including modelling performed by third parties regarding basement construction and cut-off achieved to reduce ingress rates. All estimations are indicative only. The expected groundwater abstraction rates, durations and volumes are provided in Table E.

Table E: Estimated Abstraction Volume

Average Pump Rate (L/s)	Daily Volume (kL)	Duration (weeks)	Total (kL)
6 (assumed based on modelling by third parties)	518.4	24	87,091.2

5.4.4 Cone of Depression

An estimate of the radius of influence of dewatering (R_0) has been calculated using a numerical model consistent with the guidelines, and applying the hydraulic parameters inferred based on site investigations.

The resulting maximum cone of groundwater depression is estimated to be 114 m, however the use of construction technology (e.g. diaphragm wall) is expected to substantially reduce the maximum cone of depression to less than 100 m.

5.4.5 Dewatering Management Level

The following parameters apply to the dewatering program:

- Duration is > 7 days.
- Groundwater Cone of Depression is > 50 m.

In accordance with Section 6.2.3 of the relevant guideline (DER, 2015b), Dewatering Management Level 2 is required for this project. The following management strategy has been prepared in accordance with this.

5.4.6 Effluent Disposal

Based on the current development plans for the Site, a preliminary effluent disposal strategy has been devised. Given the finish level for the second basement is below groundwater, dewatering across the entire Site will be required. The discharge management hierarchy will be as follows:

1. Onsite re-infiltration: if possible, works should be scheduled to allow adequate space for onsite re-infiltration in early stages of construction for each item of infrastructure requiring installation below the water table. Basin sizes and locations are to be determined by the successful contractor. Typically, the City of South Perth is opposed to onsite basin infiltration, however the proposed basement and piling construction methodology, combined with the small excavation footprint, renders this a very low risk proposition that is considered acceptable.

- 2. Sewer discharge: given the constrained size of the Site, shallow depth to groundwater and anticipated dewatering rates, discharge to sewer is considered a valid contingency option for effluent disposal. An application for a One-off Discharge of Trade Waste to Sewerage Works permit must be approved by the Water Corporation for this option. Baseline groundwater monitoring undertaken at the Site indicates groundwater to be suitable for discharge to sewer, with no exceedances of the Water Corporation trade waste acceptance criteria observed. The peak rate achievable in South Perth for sewer discharge is 10L/sec, with an accessible main along Mill Point Road. The ultimate discharge rate approved by Water Corporation will however be subject to main accessibility and the status of other applications from adjacent sites and their discharge volumes and rates.
- 3. **Aquifer re-injection:** as a contingency, aquifer reinjection external to the basement piling could be used to manage excess dewater in the event <6 L/sec discharge rate is approved by Water Corporation. The injection array would be the responsibility of the successful contractor to design and implement.

Stormwater disposal and aquifer re-injection is a potential fourth option; however, groundwater quality precludes discharge to stormwater without significant treatment, which is unlikely to be efficacious with regard to nitrogenous species. If stormwater discharge is proposed by the successful contractor, further negotiations, revision of this plan, and written approval will be required from DBCA prior to this option being exercised.

5.4.7 Effluent Treatment Procedure

Effluent requires minimal treatment (e.g. passage through a settlement tank and lime dosing unit (LDU) if required, prior to onsite or sewer discharge). An idealised layout of infrastructure is presented in Figure 6, subject to change based on the construction plans of the successful contractor. The following effluent treatment procedure will be undertaken at the Site in the event effluent is discharged to ground:

- Dewatering effluent will be treated based on observed water quality. In the event dewatering effluent does not meet the minimum criteria (pH > 6.5, total acidity < 40 mg/L), effluent will be initially treated in a passive manner by lime addition into the settlement basin or tank. In the event dewatering discharge pH decreases to < 6.5 and total acidity increases above 40 mg/L as CaCO3 beyond this point, a lime dosing plant (LDP) will be commissioned.</p>
- Dewater will be aerated prior to entering the basin array. An appropriately sized, impermeable sedimentation basin will be constructed using crushed, compacted limestone and will receive discharge waters prior to overflow into the infiltration basin.
- Water discharged to the infiltration basin will undergo testing and be subject to action criteria and contingency measures as discussed in the following section.
- Depending on the recorded water quality, infiltration rates and drawdown impacts, additional infiltration basins or alternative options may be considered.

In the event dewater is discharged to sewer, the following will apply:

- A settlement tank and other mandatory infrastructure as specified by Water Corporation will be setup prior to discharge.
- Water Corporation approval and inspection of apparatus will be required prior to the commencement of discharge.

In the event aquifer re-injection is undertaken, water treatment will be undertaken at a minimum to comply with the above specifications for onsite infiltration with additional treatment at the discretion of the successful contractor in order to achieve an optimal injection rate over the life of project.

5.4.8 Basin Commissioning and Decommissioning

The procedure for decommissioning onsite infiltration basins (if any) is as follows:

- Sampling and analysis of the residual liming media and base of basins will be required to determine whether it is suitable for retention onsite or should be disposed of offsite.
- Assessment for offsite disposal should be according to the Landfill Waste Classification and Waste
 Definitions 2019, including analyses for metals and ASS parameters to determine the residual sulfidic
 nature of the material. Positive identification of residual ASS material in the sludge may require
 disposal to facilities licensed to receive ASS.

6. Monitoring Programme

The monitoring programme has the objective of ensuring that no potentially adverse impacts to the environment occur as a result of the dewatering activities. Dewatering effluent and groundwater will undergo testing and be subject to action criteria and contingency measures as discussed herein.

The monitoring programme will consist of three monitoring wells (BH03, BH04 and MW01 (proposed)), situated to assess up-, down- and cross-hydraulic gradient groundwater from Site works. Should onsite infiltration be utilised, pre-treatment (PRE) and post-treatment (POST) dewatering effluent locations will also be monitored. The monitoring programmed is outlined in Tables F and G, with sampling locations indicated in Figure 6 (indicative locations only - subject to finalisation). These locations are subject to monitoring during any periods of dewatering.

Table F: Groundwater Monitoring Programme

Frequency	Sampling	Party	Analytes	Assessment Criteria	Control Measure / Action Criteria
Prior to Start	Lab Analysis	WEPL	 Water Level. pH, EC, TDS, TTA, Talk, sulfate and chloride. Dissolved (filtered) metals: Al, As, Cr, Cd, Fe, Mn, Ni, Zn, Se. Total metals: Al, Fe. TN, NH3, TP, FRP. 	±10% BaselineFWGMWGNPUGASS	 Taken immediately prior to commencement of dewatering. To establish performance criteria for comparison. Baseline performance criteria will be set to within ±10% of the baseline level for each parameter.
Thrice per week	Field Analysis	WEPL	 Water Level pH/EC Total acidity/alkalinity Redox Dissolved Oxygen 	N/A	 Groundwater is not to exceed 10 cm at a distance of 100 m from the works location. Monitoring will continue until the conclusion of dewatering. If
Fortnightly	Lab Analysis	WEPL	 pH, EC, TDS, TTA, Talk, sulfate and chloride. Dissolved (filtered) metals: Al, As, Cr, Cd, Fe, Mn, Ni, Zn, Se. Total metals: Al, Fe. TN, NH3, TP, FRP. 	±10% BaselineFWGMWGNPUGASS	parameters breach performance criteria, re-testing will be required within 24 hours. Should re-testing show non-compliance, ground disturbing works will cease and advice will be provided on further corrective actions and management prior to works resuming.

Table G: Dewatering Effluent Monitoring Programme

	Trigger (PRE effluent quality)	Action	Monitoring / Control Measures
1	Total Titratable Acidity <40mg/L, pH>6	Continue daily field measurements of pH and Total Titratable Acidity.	Daily - field measurement: pH, EC, DO, EC, TTA, Talk. Fortnightly - laboratory analysis: total acidity, total alkalinity, pH
2	Total Titratable Acidity <40mg/L, pH in range 4 to 6	Undertake neutralisation treatment (liming).	Daily - field measurement: pH, EC, DO, EC, TTA, Talk. Weekly - laboratory analysis: total acidity, total alkalinity, pH
3	Total Titratable acidity in range 40 - 100mg/L, pH>6	Effluent should be aerated to precipitate dissolved metals. Undertake neutralisation treatment (liming).	Daily - field measurement: pH, EC, DO, EC, TTA, Talk Weekly - laboratory analysis: total acidity, total alkalinity, pH
4	Total Titratable acidity in range 40-100mg/L, pH in range 4 to 6	Effluent should be aerated to precipitate dissolved iron and directed to a series of settlement basins/trenches or other treatment system to allow removal of iron and other metals. Undertake neutralisation treatment (liming).	Daily - field measurement: pH, EC, DO, EC, TTA, TAlk Weekly -laboratory analysis: total acidity, total alkalinity, pH Fortnightly - laboratory analysis: total acidity, total alkalinity, pH, sulfate, chloride, sodium, total iron, dissolved iron (filtered), total aluminium, dissolved aluminium (filtered), total arsenic, total chromium, total cadmium, total manganese, total nickel, total zinc, total selenium, ammoniacal nitrogen, hydrogen sulfide, EC, Total Suspended Solids (TSS), Total Dissolved Salts (TDS), Total Nitrogen (TN), Total Phosphorus (TP)
5	Total Titratable acidity >100mg/L or pH<4 or total alkalinity <30mg/L	Effluent should be aerated to precipitate dissolved iron and directed to a series of settlement basins/trenches or other treatment system to allow removal of iron and other metals. Increase neutralisation treatment (liming) rate. Advise Contaminated Sites Branch (CSB) of DER immediately. CSB may advise appropriate action which may include ceasing dewatering.	Daily – field measurement: pH, EC, DO, EC, TTA, TAlk Weekly - laboratory analysis: total acidity, total alkalinity, pH, sulfate, chloride, sodium, total iron, dissolved iron (filtered), total aluminium, dissolved aluminium (filtered), total arsenic, total chromium, total cadmium, total manganese, total nickel, total zinc, total selenium, ammoniacal nitrogen, hydrogen sulfide, EC, TSS, TDS, TN, TP May be needed to undertake investigations to determine the size of the 'acidic footprint' created and manage this impact appropriately.
6	Total titratable acidity >100mg/L and 25% higher than baseline values	Upgrade to 'Dewatering Management Level 2' including implementation of groundwater quality monitoring program	Monitoring requirements: Dependent upon value of total titratable acidity and pH as per guidance above.
7	pH decrease >1 pH unit from baseline values	Upgrade to 'Dewatering Management Level 2' including implementation of groundwater quality monitoring program	Monitoring requirements: Dependent upon value of total titratable acidity and pH as per guidance above.

7. Conclusions and Recommendations

7.1 Conclusions

Based on the results of this investigation, ASS is considered present within the Site, including in areas that will likely require dewatering for construction purposes. Groundwater beneath the Site is considered vulnerable to acidification during Site works.

An ASSDMP has been produced to facilitate the Site works, outlining strategies that will be used to ensure that excavated material is adequately managed and that the local ground and surface waters are not adversely affected by the proposed works.

A monitoring programme is in place to ensure that the management strategies are effective, and contingency measures are proposed to enable rapid response should the water quality fall below set action criteria. In potential situations where acidity is generated as a result of Site works, the proposed contingency measures will minimise any adverse impact and there is a commitment by the developer to employ these contingencies should any of the action criteria be triggered.

7.2 Recommendations

WEPL recommends the following:

- Review the final reported SPOCAS dataset and revise this management plan in the event that the complete dataset suggests that additional management is required to manage ASS in accordance with the ASS management guidelines (DER, 2015b).
- Installation of one additional well on the southern corner of the Site.
- Conduct a baseline groundwater monitoring event immediately prior to the commencement of site works.
- Adherence to the ASSDMP at all times during construction to ensure proper management of environmental risks.
- At the conclusion of works, preparation of an Initial Closure Report as per the guideline requirements, outlining the works, management undertaken and results of monitoring.

8. References

ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. A joint initiative of the Australian and New Zealand Governments in partnership with the Australian state and territory governments, Online. http://www.waterquality.gov.au/anz-guidelines>.

CRC CARE, 2011. Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater - Technical Report No. 10. Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

DER, 2014. Assessment and Management of Contaminated Sites – Contaminated Sites Guidelines. Department of Environment Regulation.

DER 2015a, *Identification and Investigation of Acid Sulfate Soils and Acidic Landscapes*. Acid Sulfate Soils Guideline Series, Department of Environmental Regulation, June 2015.

DER 2015b, *Treatment and Management of Soil and Water in Acid Sulfate Soils Landscapes*, Acid Sulfate Soils Guideline Series, Department of Environment Regulation, June 2015.

DoH, 2014. Contaminated sites ground and surface water chemical screening guidelines. Department of Health.

DWER (n.d.), Perth Groundwater Map, accessed November 2020.

Geological Survey of Western Australia (GSWA) 1986, Perth Metropolitan 1:50 000 Environmental Geology Series, Western Australia.

NEPC, 2013. *National Environment Protection (Assessment of Site Contamination) Amendment Measure*. National Environment Protection Council.

Standards Australia/Standards New Zealand (1998). AS/NZS 5667.11:1998, *Water Quality – Sampling. Part* 11: Guidance on Sampling of Groundwaters, Joint Committee EV/8, Methods of Examination of Waters, Joint Standards Australia/ Standards New Zealand, 05 April 1998.

Datasets used

Department of Biodiversity, Conservation and Attractions, *Geomorphic Wetlands - Swan Coastal Plain (DBCA-019)*.

Department of Planning, Lands and Heritage, Region Scheme - Zones and Reserves (DPLH-023).

Department of Water and Environmental Regulation, Acid Sulfate Soil Risk Map - Swan Coastal Plain (DER-003).

Department of Mines, Industry Regulation and Safety (2017), *Geological Survey of Western Australia (1986),* State of Western Australia.

Figures

Figure 1: Site Location

N -	250 500 m	PROJECT / REPORT NAME ACID SULFATE SOIL AND I MANAGEMENT PLAN 88 MILL POINT ROAD, SO		Legend Perth CBD pin		
SCALE 1:15000	SHEET SIZE A3 COLOUR	CMW GEOSCIENCES			WESTERN	
COORDINATE REFERENCE SYSTEM GDA2020 / MGA zo	ne 50	PROJECT NUMBER P20.227	O VERSION	Site Location		
DATA SOURCE LANDGATE AERIAL I	IMAGERY 08/2020	DRAWN BY / REVIEWED BY	18/12/2020	Primary Distributor Road		

Figure 2: ASS Risk Mapping and Groundwater Contours

N - 100 r	า	PROJECT/REPORT NAME ACID SULFATE SOIL AND I MANAGEMENT PLAN 88 MILL POINT ROAD, SO		Legend Site Boundary Acid Sulphate Soil Risk Map, Swan Coastal Plain (DER-003) High to moderate risk of ASS occurring within	
SCALE 1:9000	SHEET SIZE	CLIENT		DWER Historic Groundwater Contours 3 m of natural soil surface (and beyond) (season maximum, mAHD 2003) Moderate to low risk of ASS occurring within	WESTERN
1.5000	A3 COLOUR	CMW GEOSCIENCES		DWER Historic Groundwater Contours 3 m of natural soil surface but high to	WESTERN
COORDINATE REFERENCE SYSTEM GDA2020 / MGA zone 50)	PROJECT NUMBER P20.227	O	(season minimum, mAHD 2003) moderate risk of ASS beyond 3 m of natural soil surface	
DATA SOURCE LANDGATE AERIAL IMAG	SERY 08/2020	DRAWN BY / REVIEWED BY	8/12/2020		

Figure 3: Local Sensitive Environments

N O	250 m	PROJECT / REPORT NAME ACID SULFATE SOIL AND E MANAGEMENT PLAN 88 MILL POINT ROAD, SOI		Legend Site Boundary Bush Forever Areas - 2000 (DPLH-019) Geomorphic Wetlands Swan Coastal Plain DBCA_019 Conservation	
scale 1:9000	A3 COLOUR	CMW GEOSCIENCES		1 km Buffer Multiple Use	WESTERN
COORDINATE REFERENCE SYSTEM GDA2020 / MGA zone 50		PROJECT NUMBER P20.227	VERSION		
DATA SOURCE LANDGATE AERIAL IMAGI	ERY 08/2020	DRAWN BY / REVIEWED BY	8/12/2020		

Figure 4: Surrounding Land Use

N -	200 m	PROJECT/REPORT NAME ACID SULFATE SOIL A MANAGEMENT PLAN 88 MILL POINT ROAD	I	Legend Site Boundary Parks and recreation Urban	
scale 1:7000	A3 COLOUR	CMW GEOSCIENCES		Region Scheme- Zones and Reserves (DPLH-023) Primary regional roads Waterways Civic and cultural	WESTERN
COORDINATE REFERENCE SYSTEM GDA2020 / MGA zone 50		PROJECT NUMBER P20.227	VERSION O	Public purposes	
DATA SOURCE LANDGATE AERIAL IMAG	ERY 08/2020	DRAWN BY / REVIEWED BY	8/12/2020		

Figure 5: Surrounding Geology and Topography

N -	100 m	PROJECT/REPORT NAME ACID SULFATE SOIL AND D MANAGEMENT PLAN 88 MILL POINT ROAD, SOU		Legend Site Boundary Perth Map Sheet C1- CLAY C1- CLAY	
SCALE 1:3000	A3 COLOUR	CMW GEOSCIENCES		Topography Contour (LGATE_140) mAHD LS1- LIMESTONE Water- WATER	WESTERN
COORDINATE REFERENCE SYSTEM GDA2020 / MGA zone 50		PROJECT NUMBER P20.227	version 0	S14- SAND	
DATA SOURCE LANDGATE AERIAL IMAGE	ERY 08/2020	DRAWN BY / REVIEWED BY	8/12/2020		

Figure 6: Proposed Site Layout During Works and Sampling Locations

N 5 1	T T T T T T T T T T T T T T T T T T T	PROJECT / REPORT NAME ACID SULFATE SOIL AND D MANAGEMENT PLAN 88 MILL POINT ROAD, SOL		Legend Site Boundary Lime Dosing Plant	
1,500	HEET SIZE A3 COLOUR	CMW GEOSCIENCES		Soil Bore Sedimentation Basin	WESTERN
COORDINATE REFERENCE SYSTEM GDA2020 / MGA zone 50		PROJECT NUMBER P20.227	VERSION	Pre-existing (non-WEPL) Groundwater Monitoring Well Proposed Groundwater Monitoring Well	
DATA SOURCE LANDGATE AERIAL IMAGER	RY 08/2020	DRAWN BY / REVIEWED BY LP / PB	17/12/2020		

Tables

Table 1
ASS Field Test and SPOCAS Laboratory Results

	Field Observations								Field Test			Lal	pH			Analytic	al Results		1
Location	Sample ID	Lab ID	SPOCAS Lab ID	Date Sampled	Depth	(mbgl)	Analyte	рН _F	pH _{FOX}	рΗΔ	Reaction Vigour	pH _{KCI}	pH _{OX}	TAA	ТРА	TSA	SPOS	ANCE	Net Acidity (SPOCAS)
Location	Sample ID	Labib	SPOCAS Lab ID	Date Sampled			Units	pН	pН	pН	-	pН	pН	%S	%S	%S	%S	%S	%S
							Guideline	<4.0	<3.0	>2	NE	<4.0	<3.0	0.03	0.03	NE	0.03	NE	0.03
					From	То	LOR	-	-	•	-	0.1	0.1	0.005	0.005	0.005	0.005	0.005	0.005
	BH01 0.25	P20-De06958		1/12/2020	0.00	0.25		8.9	7.7	1.20	2								
	BH01 0.5	P20-De06959		1/12/2020	0.25	0.50		9.6	7.5	2.1	2								
	BH01 0.75	P20-De06960		1/12/2020	0.50	0.75		9.7	7.6	2.1	2								
	BH01 1.0	P20-De06961		1/12/2020	0.75	1.00		9.6	7.6	2.0	3								
	BH01 1.25	P20-De06962		1/12/2020	1.00	1.25		9.5	7.5	2.0	3								
l [BH01 1.5	P20-De06963		1/12/2020	1.25	1.50		9.6	7.2	2.4	2								
	BH01 1.75	P20-De06964		1/12/2020	1.50	1.75		9.6	7.4	2.2	2								
	BH01 2.0	P20-De06965		1/12/2020	1.75	2.00		9.5	7.6	1.90	2								
l [BH01 2.25	P20-De06966		1/12/2020	2.00	2.25		9.4	7.5	1.90	2								
l	BH01 2.5	P20-De06967		1/12/2020	2.25	2.50		8.4	5.4	3.0	3								
l [BH01 2.75	P20-De06968		1/12/2020	2.50	2.75		7.8	2.9	4.9	2								
1	BH01 3.0	P20-De06969		1/12/2020	2.75	3.00		9.2	7.4	1.80	2								
BH01	BH01 3.25	P20-De06970		1/12/2020	3.00	3.25		8.8	5.4	3.4	2								
	BH01 3.5	P20-De06971		1/12/2020	3.25	3.50		7.7	3.0	4.7	2								
l [BH01 3.75	P20-De06972		1/12/2020	3.50	3.75		7.5	2.9	4.6	1								
1	BH01 4.0	P20-De06973		1/12/2020	3.75	4.00		7.8	2.8	5.0	1								
l	BH01 4.25	P20-De06974		1/12/2020	4.00	4.25		8.3	3.4	4.9	2								
	BH01 4.5	P20-De06975		1/12/2020	4.25	4.50		9.8	6.2	3.6	2								
1	BH01 4.75	P20-De06976		1/12/2020	4.50	4.75		9.5	6.8	2.7	2								
[BH01 5.0	P20-De06977		1/12/2020	4.75	5.00		6.5	3.4	3.1	2								
	BH 5.25	P20-De06978		1/12/2020	5.00	5.25		9.8	7.8	2.0	2								
	BH01 5.5	P20-De06979		1/12/2020	5.25	5.50		9.4	6.7	2.7	2								
	BH01 5.75	P20-De06980		1/12/2020	5.50	5.75		9.5	6.9	2.6	2								
1 1	BH01 6.0	P20-De06981		1/12/2020	5.75	6.00		9.4	5.5	3.9	2								
1 [BH01 6.25	P20-De06982		1/12/2020	6.00	6.25		9.6	7.4	2.2	2								

Table 1
ASS Field Test and SPOCAS Laboratory Results

	Field Observations								Field Test			Lal	pH			Analytic	al Results		
Location	Samula ID	I oh ID	SDOCAS Lab ID	Data Samulad	Depth	(mbgl)	Analyte	pH _F	pH _{FOX}	рΗΔ	Reaction Vigour	pH _{KCI}	pH _{OX}	TAA	ТРА	TSA	SPOS	ANCE	Net Acidity (SPOCAS)
Location	Sample ID	Lab ID	SPOCAS Lab ID	Date Sampled			Units	рН	pН	pН	-	pН	pН	%S	%S	%S	%S	%S	%S
							Guideline	<4.0	<3.0	>2	NE	<4.0	<3.0	0.03	0.03	NE	0.03	NE	0.03
					From	То	LOR	-	-	•	-	0.1	0.1	0.005	0.005	0.005	0.005	0.005	0.005
	BH02 0.0	P20-De07294		30/11/2020	0.00	0.00		9.4	7.4	2.0	3								
	BH02 0.25	P20-De07295		30/11/2020	0.00	0.25		9.3	7.1	2.2	3								
[BH02 0.5	P20-De07296		30/11/2020	0.25	0.50		9.3	6.9	2.4	2								
	BH02 0.75	P20-De07297		30/11/2020	0.50	0.75		9.5	7.2	2.3	2								
	BH02 1.0	P20-De07298		30/11/2020	0.75	1.00		8.7	6.8	1.9	2								
	BH02 1.25	P20-De07299		30/11/2020	1.00	1.25		8.2	6.8	1.4	3								
	BH02 1.5	P20-De07300		30/11/2020	1.25	1.50		8.4	6.9	1.5	3								
	BH02 1.75	P20-De07301		30/11/2020	1.50	1.75		7.8	5.4	2.4	3								
	BH02 2.0	P20-De07302		30/11/2020	1.75	2.00		8.9	5.5	3.4	3								
	BH02 2.25	P20-De07303		30/11/2020	2.00	2.25		8.9	7.2	1.7	3								
	BH02 2.5	P20-De07304		30/11/2020	2.25	2.50		8.9	6.7	2.2	3								
	BH02 2.75	P20-De07305		30/11/2020	2.50	2.75		7.4	2.7	4.7	4								
BH02	BH02 3.0	P20-De07306		30/11/2020	2.75	3.00		7.5	2.6	4.9	2								
l [BH02 3.25	P20-De07307		30/11/2020	3.00	3.25		8	2.6	5.4	2								
	BH02 3.5	P20-De07308		30/11/2020	3.25	3.50		7.7	2.7	5	3								
	BH02 3.75	P20-De07309		30/11/2020	3.50	3.75		7.9	2.7	5.2	3								
	BH02 4.0	P20-De07310		30/11/2020	3.75	4.00		7.4	2.7	4.7	3								
	BH02 4.25	P20-De07311		30/11/2020	4.00	4.25		7.4	2.9	4.5	3								
	BH02 4.5	P20-De07312		30/11/2020	4.25	4.50		7.5	3.1	4.4	2								
	BH02 4.75	P20-De07313		30/11/2020	4.50	4.75		8.5	5.3	3.2	2								
	BH02 5.0	P20-De07314		30/11/2020	4.75	5.00		7.6	2.9	4.7	3								
	BH 5.25	P20-De07315		30/11/2020	5.00	5.25		8	3.5	4.5	2								
	BH02 5.5	P20-De07316		30/11/2020	5.25	5.50		7.4	3	4.4	2								
[BH02 5.75	P20-De07317		30/11/2020	5.50	5.75		7.3	2.8	4.5	2								
1 [BH02 6.0	P20-De07318		30/11/2020	5.75	6.00		7.1	2.7	4.4	2								

Table 1
ASS Field Test and SPOCAS Laboratory Results

	Field Observations								Field Test			Lal	рН			Analytic	al Results		
Location	Samula ID	lah ID	SDOCAS Lab ID	Data Samulad	Depth	(mbgl)	Analyte	рН _F	pH _{FOX}	рΗΔ	Reaction Vigour	pH _{KCI}	pH _{OX}	TAA	ТРА	TSA	SPOS	ANCE	Net Acidity (SPOCAS)
Location	Sample ID	Lab ID	SPOCAS Lab ID	Date Sampled			Units	pН	pН	pН	-	pН	pН	%S	%S	%S	%S	%S	%S
							Guideline	<4.0	<3.0	>2	NE	<4.0	<3.0	0.03	0.03	NE	0.03	NE	0.03
					From	То	LOR	-	-	-	-	0.1	0.1	0.005	0.005	0.005	0.005	0.005	0.005
	BH03 0.0	P20-De08623		2/12/2020	0.00	0.00		9.3	7.4	1.9	3								
	BH03 0.25	P20-De08624	P20-De21869	2/12/2020	0.00	0.25		9.3	7.4	1.9	3	9.1	7.7	< 0.003	< 0.02	< 0.02	< 0.02	5.8	< 0.02
	BH03 0.5	P20-De08625		2/12/2020	0.25	0.50		8.9	7.1	1.8	2								
	BH03 0.75	P20-De08626		2/12/2020	0.50	0.75		8.5	7.1	1.4	2								
	BH03 1.0	P20-De08627	P20-De21870	2/12/2020	0.75	1.00		9	7.1	1.9	2	9.1	7.2	< 0.003	< 0.02	< 0.02	< 0.02	0.31	< 0.02
	BH03 1.25	P20-De08628		2/12/2020	1.00	1.25		9	7.4	1.6	2								
	BH03 1.5	P20-De08629		2/12/2020	1.25	1.50		8.9	7.3	1.6	2								
	BH03 1.75	P20-De08630		2/12/2020	1.50	1.75		8.7	7.3	1.4	2								
	BH03 2.0	P20-De08631		2/12/2020	1.75	2.00		8	6.6	1.4	1								
	BH03 2.25	P20-De08632		2/12/2020	2.00	2.25		7.8	6.5	1.3	1								
	BH03 2.5	P20-De08633		2/12/2020	2.25	2.50		7.6	6.5	1.1	1								
	BH03 2.75	P20-De08634		2/12/2020	2.50	2.75		7.1	6	1.1	1								
BH03	BH03 3.0	P20-De08635		2/12/2020	2.75	3.00		6.8	4.8	2.0	2								
	BH03 3.25	P20-De08636		2/12/2020	3.00	3.25		7.4	6.4	1.0	2								
	BH03 3.5	P20-De08637		2/12/2020	3.25	3.50		7.4	5.9	1.5	1								
	BH03 3.75	P20-De08638		2/12/2020	3.50	3.75		7.2	5.6	1.6	1								
	BH03 4.0	P20-De08639		2/12/2020	3.75	4.00		7	5.7	1.3	1								
	BH03 4.25	P20-De08640		2/12/2020	4.00	4.25		7	5.5	1.5	1								
	BH03 4.5	P20-De08641		2/12/2020	4.25	4.50		6.9	5.5	1.4	1								
	BH03 4.75	P20-De08642		2/12/2020	4.50	4.75		7.2	6	1.2	1								
	BH03 5.0	P20-De08643		2/12/2020	4.75	5.00		7.5	6	1.5	2								
	BH 5.25	P20-De08644		2/12/2020	5.00	5.25		7	5.1	1.9	1								
	BH03 5.5	P20-De08645		2/12/2020	5.25	5.50		7	5.1	1.9	1								
ı Ī	BH03 5.75	P20-De08646		2/12/2020	5.50	5.75		7.1	4.7	2.4	2								
ı	BH03 6.0	P20-De08647	P20-De21871	2/12/2020	5.75	6.00		7.2	4.5	2.7	2	5.9	5.3	< 0.003	< 0.02	< 0.02	< 0.02	n/a	< 0.02

Table 1
ASS Field Test and SPOCAS Laboratory Results

Field Observations							Field Test			Lal	pH			Analytica	al Results				
Location	Sample ID	Lab ID	SPOCAS Lab ID	Date Sampled	Depth	(mbgl)	Analyte	pH _F	pH _{FOX}	pH Δ	Reaction Vigour	pH _{KCI}	pH _{OX}	TAA %S	TPA	TSA %S	SPOS %S	ANCE	Net Acidity (SPOCAS) %S
					From	То	Guideline LOR	<4.0	<3.0	>2	NE -	<4.0 0.1	<3.0 0.1	0.03	0.03	0.005	0.03 0.005	0.005	0.005
	BH04 0.0	P20-De08656		2/12/2020	0.00	0.00		9.1	7	2.1	3								1
	BH04 0.25	P20-De08657		2/12/2020	0.00	0.25		9.4	7.4	2.0	3								
	BH04 0.5	P20-De08658	P20-De21872	2/12/2020	0.25	0.50		9.1	6.9	2.2	3	9.1	7.5	< 0.003	< 0.02	< 0.02	< 0.02	0.58	< 0.02
	BH04 0.75	P20-De08659		2/12/2020	0.50	0.75		9.1	6.7	2.4	3								
	BH04 1.0	P20-De08660		2/12/2020	0.75	1.00		8.6	6	2.6	2								
	BH04 1.25	P20-De08661		2/12/2020	1.00	1.25		9	6.6	2.4	2								
	BH04 1.5	P20-De08662		2/12/2020	1.25	1.50		8.8	6.3	2.5	2								
	BH04 1.75	P20-De08663		2/12/2020	1.50	1.75		6	4.1	1.9	2								
	BH04 2.0	P20-De08664	P20-De21873	2/12/2020	1.75	2.00		5.5	2.9	2.6	2	5.7	4.3	0.01	< 0.02	< 0.02	< 0.02	n/a	< 0.02
	BH04 2.25	P20-De08665		2/12/2020	2.00	2.25		6.5	3.4	3.1	2								
	BH04 2.5	P20-De08666		2/12/2020	2.25	2.50		6.4	2.8	3.6	3								
	BH04 2.75	P20-De08667		2/12/2020	2.50	2.75		6	2.7	3.3	4								
BH04	BH04 3.0	P20-De08668	P20-De21874	2/12/2020	2.75	3.00		5.5	2.6	2.9	4	5	2.7	0.02	0.13	0.12	0.12	n/a	0.14
	BH04 3.25	P20-De08669		2/12/2020	3.00	3.25		6.5	3.1	3.4	2								
	BH04 3.5	P20-De08670		2/12/2020	3.25	3.50		6.4	2.6	3.8	2								
	BH04 3.75	P20-De08671		2/12/2020	3.50	3.75		6.1	2.1	4.0	4								
	BH04 4.0	P20-De08672		2/12/2020	3.75	4.00		5.6	2.5	3.1	2								
	BH04 4.25	P20-De08673		2/12/2020	4.00	4.25		5.4	2.5	2.9	1								
	BH04 4.5	P20-De08674		2/12/2020	4.25	4.50		6.5	2.5	4.0	1								
	BH04 4.75	P20-De08675	P20-De21875	2/12/2020	4.50	4.75		6.4	2.9	3.5	2	5.6	4	< 0.003	< 0.02	< 0.02	< 0.02	n/a	< 0.02
	BH04 5.0	P20-De08676		2/12/2020	4.75	5.00		6.5	2.9	3.6	2								
	BH 5.25	P20-De08677		2/12/2020	5.00	5.25		6.7	3	3.7	2								
	BH04 5.5	P20-De08678		2/12/2020	5.25	5.50		6.2	3	3.2	2								
	BH04 5.75	P20-De08679	P20-De21876	2/12/2020	5.50	5.75		5.2	2.8	2.4	2	5.5	3.7	0.01	0.02	< 0.02	< 0.02	n/a	< 0.02
	BH04 6.0	P20-De08680		2/12/2020	5.75	6.00		6.2	2.9	3.3	2								

NE = Regulatory guideline not established

< Indicates sample results below the laboratory limit of reporting (LOR)

- Not Analysed

mbgl = metres below ground level

Reaction Vigour = 1; No reaction to slight. 2; Moderate reaction. 3; Strong reaction with persistent froth. 4; Extreme reaction.

n/a - Acid Neutralising capacity, reached before this analysis began. No need to analysis, below LOR.

Net acidity - (TAA + SPOS) is calculated by applying half any reported LOR value

ANCE - Sulfidic Ca + Sulfidic Mg

Regulatory Guidelines:

Guidelines are derived from the Department of Environment Regulation (2015) Identification and Investigation of Acid Sulfate Soils and Acidic Landscapes.

Field test value indicative of ASS

Field test value indicative of PASS

shading indicates sample exceeds DER ASS Action Criteria of 0.03 %S or 18.7 mol H*/tonne, for excavations > 1,000 tonnes

Table 2
Soil Analytical Results - Metals

							Heavy	Metals			
				Arsenic	Cadmium	Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc
		EIL - Urban res	idential and POS	100	NE	NE	60	1,100	NE	30	70
		HIL-	500	150	NE	30,000	1,200	120	1,200	60,000	
			2	0.4	5	5	5	0.1	5	5	
Sample ID	Lab ID	Sample Depth (m)	Date Sampled								
BH01_0.0	P20-De06958	0	25/11/2020	3.5	< 0.4	10	< 5	< 5	< 0.1	< 5	8.2
BH01_0.5	P20-De06960	0.5	25/11/2020	< 2	< 0.4	12	< 5	30	< 0.1	< 5	29
BH02_0.0	P20-De07294	0	30/11/2020	< 2	< 0.4	6.6	5.5	31	< 0.1	< 5	49
BH02_0.5	P20-De07296	0.5	30/11/2020	< 2	< 0.4	< 5	11	15	< 0.1	< 5	29
BH03_0.0	P20-De08623	0	2/12/2020	< 2	< 0.4	13	< 5	16	< 0.1	< 5	19
BH03_0.5	P20-De08625	0.5	2/12/2020	< 2	< 0.4	< 5	< 5	6.9	< 0.1	< 5	95
BH04_0.0	P20-De08656	0	2/12/2020	< 2	< 0.4	5.8	< 5	15	< 0.1	< 5	16
BH04_0.5	P20-De08658	0.5	2/12/2020	< 2	< 0.4	18	< 5	8.7	< 0.1	5.1	< 5

NE = Regulatory guideline not established

- < Indicates sample results below the laboratory limit of reporting (LOR)
- Not Analysed

Regulatory Guidelines:

Guidelines are derived from the *National Environment Protection (Assessment of Site Contamination) Measure* (NEPC, 2013) and the *Assessment and Management of Contaminated Sites* (DER, 2014).

shading indicates concentration exceeds the NEPC (2013) Ecological Investigation Levels (EIL)

shading indicates concentration exceeds the NEPC (2013) Health Investigation Levels (HIL)

Table 3
Soil Analytical Results - Organochlorine Pesticides

						Organochlorine Pesticides															
				DDD-d'd	p,p-DDE	p,p-DDT	а-ВНС	Aldrin	Aldrin + Dieldrin	р-внс	Chlordane	д-внс	DDT + DDE + DDD	Dieldrin	Endosulfan Sulfate	Endrin	Endrin Ketone	Lindane	Heptachlor Epoxide	Hexachlorobenzene	Methoxychlor
EIL - Urban residential and POS					NE	180	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	-B (Residential B)	NE	NE	NE	NE	NE	10	NE	90	NE	600	NE	NE	20	NE	NE	NE	15	500		
			LOR	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Sample ID	Lab ID	Sample Depth (m)	Date Sampled									mg	/kg								
BH01_0.0	P20-De06958	0	25/11/2020	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
BH01_0.5	P20-De06960	0.5	25/11/2020	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
BH02_0.0	P20-De07294	0	30/11/2020	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BH02_0.5	P20-De07296	0.5	30/11/2020	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
BH03_0.0	P20-De08623	0	2/12/2020	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
BH03_0.5	P20-De08625	0.5	2/12/2020	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
BH04_0.0	P20-De08656	0	2/12/2020	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
BH04_0.5	P20-De08658	0.5	2/12/2020	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

NE = Regulatory guideline not established

< Indicates sample results below the laboratory limit of reporting (LOR)

- Not Analysed

Regulatory Guidelines:

Guidelines are derived from the National Environment Protection (Assessment of Site Contamination) Measure (NEPC, 2013) and the Assessment and Management of Contaminated Sites (DER, 2014).

shading indicates concentration exceeds the NEPC (2013) Ecological Investigation Levels (EIL)

shading indicates concentration exceeds the NEPC (2013) Health Investigation Levels (HIL)

Table 4
Soil Analytical Results - Monocyclic Aromatic Hydrocarbons, Total Petroleum Hydrocarbons, & Total Recoverable Hydrocarbons

					BTEX				a						TI	RH							
	Benzene	Ethylbenzene	m+p-Xylene	o-Xylene	Toluene	Naphthalene	Benzo(a)pyrene	C ₁₀ - C ₁₄	C ₁₀ - C ₃₆ (Total)	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	ზ - ზ	TRH >C ₁₀ - C ₁₆	TRH >C ₁₀ - C ₁₆ less N (F2)	C ₁₀ - C ₄₀ (Total)	TRH >C ₁₆ - C ₃₄ (F3)	TRH >C ₃₄ - C ₄₀ (F4)	C ₆ - C ₁₀ less BTEX (F1)	C ₆ - C ₁₀				
EIL - Urban residential and PC					NE		IE	NE	170	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
ESL - Urban residential & POS coarse soil					70	10		85	NE	0.7	NE	NE	NE	NE	NE	NE	120	NE	300	2,800	180	NE	
fine soil Direct Contact - HSL-B Residential (High Density)					125 5,900		000	105 21,000	2,200	0.7 NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	120 4,200	NE NE	1,300 5,800	5,600 8,100	180 5,600	NE NE	
Direct Contact - HSL Intrusive Maintenance Worker					85,000		,000			NE	NE	NE	NE	NE	NE	NE	62,000	NE	85,000			NE	
Vapour Intrusio		igh density residential)			55		0	160	3	NE	NE	NE	NE	NE	NE	NE	110	NE	NE	NE	45	NE	
		Maintenance Worker)			NL	N	IL	NL	NL	NE	NE	NE	NE	NE	NE	NE	NL	NE	NE	NE	NL	NE	
			LOR	0.1	0.1	0.2	0.1	0.1	0.5	0.5	20	50	50	50	20	20	50	100	100	100	20	20	
Sample ID	Lab ID	Sample Depth (m)	Date Sampled										mg/kg										
BH01_0.0	P20-De06958	0	25/11/2020	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.5	< 0.5	< 20	< 50	< 50	< 50	< 20	< 20	< 50	< 100	< 100	< 100	< 20	< 20	
BH01_0.5	P20-De06960	0.5	25/11/2020	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.5	< 0.5	< 20	< 50	< 50	< 50	< 20	< 20	< 50	< 100	< 100	< 100	< 20	< 20	
BH02_0.0	P20-De07294	0	30/11/2020	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 1	< 1	< 20	< 50	< 50	< 50	<40	<40	< 50	< 100	< 100	< 100	<40	<40	
BH02_0.5	P20-De07296	0.5	30/11/2020	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.5	< 0.5	< 20	< 50	< 50	< 50	< 20	< 20	< 50	< 100	< 100	< 100	< 20	< 20	
BH03_0.0	P20-De08623	0	2/12/2020	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.5	< 0.5	< 20	< 50	< 50	< 50	< 20	< 20	< 50	< 100	< 100	< 100	< 20	< 20	
BH03_0.5	P20-De08625	0.5	2/12/2020	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.5	< 0.5	< 20	< 50	< 50	< 50	< 20	< 20	< 50	< 100	< 100	< 100	< 20	< 20	
BH04_0.0	P20-De08656	0	2/12/2020	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.5	< 0.5	< 20	< 50	< 50	< 50	< 20	< 20	< 50	< 100	< 100	< 100	< 20	< 20	
BH04_0.5	P20-De08658	0.5	2/12/2020	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.5	< 0.5	< 20	< 50	< 50	< 50	< 20	< 20	< 50	< 100	< 100	< 100	< 20	< 20	

NE = Regulatory guideline not established

NL = Not limiting

< Indicates sample results below the laboratory limit of reporting (LOR)

- Not Analysed

Regulatory Guidelines:

Guidelines are derived from the National Environment Protection (Assessment of Site Contamination) Measure (NEPC, 2013), the Assessment and Management of Contaminated Sites (DER, 2014) and CRC CARE Technical Report No. 10 (2011).

shading indicates concentration exceeds the NEPC (2013) Ecological Investigation Levels (EIL) shading indicates concentration exceeds the NEPC (2013) Ecological Screening Levels (ESL)

shading indicates concentration exceeds the CRC CARE Health Screening Levels (HSL) for Direct Contact

shading indicates concentration exceeds the CRC CARE Health Screening Levels (HSL) for Vapour Intrusion for Sand

Table 5
Soil Analytical Results - Polycyclic Aromatic Hydrocarbons

				PAHs																	
				Acenapthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a)pyrene	Benzo(a)pyrene TEQ	Benzo(b+j) fluoranthene	Benzo(g,h,i) perylene	Benzo(k) fluoranthene	Chrysene	Dibenzo(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d) pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs
		EIL - Urban	residential & POS	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	170	NE	NE	NE
ESL - Urban residential & POS coarse soil					NE	NE	NE	0.7	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
fine soil					NE	NE	NE	0.7	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	HIL-B (Residential B)					NE	NE	NE	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	400
	Direct Contact - HSL-B Residential (High Density)					NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	2,200	NE	NE	NE
	Direct Contact - HSL - Intrusive Maintenance Worker					NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	29,000	NE	NE	NE
Vapour Intrusi	on - HSL A&B (Low-hi	gh density residential)	Sand (0 - <1 m)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	3	NE	NE	NE
Vapour Intr	usion - HSL (Intrusive	Maintenance Worker)	Sand (0 - <2 m)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NL	NE	NE	NE
			LOR	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sample ID	Lab ID	Sample Depth (m)	Date Sampled									mg	/kg								
BH01_0.0	P20-De06958	0	25/11/2020	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
BH01_0.5	P20-De06960	0.5	25/11/2020	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
BH02_0.0	P20-De07294	0	30/11/2020	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
BH02_0.5	P20-De07296	0.5	30/11/2020	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
BH03_0.0	P20-De08623	0	2/12/2020	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
BH03_0.5	P20-De08625	0.5	2/12/2020	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
BH04_0.0	P20-De08656	0	2/12/2020	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
BH04_0.5	P20-De08658	0.5	2/12/2020	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

NE = Regulatory guideline not established

NL = Not limiting

< Indicates sample results below the laboratory limit of reporting (LOR)

- Not Analysed

Regulatory Guidelines:

Guidelines are derived from the National Environment Protection (Assessment of Site Contamination) Measure (NEPC, 2013), the Assessment and Management of Contaminated Sites (DER, 2014) and CRC CARE Technical Report No. 10 (2011).

shading indicates concentration exceeds the NEPC (2013) Ecological Investigation Levels (EIL)
shading indicates concentration exceeds the NEPC (2013) Ecological Screening Levels (ESL)
shading indicates concentration exceeds the NEPC (2013) Health Investigation Levels (HIL)
shading indicates concentration exceeds the CRC CARE Health Screening Levels (HSL) for Direct Contact
shading indicates concentration exceeds the CRC CARE Health Screening Levels (HSL) for Vapour Intrusion for Sand

Table 6
Groundwater Analytical Results

							C	-l- ID					
			MWG		Water Corp		Samp Lab		BH3	BH4	DUP01		
		FWG		NPUG	Trade Waste	ASS			P20-De20019	P20-De20020	P20-De20021	RPD %	
					Criteria		Date Sa		9/12/2020	9/12/2020	9/12/2020	4	
D: 1							Units	LOR					
Dissolve	d Metals										1		
	Aluminium	0.055	NE	0.2	100	1.0 ⁴ / 0.15 ⁵	mg/L	0.05	< 0.05	< 0.05	< 0.05	#	
	Arsenic (III)	0.024	NE	0.1	1	NE	mg/L	0.001	< 0.001	< 0.001	< 0.001	#	
	Cadmium	0.0002	0.0007	0.02	1	NE	mg/L	0.0002	< 0.0002	< 0.0002	< 0.0002	#	
	Chromium (VI)	0.001	0.0044	0.5	3	NE	mg/L	0.001	< 0.001	< 0.001	< 0.001	#	
	Iron	NE	NE	NE	10	1.0 ⁵	mg/L	0.05	< 0.05	< 0.05	< 0.05	#	
	Managanese	1.9	NE	5	NE	NE	mg/L	0.0001	0.11	0.078	0.082	5.0	
	Nickel	0.011	0.007	0.2	3	NE	mg/L	0.001	0.003	0.004	0.004	0.0	
	Selenium	0.005^	NE	0.1^	1	NE	mg/L	0.001	< 0.001	< 0.001	< 0.001	#	
	Zinc	0.008	0.015	3	3	NE	mg/L	0.005	0.025	0.016	0.015	6.5	
Total Me	etals												
	Aluminium	NE	NE	NE	NE	0.15 ⁵	mg/L	0.05	0.34	< 0.05	0.09	#	
	Copper	NE	NE	NE	5	NE	mg/L	0.001	0.002	-	-	-	
	Iron	0.3	1	0.3	NE	1.0 ⁵	mg/L	0.001	0.12	0.09	0.1	10.5	
	Lead	NE	NE	NE	1	NE	mg/L	0.001	0.002	-	-	-	
	Mercury	NE	NE	NE	0.01	NE	mg/L	0.0001	< 0.0001	-	-	-	
	Molybdenum	NE	NE	NE	5	NE	mg/L	0.005	0.076	-	-	-	
	Silver	NE	NE	NE	5	NE		0.005	< 0.005	-	-	-	
Lab													
	pH	6.5-8.5 ¹	8-8.4	NE	6.0-10.0	<5	pH units	0.1	7.9	7.4	7.4	0.0	
	Electrical Conductivity	300-1,500 ²	NE	NE	NE	NE	μs/cm	10	710	580	590	1.7	
Acid Sul	fate Soil Parameters												
	Acidity (as CaCO3)	NE	NE	NE	NE	>40	mg/L	10	< 10	< 10	< 10	#	
	Alkalinity (total) as CaCO3	NE	NE	NE	NE	NE	mg/L	20	73	62	63	1.6	
	Sulphate	NE	NE	1,000	600	NE	mg/L	5	10	18	16	11.8	
	Chloride	NE	NE	250	NE	NE	mg/L	1	190	180	150	18.2	
	TDS	NE	NE	NE	NE	NE	mg/L	10	410	320	310	3.2	
	TSS				1,500		mg/L	1	12	-	-	-	
ASS Rati	os												
	Alkalinity : Sulphate	NE	NE	NE	NE	<5	-	-	7.30	3.44	3.94	13.4	
	Acidity : Alkalinity	NE	NE	NE	NE	>1	-	-	#	#	#	#	
	Chloride : Sulphate	NE	NE	NE	NE	<2	-	-	19.00	10.00	9.38	6.5	
Nutrient	S				_								
	Total Phosphorus	0.1 6	NE	NE	NE	NE	mg/L	0.01	0.01	< 0.01	< 0.01	#	
	Phosphorous filterable reactive	NE	NE	NE	NE	NE	mg/L	0.01	< 0.01	0.11	< 0.01	#	
	Total Nitrogen	1 ⁶	NE	NE	NE		mg/L	0.2	< 0.2	< 0.2	< 0.2	#	
	NOx-N [Nitrate & Nitrite (as N)]	0.1 1	NE	NE	NE	NE	mg/L	0.05	< 0.05	< 0.05	0.08	#	
	Total Kjeldahl Nitrogen	NE	NE	NE	NE	NE	mg/L	0.2	< 0.2	< 0.2	< 0.2	#	
	Ammonia (as NH ₃ -N)	0.9	0.91	NE	200 (pH < 8)	NE	mg/L	0.01	0.06	0.1	0.1	#	
Sodium	(Dissolved)	NE	NE	NE	NE	NE	mg/L	0.5	100	75	75	0	
Biochem	ical Oxygen Demand (BOD)	NE	NE	NE	3,000	NE	mg/L	5	< 5	-	-	-	
Oil & Gr	ease	NE	NE	NE	500	NE	mg/L	10	< 10		-	-	

NE = Regulatory guideline not established

- 1 value derived from ANZECC (2000) wetland ecosystems in South-west Australia
- 2 value derived from ANZECC (2000) lakes, reservoirs & wetland ecosystems in South-west Australia
- ⁴ guideline value is an indicator of ASS (for baseline monitoring)
- ⁵ guideline value is limiting criteria for discharge to sensitive aquatic ecosystems (for effluent monitoring)
- ⁶ value derived from SRT (2008) Healthy Rivers Action Plan
- ^ indicates total guideline value
- Indicates total gardenie value
 Indicates sample results below the laboratory limit of reporting (LOR)
- Not Analysed
- # indicates RPD not calculable, as primary and replicate concentrations <LOR.

Red font indicates RPD > 30%

Regulatory Guidelines:

Guidelines derived from DER (2014) Assessment and management of contaminated sites - Contaminated sites guidelines, DER (2015) Identification and investigation of acid sulfate soils and acidic landscapes, NEPC (2013) National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1),

NHMRC & NRMMC (2011) Australian Drinking Water Guidelines and ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

shading indicates concentration exceeds the FWG (Fresh Water Guidelines for slightly - moderately disturbed systems).

shading indicates concentration exceeds the MWG (Marine Water Guidelines for slightly - moderately disturbed systems). shading indicates concentration exceeds the NPUG (Non-Potable Groundwater Use - Department of Health, 2014).

shading indicates concentrations exceeds the Water Corporation (Trade Waste Acceptance Criteria).

shading indicates concentration exceeds the ASS indicator Guideline (Department of Environment Regulation, 2015).

Appendix A Site and Development Information

Stantec Structural Concept Memo 002

Enquiries: Eric Le Meur

301248278 Project No:

To: Achilles Limbouris

Cc: Mark Jeavons, Damian Fasher, Thomas Willday, Jeff Gidman, David Smyth, John O'Gorman,

Alex Jones

Eric Le Meur From: Date: 16 Nov 2020

Subject: 88 Mill Point Road

Preliminary Structural Concept

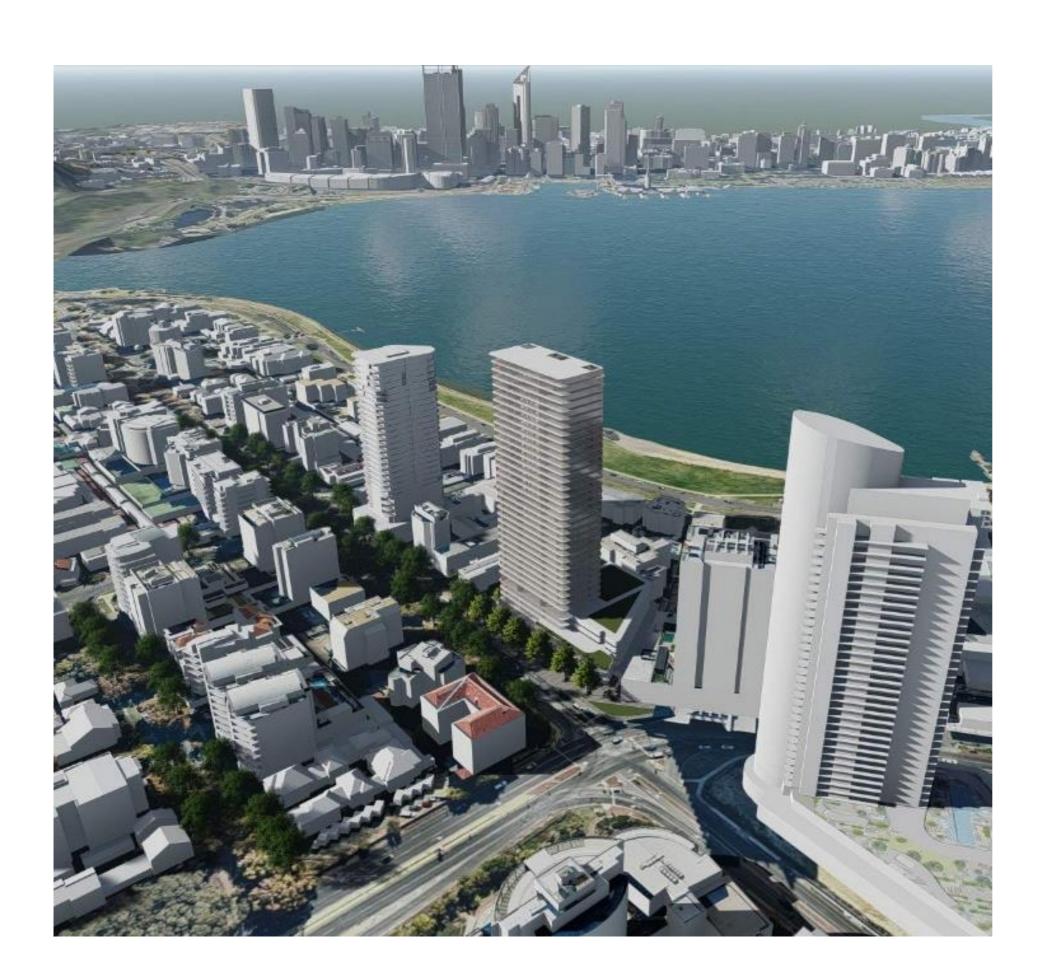
Hello Achilles,

Please find attached preliminary structural concept mark-up based on the architectural work in progress drawings dated 12/11/2020 and our recent discussion for your review.

This structural concept is based on the following assumptions:

- Latest floor-to-floor height shown on the architectural section drawing
- Header beams depth across all structural openings of structural walls as per recent discussion (refer mark-up
- PT and RC slab options on typical apartment floors
- Assumed FRL (mins):
 - Carpark 120/120/120
 - Common area/Commercial 180/180/180
 - Residential 90/90/90
- Assumed maximum wet area set-down = 30mm
- Assumed maximum balcony set-down = 100mm

The lateral building acceleration response (occupant comfort under wind) is currently on the limit. This is typically addressed by the use of a roof-mounted damper, however this can only be confirmed once the detailed wind tunnel study has been completed. A provisional allowance for a damper may be worth noting as part of your cost estimates. We are seeking further guidance from the wind consultant on this.

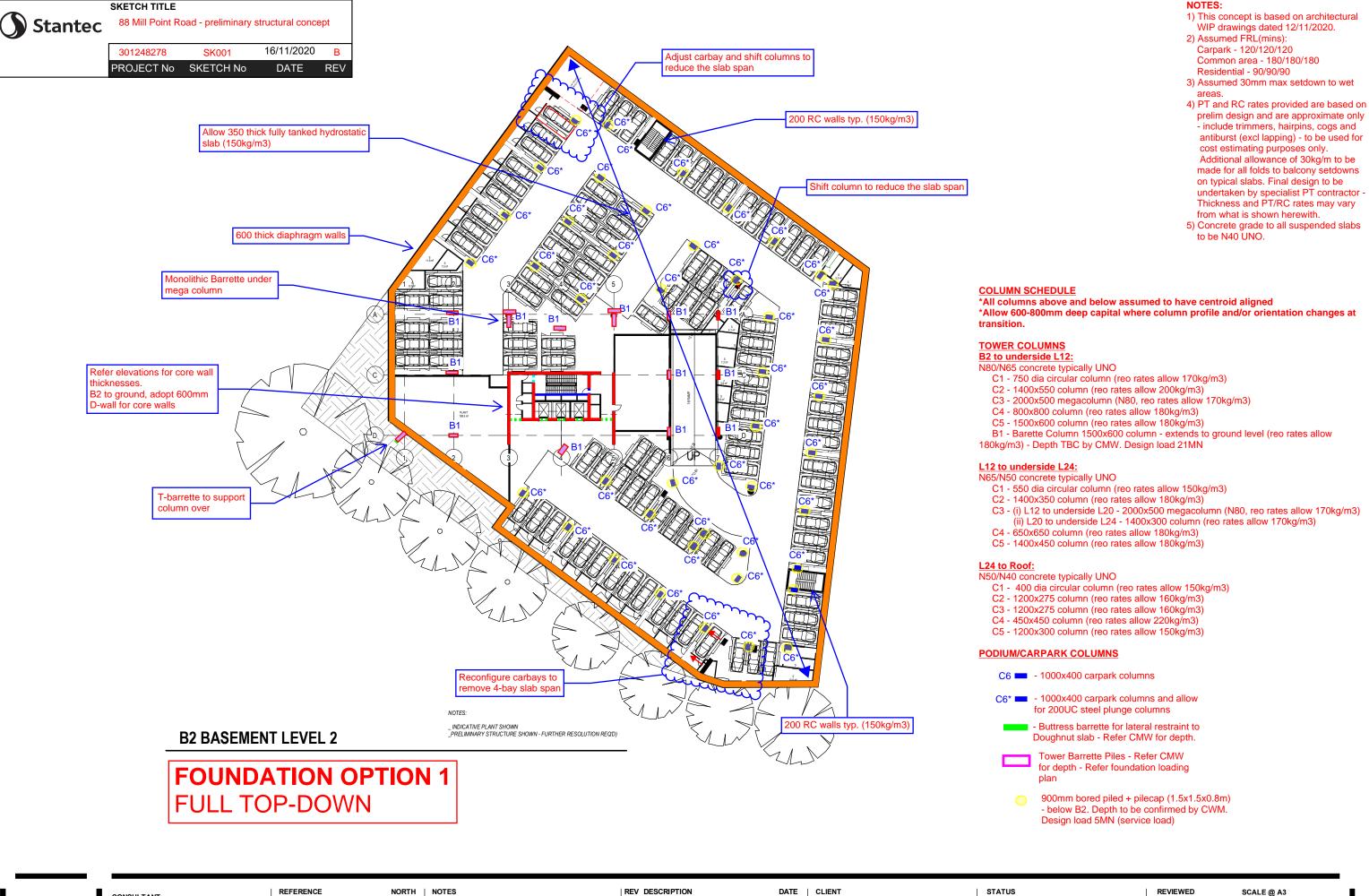

Regards,

Stantec Australia Pty Ltd

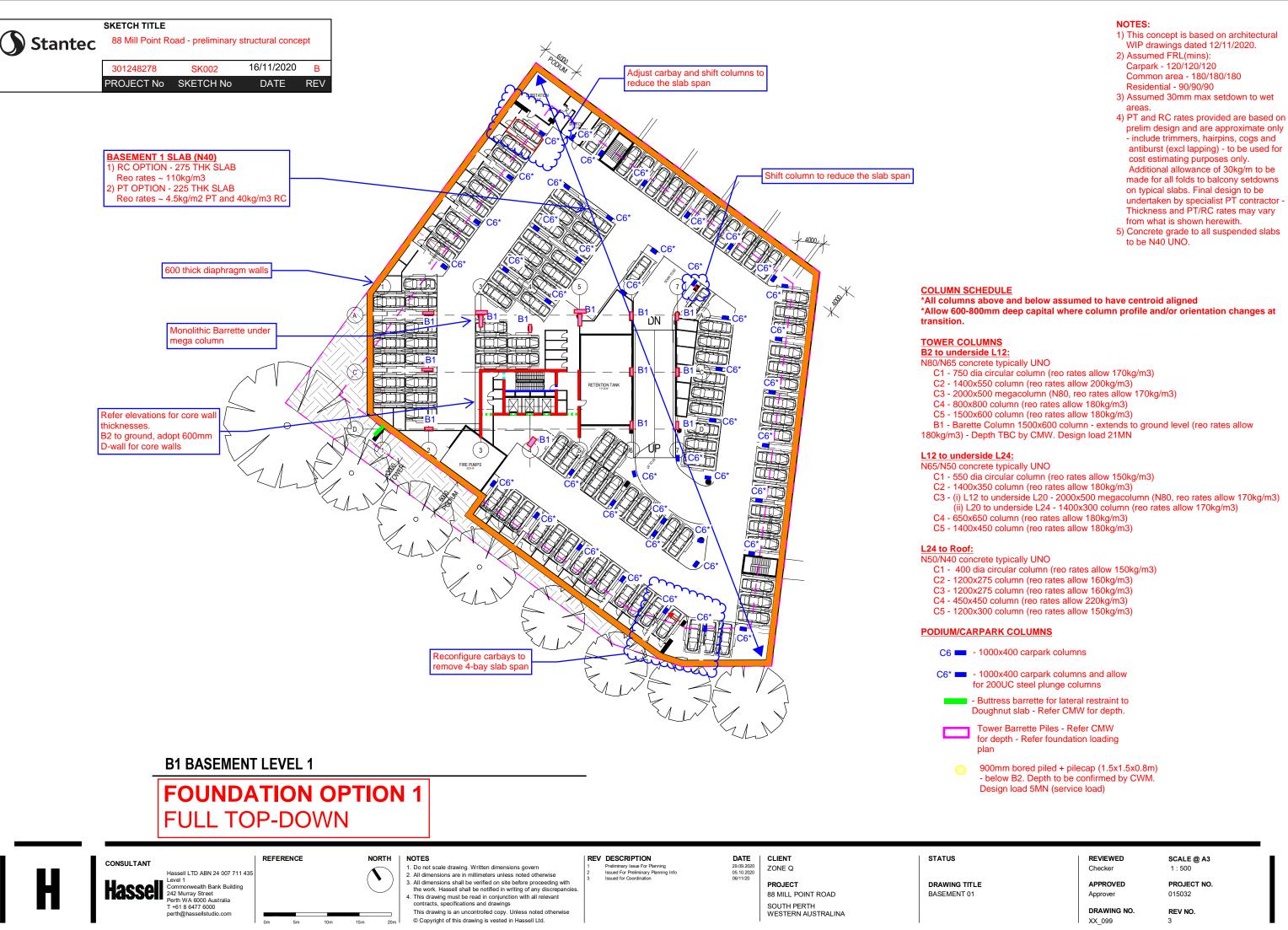
Eric Le Meur

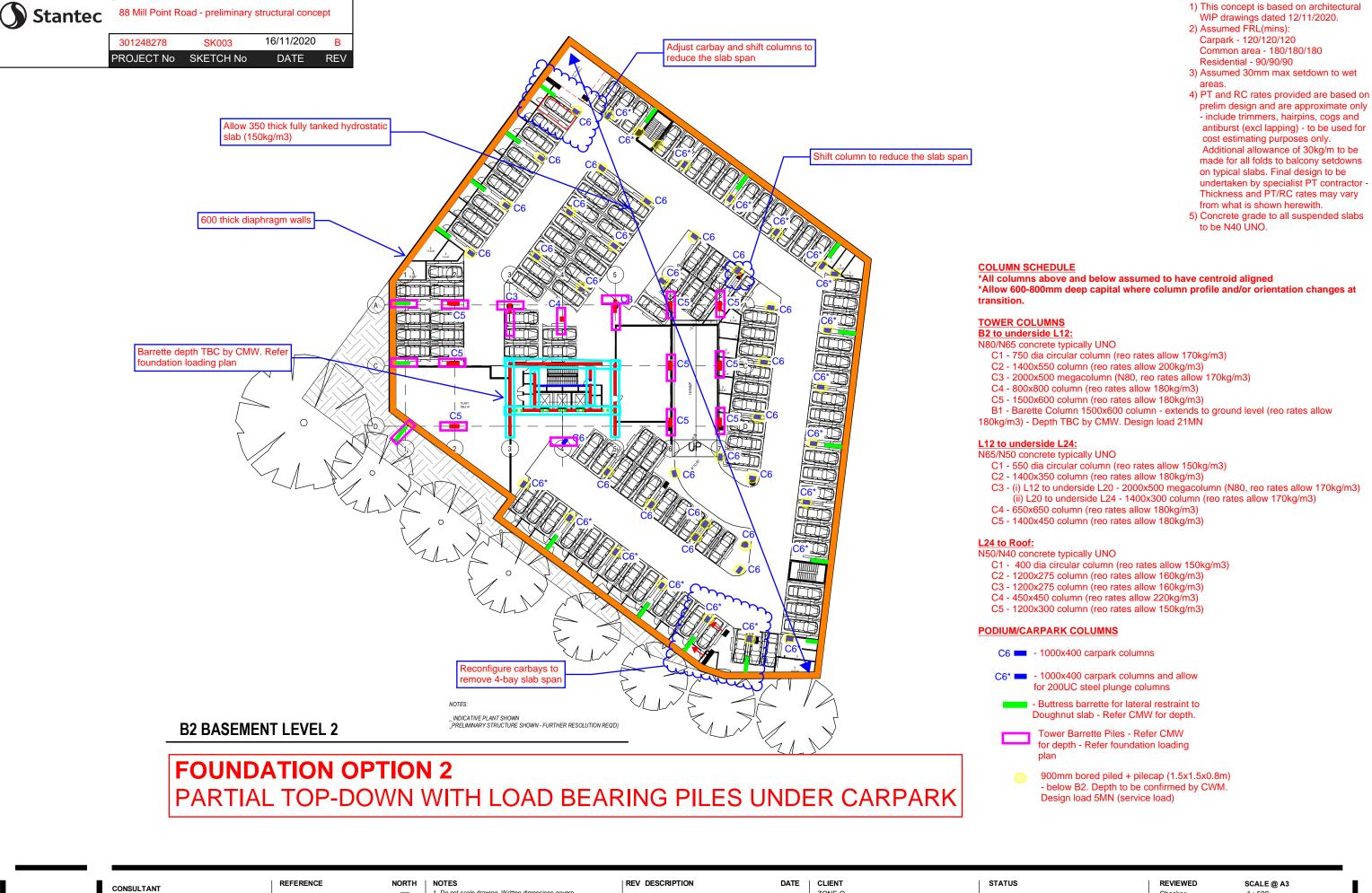
Principal, Senior Structural Project Engineer

88 Mill Point Road, South Perth

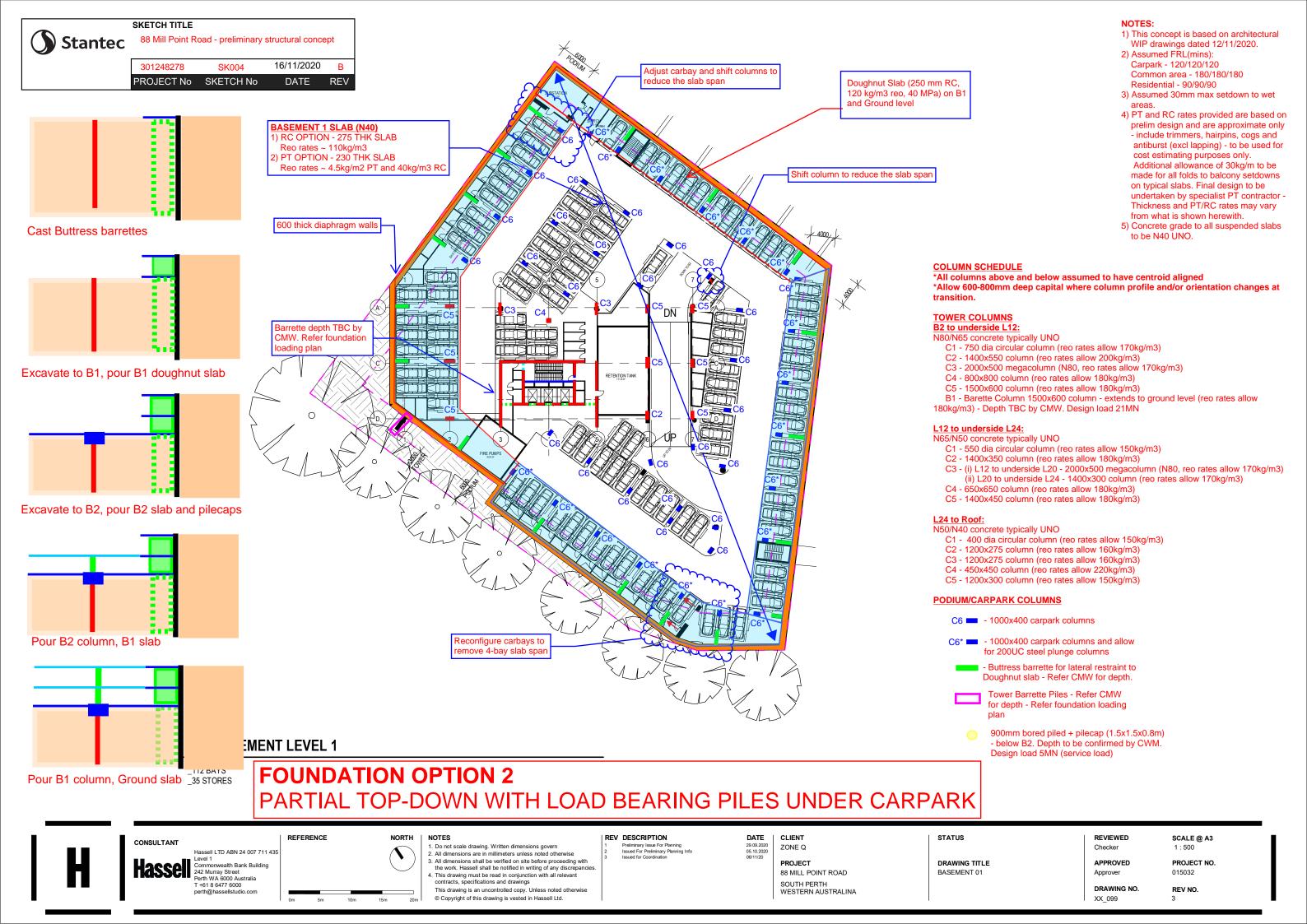


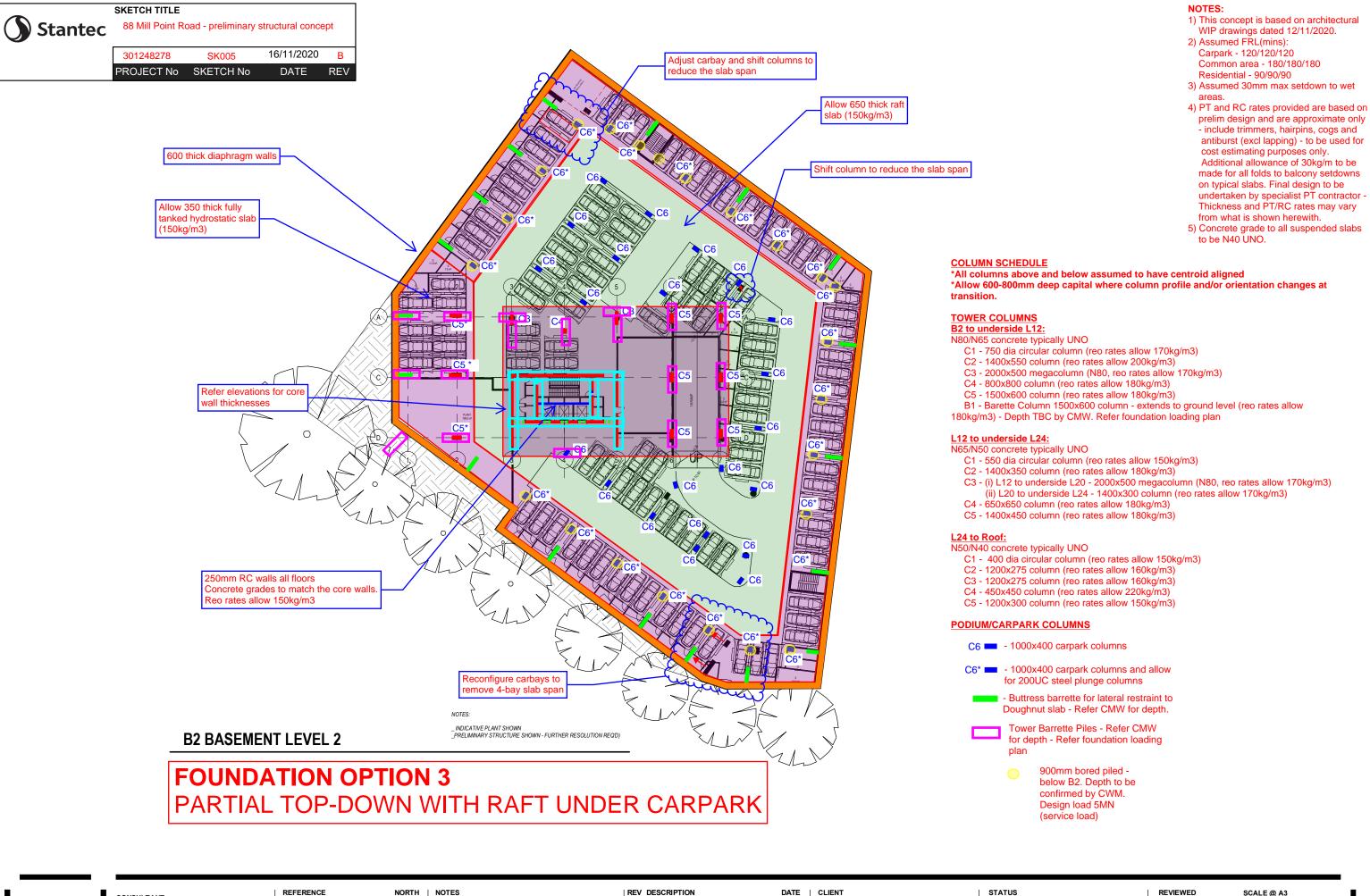
Preliminary Structural Concept

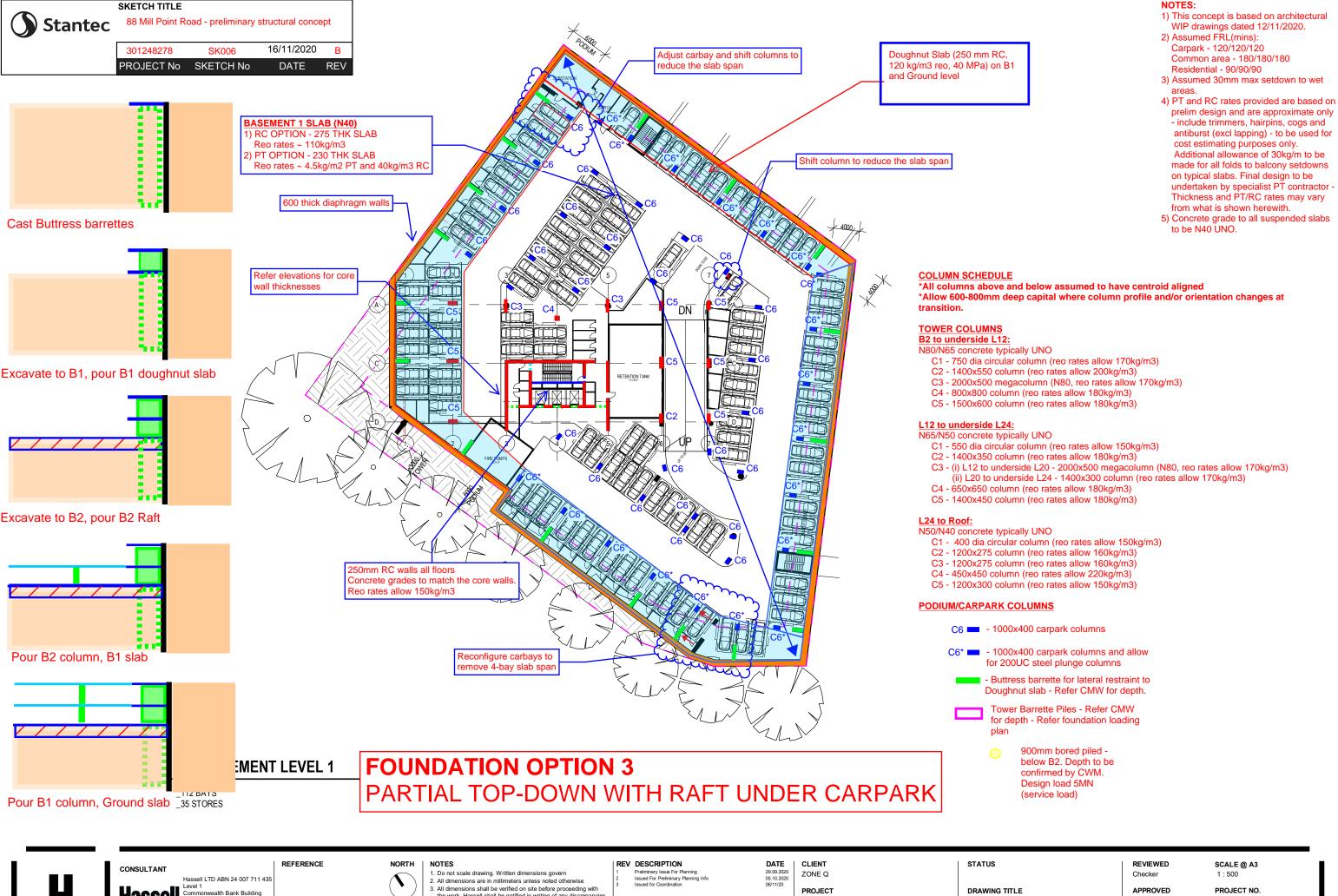

- DOCUMENTATION ACKNOWLEDGEMENTS:-


ALL PARTIES ACKNOWLEDGE AND AGREE THAT ANY DESIGN DOCUMENTS PROVIDED HEREWITH ARE CONCEPT LEVEL ONLY.

DOCUMENTS FOR ECI ESTIMATING PURPOSES ONLY AND MAY NOT REFLECT THE FULL SCOPE ULTIMATELY REFLECTED ON FINAL DRAWINGS. THE CLIENT AND /OR ECI CONTRACTOR IS RESPONSIBLE, THROUGH AS-REQUIRED INTERACTION WITH THE CONSULTANT, FOR INFORMING THEMSELVES OF THE DESIGN STATUS AS REFLECTED ON THE PARTIAL DOCUMENTS PRIOR TO FORMALIZING A PRICE ("DUE DILIGENCE PROCESS"). THE CLIENT AND /OR ECI CONTRACTOR MUST AFFORD THE CONSULTANT WITH THE OPPORTUNITY TO PROVIDE INSIGHT INTO THE DESIGN STATUS REFLECTED ON PARTIAL DOCUMENTS IF THE CLIENT AND /OR ECI CONTRACTOR IS TO SEEK TO RELY ON PRICING FROM SUCH DOCUMENTS. IT IS THEN THE CLIENT AND /OR ECI CONTRACTOR'S RESPONSIBILITY TO INCORPORATE CONTINGENCIES WITHIN THE FORMAL PRICE TO COMMERCIALLY MANAGE THE RISK ASSOCIATED WITH ANY INCOMPLETE AREAS AS DETERMINED DURING THE PRE-PRICING DUE DILIGENCE PROCESS. THE CONTINGENCIES ALLOWED SHALL I) REFLECT THE ECI CONTRACTOR'S INFORMED UNDERSTANDING OF THE STATUS OF PARTIAL DOCUMENTS FOLLOWING THE DUE-DILIGENCE PROCESS AND II) COMMERCIALLY MANAGE REASONABLE AND CONVENTIONAL COST OVER-RUN RISK BEYOND THIS STATUS.






SKETCH TITLE

Stantec

SKETCH TITLE

88 Mill Point Road - preliminary structural concept

16/11/2020

301248278 SK007 PROJECT No SKETCH No

DATE

REV

Tower Core: G=165000kN Q=30000kN

Ultimate base shear in Y direction = 14000kN Ultimate base moment about X axis = 640000kNm Ultimate base shear in X direction = 18000kN Ultimate base moment about Y axis = 571000kNm

G=14000kN G=13500kN G=7100kN Q=2000kN Q=2200kN Q=1100kN Ultimate compression = 30000kN G=15000kN Q=2500kN 0 G=18000kN Q=3200kN G=12600kN Q=2200kN G=12000kN Q=2000kN G=14000kN Q=2000kN Ultimate compression = 30000kN G=13500kN Q=2200kN G=7100kN Q=1100kN G=18000kN Q=3200kN G=15000kN Q=2500kN G=12000kN G=7000kN Q=2000kN Q=1100kN **FOUNDATION LOADS** _INDICATIVE PLANT SHOWN _PRELIMINARY STRUCTURE SHOWN - FURTHER RESOLUTION REQ'D)

_123 BAYS

SITE AREA = 4759sqm

_380sqn DEEP SOIL AREA ACHIEVED AT GROUND LEVEL & BELOW (8%)

49 STORES

SKETCH TITLE **Stantec** 88 Mill Point Road - structural concept memo 301248278 SK001 16/11/2020 PROJECT No SKETCH No DATE REV

NOTES:

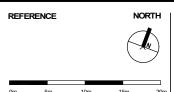
final layout.

Carpark columns (typical):

G=3000kN

Q=800kN

Allow the following preliminary loads


1) G = unfactored dead load

Q = unfactored live load

2) All loads shown are preliminary

and subject to change with the

CONSULTANT Hassell LTD ABN 24 007 711 435 Commonwealth Bank Building 242 Murray Street Perth WA 6000 Australia T +61 8 6477 6000

 Do not scale drawing. Written dimensions govern
 All dimensions are in millimeters unless noted otherwise 3. All dimensions shall be verified on site before proceeding with

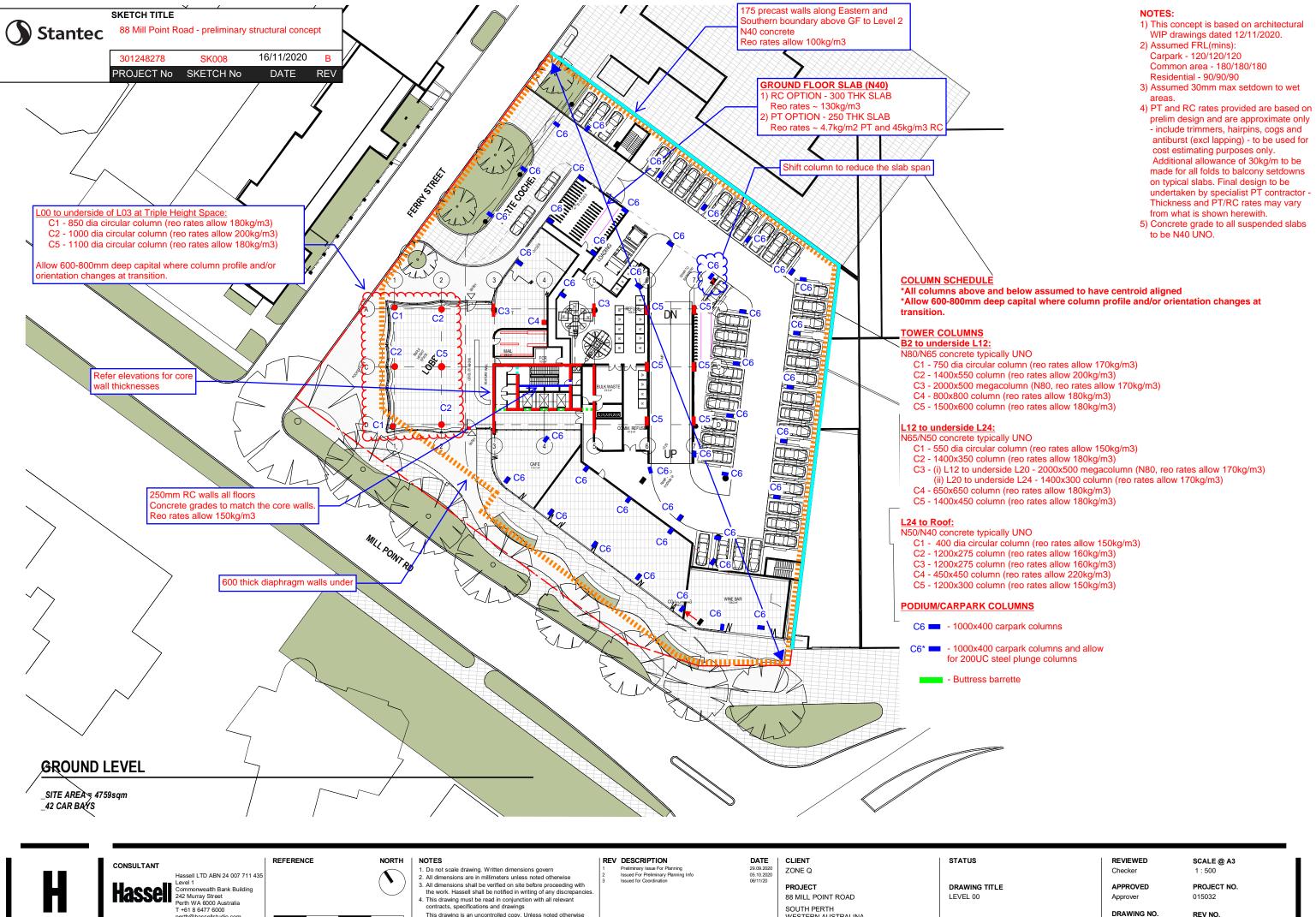
 All uniforms a shall be ventiled in size before preceding with work. Hassell shall be notified in writing of any discrepa
 This drawing must be read in conjunction with all relevant contracts, specifications and drawings This drawing is an uncontrolled copy. Unless noted otherwise

© Copyright of this drawing is vested in Hassell Ltd.

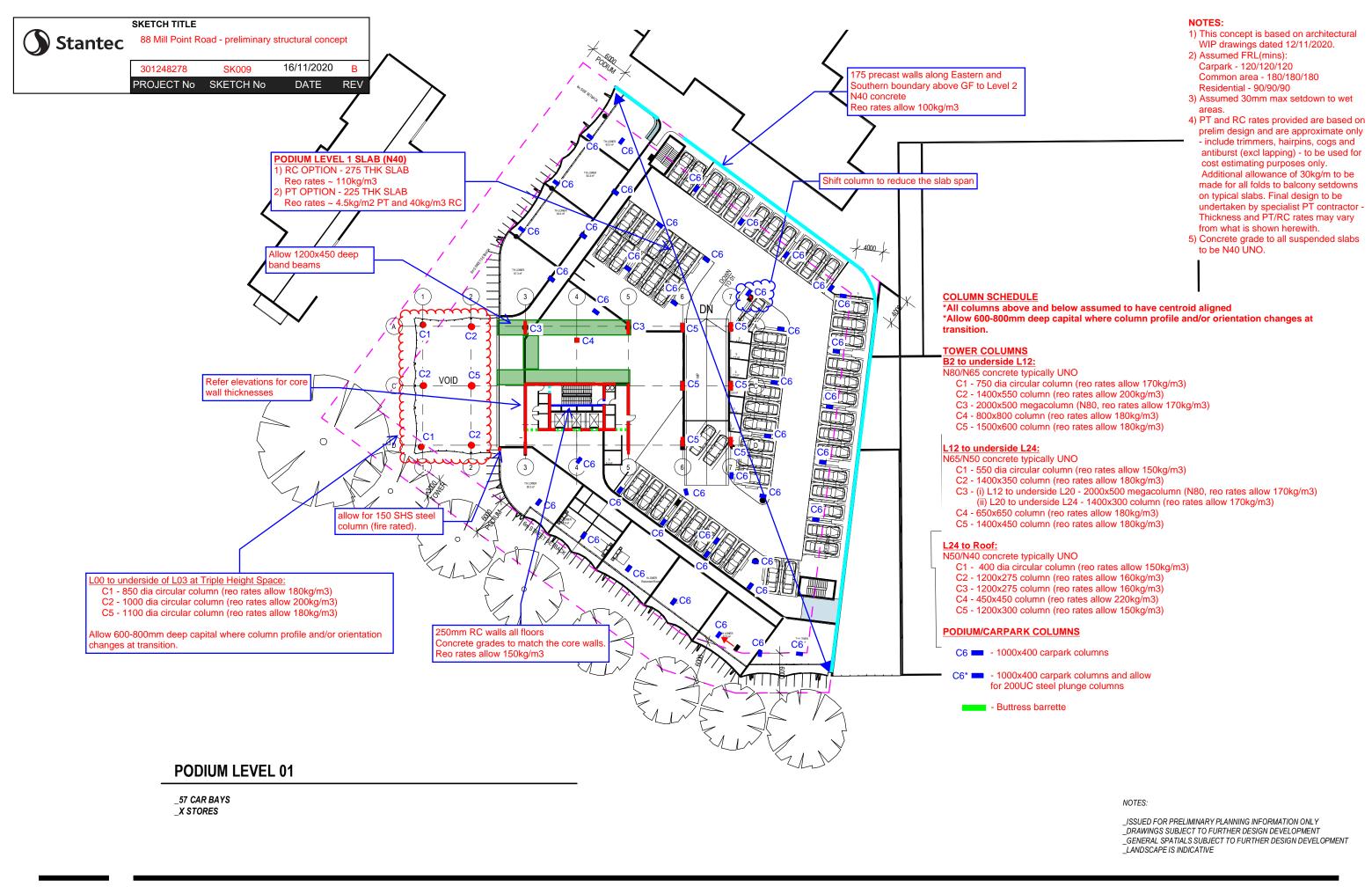
REV DESCRIPTION

CLIENT ZONE Q

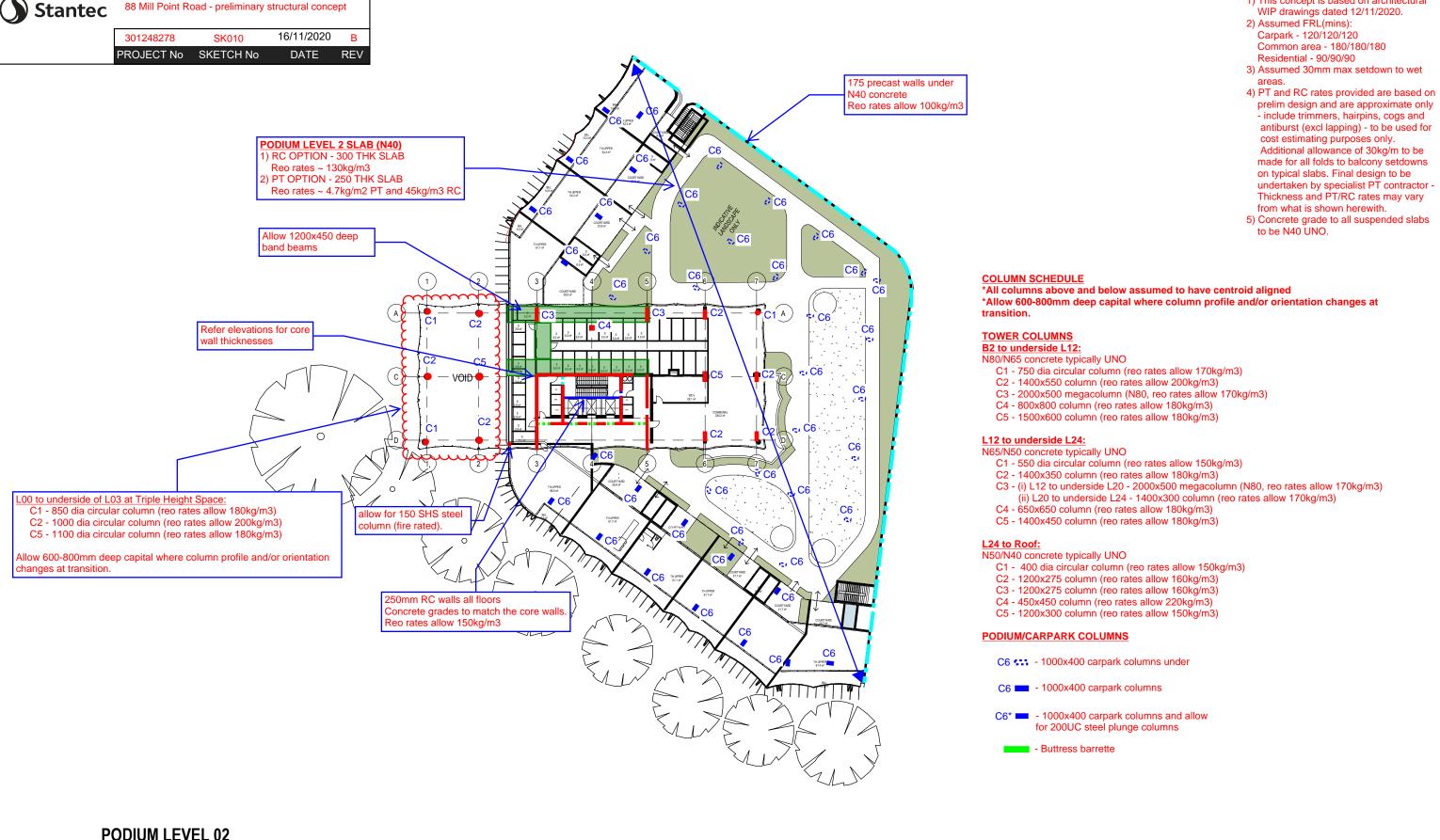
DATE


PROJECT 88 MILL POINT ROAD SOUTH PERTH WESTERN AUSTRALINA DRAWING TITLE BASEMENT 02

STATUS

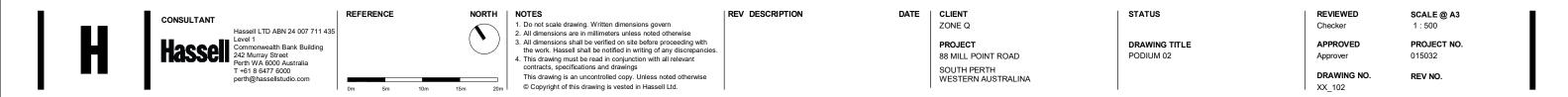

REVIEWED SCALE@A3 APPROVED PROJECT NO.

Approver DRAWING NO. XX_098


015032 REV NO.

This drawing is an uncontrolled copy. Unless noted otherwise REV NO. WESTERN AUSTRALINA © Copyright of this drawing is vested in Hassell Ltd XX 100

REFERENCE NORTH NOTES REV DESCRIPTION CLIENT STATUS REVIEWED SCALE @ A3 CONSULTANT Do not scale drawing. Written dimensions govern
 All dimensions are in millimeters unless noted otherwise Preliminary Issue For Planning Issued For Preliminary Planning Info 29.09.2020 05.10.2020 ZONE Q Checker Hassell LTD ABN 24 007 711 435 3. All dimensions shall be verified on site before proceeding with APPROVED PROJECT NO. PROJECT DRAWING TITLE Hasser wealth Bank Building the work. Hassell shall be notified in writing of any discrepa 4. This drawing must be read in conjunction with all relevant Commonwealth Bank Buil 242 Murray Street Perth WA 6000 Australia PODIUM 01 88 MILL POINT ROAD 015032 Approver contracts, specifications and drawings SOUTH PERTH T +61 8 6477 6000 DRAWING NO. This drawing is an uncontrolled copy. Unless noted otherwise REV NO. WESTERN AUSTRALINA © Copyright of this drawing is vested in Hassell Ltd.



1) This concept is based on architectural

1 ODION LEVEL

SKETCH TITLE

_33 STORES

DATE

REV

7250

2B2B

44.8 m²

11.8 m²

Refer elevations for core

8150

wall thicknesses

(2)

7250

2B2B

106.7 m²

44.7 m²

POOL LEVEL AND L25 TO PENTHOUSE

8150

52.8 m²

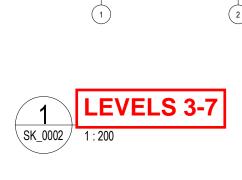
11.5 m²

4) PT and RC rates provided are based on prelim design and are approximate only - include trimmers, hairpins, cogs and antiburst (excl lapping) - to be used for cost estimating purposes only. Additional allowance of 30kg/m to be made for all folds to balcony setdowns on typical slabs. Final design to be undertaken by specialist PT contractor -Thickness and PT/RC rates may vary from what is shown herewith. 5) Concrete grade to all suspended slabs to be N40 UNO. TYPICAL SOFFIT STEP DETAIL AT BALCONIES FOR TYPICAL SLAB

1) This concept is based on architectural

3) Assumed 30mm max setdown to wet


WIP drawings dated 12/11/2020.


Common area - 180/180/180

2) Assumed FRL(mins):

Carpark - 120/120/120

Residential - 90/90/90

COLUMN SCHEDULE

11.5 m²

*All columns above and below assumed to have centroid aligned

*Allow 600-800mm deep capital where column profile and/or orientation changes at transition.

Typical soffit step at

10.3 m²

7750

250mm RC walls all floors

Reo rates allow 150kg/m3

Concrete grades to match the core walls.

balconies (typ.)

7750

TOWER COLUMNS

B2 to underside L12:

N80/N65 concrete typically UNO

- C1 750 dia circular column (reo rates allow 170kg/m3)
- C2 1400x550 column (reo rates allow 200kg/m3)
- C3 2000x500 megacolumn (N80, reo rates allow 170kg/m3)
- C4 800x800 column (reo rates allow 180kg/m3)
- C5 1500x600 column (reo rates allow 180kg/m3)

L12 to underside L24:

N65/N50 concrete typically UNO

- C1 550 dia circular column (reo rates allow 150kg/m3)
- C2 1400x350 column (reo rates allow 180kg/m3)
- C3 (i) L12 to underside L20 2000x500 megacolumn (N80, reo rates allow 170kg/m3) (ii) L20 to underside L24 - 1400x300 column (reo rates allow 170kg/m3)
- C4 650x650 column (reo rates allow 180kg/m3)
- C5 1400x450 column (reo rates allow 180kg/m3)

L24 to Roof:

N50/N40 concrete typically UNO

- C1 400 dia circular column (reo rates allow 150kg/m3)
- C2 1200x275 column (reo rates allow 160kg/m3)
- C3 1200x275 column (reo rates allow 160kg/m3)
- C4 450x450 column (reo rates allow 220kg/m3) C5 - 1200x300 column (reo rates allow 150kg/m3)

HEADER BEAMS SCHEDULE

9.6 m²

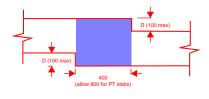
750mm deep header beam (typical on 3150mm high floors) 950mm deep header beam (typical on 3300mm high floors)

1050mm deep header beam (typical on 3150mm high floors) 1200mm deep header beam (typical on 3300mm high floors)

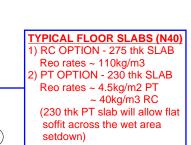
700mm deep header beam (typical on 3150mm high floors) 800mm deep header beam (typical on 3300mm high floors)

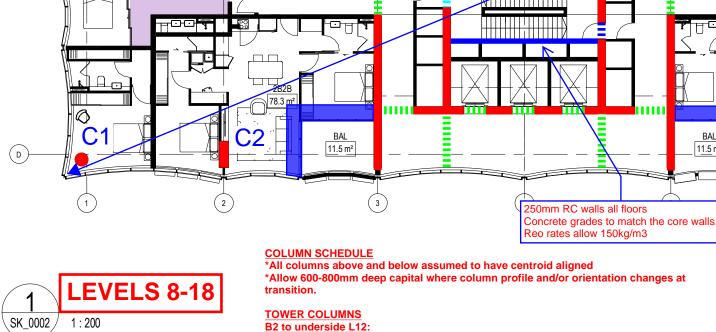
400mm deep zone has been allowed for services under these headers

PROJECT No SKETCH No


DATE

84.3 m


REV


POOL LEVEL AND L25 TO PENTHOUSE LEVELS - PENDING LATEST ARCHI PLANS

- 1) This concept is based on architectural WIP drawings dated 12/11/2020.
- 2) Assumed FRL(mins): Carpark - 120/120/120 Common area - 180/180/180 Residential - 90/90/90
- 3) Assumed 30mm max setdown to wet
- 4) PT and RC rates provided are based on prelim design and are approximate only - include trimmers, hairpins, cogs and antiburst (excl lapping) - to be used for cost estimating purposes only. Additional allowance of 30kg/m to be made for all folds to balcony setdowns on typical slabs. Final design to be undertaken by specialist PT contractor -Thickness and PT/RC rates may vary from what is shown herewith.
- 5) Concrete grade to all suspended slabs to be N40 UNO.

TYPICAL SOFFIT STEP DETAIL AT BALCONIES FOR TYPICAL SLAB

Refer elevations for

(2)

12.1 m²

core wall thicknesses

*Allow 600-800mm deep capital where column profile and/or orientation changes at

Typical soffit step at

BAL

12.0 m²

(5

98.0 m²

balconies (typ.)

(3)

98.3 m² ~~~

N80/N65 concrete typically UNO

C1 - 750 dia circular column (reo rates allow 170kg/m3)

C2 - 1400x550 column (reo rates allow 200kg/m3)

C3 - 2000x500 megacolumn (N80, reo rates allow 170kg/m3)

C4 - 800x800 column (reo rates allow 180kg/m3)

C5 - 1500x600 column (reo rates allow 180kg/m3)

L12 to underside L24:

N65/N50 concrete typically UNO

C1 - 550 dia circular column (reo rates allow 150kg/m3)

C2 - 1400x350 column (reo rates allow 180kg/m3)

C3 - (i) L12 to underside L20 - 2000x500 megacolumn (N80, reo rates allow 170kg/m3) (ii) L20 to underside L24 - 1400x300 column (reo rates allow 170kg/m3)

C4 - 650x650 column (reo rates allow 180kg/m3)

C5 - 1400x450 column (reo rates allow 180kg/m3)

L24 to Roof:

N50/N40 concrete typically UNO

C1 - 400 dia circular column (reo rates allow 150kg/m3)

C2 - 1200x275 column (reo rates allow 160kg/m3)

C3 - 1200x275 column (reo rates allow 160kg/m3)

C4 - 450x450 column (reo rates allow 220kg/m3) C5 - 1200x300 column (reo rates allow 150kg/m3)

REFERENCE CONSULTANT Hassell I TD ARN 24 007 711 435 evel 1 Hassel wealth Bank Building Commonwealth Bank Buil 242 Murray Street Perth WA 6000 Australia T +61 8 6477 6000

HEADER BEAMS SCHEDULE

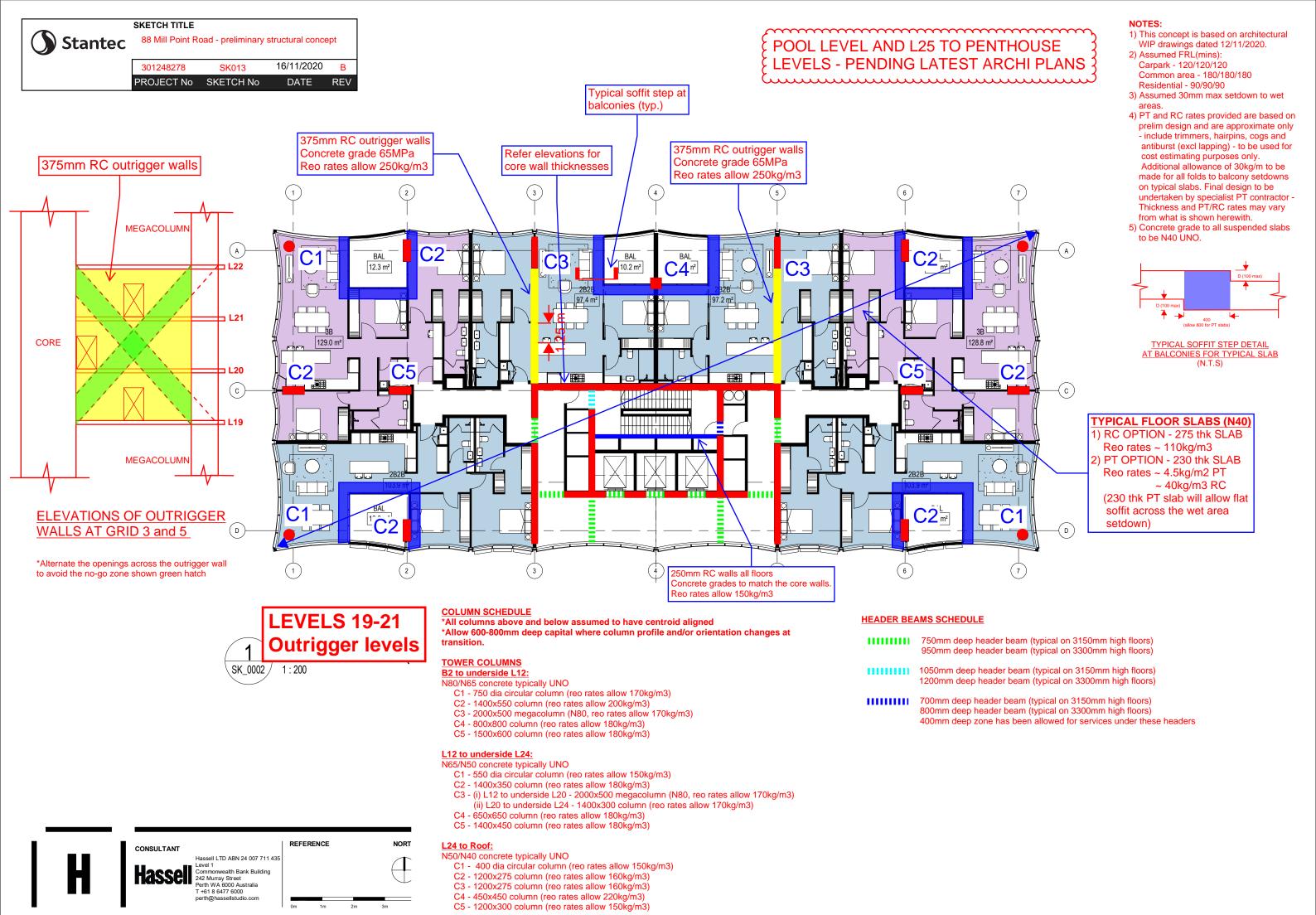
现

2B2B

11.5 m²

750mm deep header beam (typical on 3150mm high floors) 950mm deep header beam (typical on 3300mm high floors)

<u>a</u>


0

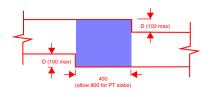
84.2 m²

1050mm deep header beam (typical on 3150mm high floors) 1200mm deep header beam (typical on 3300mm high floors)

700mm deep header beam (typical on 3150mm high floors) 800mm deep header beam (typical on 3300mm high floors)

400mm deep zone has been allowed for services under these headers

Stantec


SKETCH TITLE

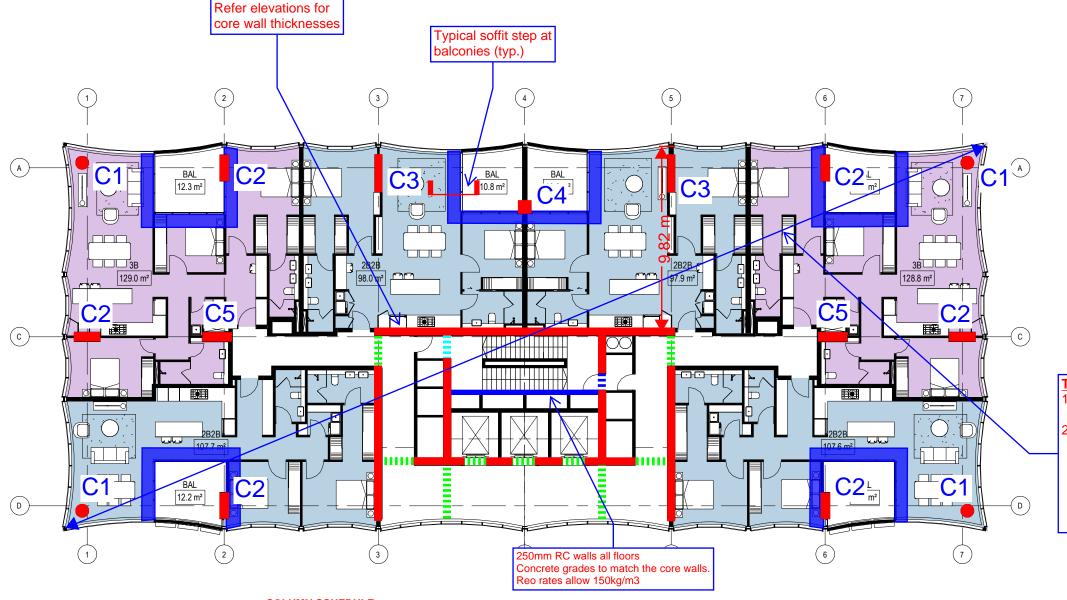
88 Mill Point Road - preliminary structural concept

301248278 16/11/2020 SK014

PROJECT No SKETCH No DATE REV POOL LEVEL AND L25 TO PENTHOUSE LEVELS - PENDING LATEST ARCHI PLANS

- 1) This concept is based on architectural WIP drawings dated 12/11/2020.
- 2) Assumed FRL(mins): Carpark - 120/120/120 Common area - 180/180/180 Residential - 90/90/90
- 3) Assumed 30mm max setdown to wet
- 4) PT and RC rates provided are based on prelim design and are approximate only - include trimmers, hairpins, cogs and antiburst (excl lapping) - to be used for cost estimating purposes only. Additional allowance of 30kg/m to be made for all folds to balcony setdowns on typical slabs. Final design to be undertaken by specialist PT contractor -Thickness and PT/RC rates may vary from what is shown herewith.
- 5) Concrete grade to all suspended slabs to be N40 UNO.

TYPICAL SOFFIT STEP DETAIL AT BALCONIES FOR TYPICAL SLAB


TYPICAL FLOOR SLABS (N40) 1) RC OPTION - 275 thk SLAB

Reo rates ~ 110kg/m3

2) PT OPTION - 230 thk SLAB Reo rates ~ 4.5kg/m2 PT

~ 40kg/m3 RC

(230 thk PT slab will allow flat soffit across the wet area setdown)

COLUMN SCHEDULE

*All columns above and below assumed to have centroid aligned

*Allow 600-800mm deep capital where column profile and/or orientation changes at transition.

TOWER COLUMNS

B2 to underside L12:

N80/N65 concrete typically UNO

C1 - 750 dia circular column (reo rates allow 170kg/m3)

C2 - 1400x550 column (reo rates allow 200kg/m3)

C3 - 2000x500 megacolumn (N80, reo rates allow 170kg/m3)

C4 - 800x800 column (reo rates allow 180kg/m3)

C5 - 1500x600 column (reo rates allow 180kg/m3)

L12 to underside L24:

N65/N50 concrete typically UNO

C1 - 550 dia circular column (reo rates allow 150kg/m3)

C2 - 1400x350 column (reo rates allow 180kg/m3)

C3 - (i) L12 to underside L20 - 2000x500 megacolumn (N80, reo rates allow 170kg/m3) (ii) L20 to underside L24 - 1400x300 column (reo rates allow 170kg/m3)

C4 - 650x650 column (reo rates allow 180kg/m3)

C5 - 1400x450 column (reo rates allow 180kg/m3)

L24 to Roof:

N50/N40 concrete typically UNO

C1 - 400 dia circular column (reo rates allow 150kg/m3)

C2 - 1200x275 column (reo rates allow 160kg/m3)

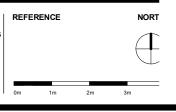
C3 - 1200x275 column (reo rates allow 160kg/m3)

C4 - 450x450 column (reo rates allow 220kg/m3) C5 - 1200x300 column (reo rates allow 150kg/m3)

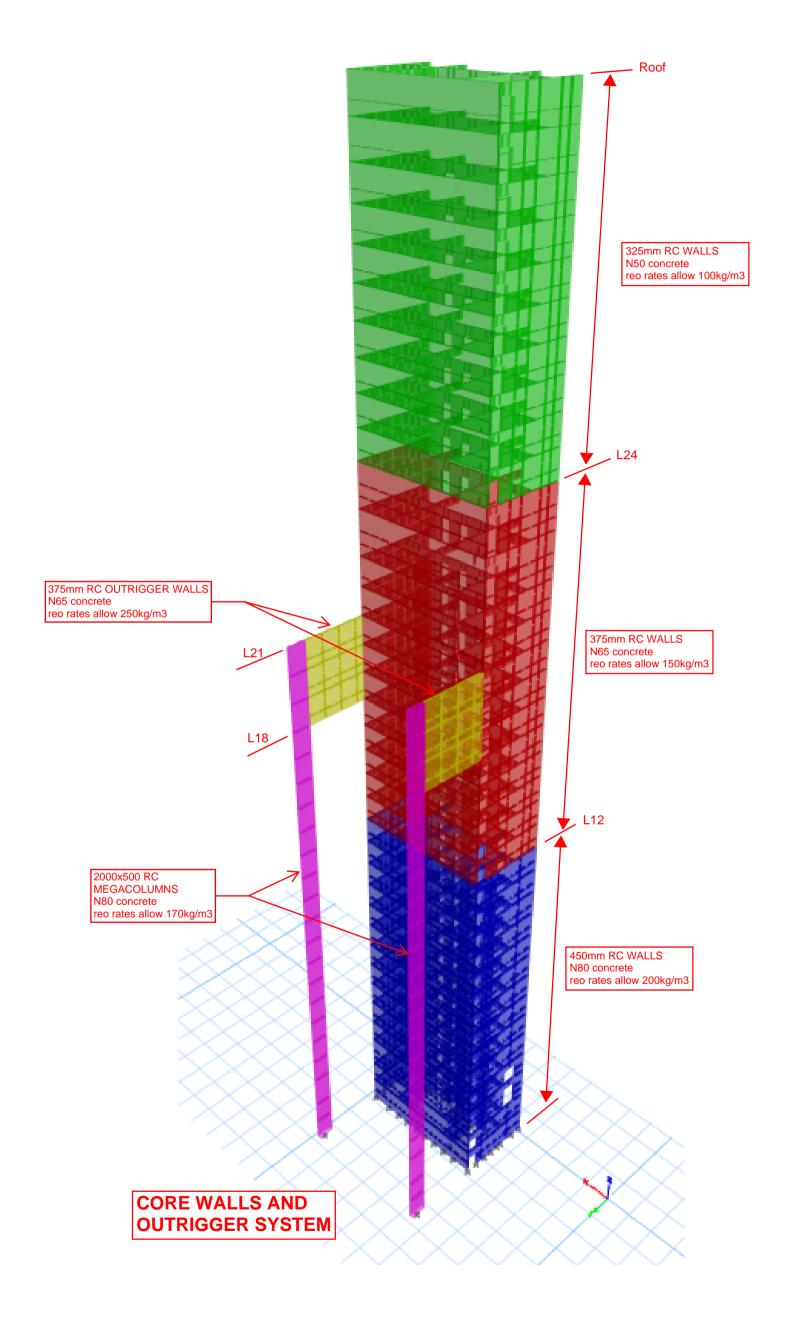
LEVELS 22-24 SK_0002 1:200

HEADER BEAMS SCHEDULE

750mm deep header beam (typical on 3150mm high floors) 950mm deep header beam (typical on 3300mm high floors)

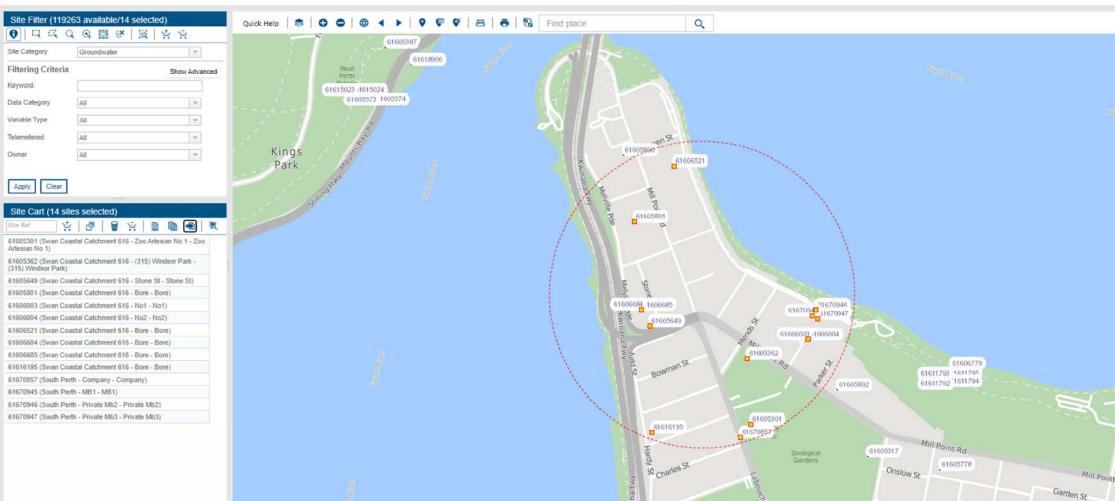

1050mm deep header beam (typical on 3150mm high floors) 1200mm deep header beam (typical on 3300mm high floors)

700mm deep header beam (typical on 3150mm high floors) 800mm deep header beam (typical on 3300mm high floors)


400mm deep zone has been allowed for services under these headers

CONSULTANT

Hassell I TD ARN 24 007 711 435 evel 1 wealth Bank Building Commonwealth Bank Buil 242 Murray Street Perth WA 6000 Australia T +61 8 6477 6000


Appendix B Water Information Reporting Data

61616308

Water Information Reporting

Longitude: 115.836, Latitude: -31.969 / Easting: 389975, Northing: 6462364, Zone: 50

Date: 08/12/

08/12/2020

Site reference 61605301 - Swan Coastal Catchment 616 - Zoo Artesian No 1 - Zoo Artesian No 1

Alternative Site References

Numbering System	Reference Code	Site Name	Short Name
AWRC	61605301	Swan Coastal Catchment 616 - Zoo Artesian No 1	Zoo Artesian No 1
WIN_ID	20028927		Zoo Artesian No 1
AQWAB	2034-2-SW-0021	SWAN COASTAL CATCHMENT 616 - ZOO ARTESIAN NO 1	Zoo Artesian No 1

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground				
Northing	6461689	Easting	391564	Zone	50				
Latitude	-31.975642582	Longitude	115.852323723	Spheroid	GDA94				
Thou250 Map Index	SH5014	Geographic Precision (+/- m)							
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon				
Catchment	SwanAvon_Lower Swan	Estuary		BOM Rainfall District	9 - Central Coast				
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth				
Surface Water Area	Swan River and Tributaries	an River and Tributaries Surface Water SubArea Swan/Canning Estuary GgStn Catchment Area(km2) N/A							
Site Comment	70,000 gpd; static head 46ft asl	, increased supply at 1837ft; flo		rl 18ft asl. Water at 1614ft flow 40, rincipal water bearing horizon 1837fes (1962) flow 180,000 gpd.					

Depth Measurement Points (Site reference: 61605301)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	5.49	AHD	(none)	30/06/1899	

Date: (

08/12/2020

Borehole Information (Site reference: 61605301)

Completed Date	30/06/1899	Drill Method Name	Unknown		
Owner Name	Perth Zoological Gardens	Drill Rig Name	Unknown		
Drill Company Name	Davis Hankinson Drilling	Total Construction Depth (mbGL)	0	Depth Drilled (mbGL)	567.08
Comments					

Casing (Site reference: 61605301)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)	·	Comments
0.000	0.000	Unknown	Unknown	Not applicable				0-79ft9in x 10in FJ, 0-342ft x 8in FJ, 0-488ft x 6in SJ, 1531-1534ft x 5in SJ, 1638-1688ft5in x 5in SJ, 1534-1845 x 4in FJ.

Fill - No Data Available

Aquifers - No Data Available

Date: 08/1

08/12/2020

<u>Lithology Log</u> (Site reference: 61605301)

From (mbGL)	To (mbGL)	Interpreted By	Substance	Lithological Description
0.000	22.860	Non geologistUnknown Org Type		Yellow drift sand.
22.860	47.850	Non geologistUnknown Org Type		Shell marl.
47.850	66.140	Non geologistUnknown Org Type		Calcareous shale.
66.140	146.300	Non geologistUnknown Org Type		Sand.
146.300	146.430	Non geologistUnknown Org Type		Very hard band of sandstone.
146.430	361.800	Non geologistUnknown Org Type		Shell marl.
361.800	491.950	Non geologistUnknown Org Type		Calcareous shale.
491.950	497.430	Non geologistUnknown Org Type		Mudstone.
497.430	512.370	Non geologistUnknown Org Type		Calcareous shale.
512.370	520.900	Non geologistUnknown Org Type		Mudstone.
520.900	533.400	Non geologistUnknown Org Type		Calcareous shale.
533.400	538.280	Non geologistUnknown Org Type		Dark clayey and sandy shales with shell fossils.
538.280	558.090	Non geologistUnknown Org Type		Mudstone.
558.090	562.970	Non geologistUnknown Org Type		Soft sandstone.
562.970	567.080	Non geologistUnknown Org Type		Sandstone with hard bands.

Date: 0

08/12/2020

Stratigraphy Log (Site reference: 61605301)

From (mbGL)	To (mbGL)	Interpreted By	Interpreted Date	Stratigraphy	Lithology1	Lithology2	Lithology3
0.000	22.860	Non geologist Unknown Org Type	23/09/1996	Quaternary	sand	(none)	(none)
22.860	47.850	Non geologist Unknown Org Type	23/09/1996	? Quaternary+Tertiary	marl	shells	(none)
47.850	298.700	Non geologist Unknown Org Type	23/09/1996	? Kings Park Fm	marl	shale	sand
298.700	451.100	Non geologist Unknown Org Type	23/09/1996	? Leederville Fm	marl	shale	(none)
451.100	502.920	Non geologist Unknown Org Type	23/09/1996	? South Perth Shl	shale	calcareous	mudstone
502.920	567.080	Non geologist Unknown Org Type	23/09/1996	? Gage Fm	shale	mudstone	sandstone

Date: 08/12/2020

Advanced Data Summary (Site reference: 61605301 WIN Site ID: 61605301)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement	Last Measurement	No of Measurements
61605301	WA-G- PRE1996AQWADATA	Pre 1996 AQWABase Data Capture	30/06/1899	30/06/1962	3

Readings by Data Category

Default Site Reference	Data Category	First Measurement	Last Measurement	No of Measurements
61605301	Water levels - discrete	30/06/1899	30/06/1962	3

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61605301	Water Level (discrete)	30/06/1899	30/06/1962	3

Date:

08/12/2020

Site reference 61605362 - Swan Coastal Catchment 616 - (315) Windsor Park - (315) Windsor Park

Alternative Site References

Numbering System	Reference Code	Site Name	Short Name
AWRC	61605362	Swan Coastal Catchment 616 - (315) Windsor Park	(315) Windsor Park
WIN_ID	20029007		(315) Windsor Park
AQWAB	2034-2-SW-0101	SWAN COASTAL CATCHMENT 616 - (315) WINDSOR PARK	(315) Windsor Park

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground
Northing	6461903	Easting	391550	Zone	50
Latitude	-31.973710951	Longitude	115.852199602	Spheroid	GDA94
Thou250 Map Index	SH5014	Geographic Precision (+/- m)			
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon
Catchment	SwanAvon_Lower Swan	Estuary		BOM Rainfall District	9 - Central Coast
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A
Site Comment	Elevation originally: approx. Cen	trifugal pump: well first 12ft. D	epth originally: nr and also record	ded as: well 8ft, bore 35ft, total deptl	n 43ft.

<u>Depth Measurement Points</u> (Site reference: 61605362)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	6.82	AHD	(none)	01/01/1900	

Date: 08/12

08/12/2020

Borehole Information (Site reference: 61605362)

Completed Date	1/01/1900	Drill Method Name	Unknown		
Owner Name	City of South Perth	Drill Rig Name	Unknown		
Drill Company Name	Unknown Company	Total Construction Depth (mbGL)	0	Depth Drilled (mbGL)	13.11
Comments					

Casing (Site reference: 61605362)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)	Aperture (mm)	Comments
0.000	0.000	Unknown	Unknown	Not applicable				21ft spear.

Fill - No Data Available

Aquifers - No Data Available

Lithology Log - No Data Available

Stratigraphy Log - No Data Available

Date: 08/12

08/12/2020

Advanced Data Summary (Site reference: 61605362 WIN Site ID: 61605362)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement	Last Measurement	No of Measurements
61605362	SG-G-BCPERTH	Bore Census - Perth - for AQWABase	22/09/1971	22/09/1971	7

Readings by Data Category

Default Site Reference	Data Category	First Measurement	Last Measurement	No of Measurements
61605362	Water quality indicators - discrete	22/09/1971	22/09/1971	7

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61605362	Inorganic metals	22/09/1971	22/09/1971	1
61605362	Physical	22/09/1971	22/09/1971	6

Date:

08/12/2020

Alternative Site References

Site reference 61605649 - Swan Coastal Catchment 616 - Stone St - Stone St

Numbering System	Reference Code	Site Name	Short Name
AWRC	61605649	Swan Coastal Catchment 616 - Stone St	Stone St
WIN_ID	20029340		Stone St
AQWAB	2034-2-SW-0434	SWAN COASTAL CATCHMENT 616 - STONE ST	Stone St

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground			
Northing	6462006	Easting	391230	Zone	50			
Latitude	-31.972751215	Longitude	115.848824979	Spheroid	GDA94			
Thou250 Map Index	SH5014	Geographic Precision (+/- m)						
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon			
Catchment	SwanAvon_Lower Swan	Estuary		BOM Rainfall District	9 - Central Coast			
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth			
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A			
Site Comment	Elevation recorded as: approx. F	Elevation recorded as: approx. Pumped 24 yielding 20 000 gph the 1st 11 hrs dropping to 10 700 gph for approx 3 hrs, increasing to 151 00 gph. Overall d/d approx						

Site Comment Elevation recorded as: approx. Pumped 24 yielding 20 000 gph the 1st 11 hrs dropping to 10 700 gph for approx 3 hrs, increasing to 151 00 gph. Overall d/d approx 1m. Salinity increased from 2400 mg/L at start of test to 5900 mg/L after 24 hours.

Depth Measurement Points (Site reference: 61605649)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	1.5	AHD	(none)	30/06/1975	

Date:

08/12/2020

Borehole Information (Site reference: 61605649)

Completed Date	30/06/1975	Drill Method Name	Unknown		
Owner Name	Department of Main Roads	Drill Rig Name	Unknown		
Drill Company Name	Unknown Company	Total Construction Depth (mbGL)	23.8	Depth Drilled (mbGL)	23.8
Comments	How pump tested: Pumped 24 hrs				

Casing (Site reference: 61605649)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)	
0.000	0.000	Unknown	Unknown	Not applicable			16.18 x 150mm
16.180	23.800	Inlet (screen)	Unknown	Screen			

Fill - No Data Available

Aquifers - No Data Available

Date: 0

08/12/2020

<u>Lithology Log</u> (Site reference: 61605649)

From (mbGL)	To (mbGL)	Interpreted By	Substance	Lithological Description
0.000	7.000	Non geologistUnknown Org Type		White sand, fine.
7.000	10.300	Non geologistUnknown Org Type		Clayey sand.
10.300	12.300	Non geologistUnknown Org Type		White clayey sand.
12.300	14.300	Non geologistUnknown Org Type		White clayey sand.
14.300	15.000	Non geologistUnknown Org Type		White clayey sand.
15.000	16.000	Non geologistUnknown Org Type		Fine yellow clayey sand.
16.000	16.300	Non geologistUnknown Org Type		Fine yellow clayey sand.
16.300	18.000	Non geologistUnknown Org Type		Fine yellow clayey sand.
18.000	18.300	Non geologistUnknown Org Type		Brown clayey sand.
18.300	19.300	Non geologistUnknown Org Type		Fine brown clayey sand.
19.300	20.000	Non geologistUnknown Org Type		Brown clayey sand.
20.000	21.000	Non geologistUnknown Org Type		Coffey rock.
21.000	21.300	Non geologistUnknown Org Type		Coarse clayey sand and coffey rock.
21.300	21.600	Non geologistUnknown Org Type		Coarse sand.
21.600	22.400	Non geologistUnknown Org Type		Coarse brown clay.
22.400	23.800	Non geologistUnknown Org Type		Not logged.

08/12/2020

Stratigraphy Log (Site reference: 61605649)

From (mbGL)	To (mbGL)	Interpreted By	Interpreted Date	Stratigraphy	Lithology1	Lithology2	Lithology3
0.000	21.000	Non geologist Unknown Org Type	3/09/1996	Quaternary+Tertiary	sand	clayey	coffee rock
21.000	22.400	Non geologist Unknown Org Type	3/09/1996	? Quaternary+Tertiary	coarse sand	clay	coffee rock
22.400	23.800	Non geologist Unknown Org Type	3/09/1996	Not Logged	(none)	(none)	(none)

Advanced Data Summary (Site reference: 61605649 WIN Site ID: 61605649)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement	Last Measurement	No of Measurements
61605649	WA-G- PRE1996AQWADATA	Pre 1996 AQWABase Data Capture	30/06/1975	30/06/1975	4

Readings by Data Category

Default Site Reference	Data Category	First Measurement	Last Measurement	No of Measurements
61605649	Water levels - discrete	30/06/1975	30/06/1975	3
61605649	Water quality indicators - discrete	30/06/1975	30/06/1975	1

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61605649	Physical	30/06/1975	30/06/1975	1
61605649	Water Level (discrete)	30/06/1975	30/06/1975	3

Site reference 61605801 - Swan Coastal Catchment 616 - Bore - Bore

Site Details Report

Date:

08/12/2020

Alternative Site References

Numbering System	Reference Code	Site Name	Short Name
AWRC	61605801	Swan Coastal Catchment 616 - Bore	Bore
WIN_ID	20029496		Bore
AQWAB	2034-2-SW-0590	SWAN COASTAL CATCHMENT 616 -	Bore

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground
Northing	6462345	Easting	391175	Zone	50
Latitude	-31.969688131	Longitude	115.848281169	Spheroid	GDA94
Thou250 Map Index	SH5014	Geographic Precision (+/- m)			
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon
Catchment	SwanAvon_Lower Swan	Estuary		BOM Rainfall District	9 - Central Coast
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A
Site Comment	Depth originally: 26ft, 4ft.				

Depth Measurement Points (Site reference: 61605801)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	0	NA	(none)	22/12/1977	

Date:

08/12/2020

Borehole Information (Site reference: 61605801)

Completed Date	22/12/1977	Drill Method Name	Unknown		
Owner Name	Freeway Hotel	Drill Rig Name	Unknown		
Drill Company Name	Hugall and Hoile	Total Construction Depth (mbGL)	7.92	Depth Drilled (mbGL)	7.92
Comments					

Casing (Site reference: 61605801)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)	Aperture (mm)	Comments
4.880	7.920	Inlet (screen)	Unknown	Unknown			0.760	

Fill - No Data Available

Aquifers - No Data Available

<u>Lithology Log</u> (Site reference: 61605801)

From (mbGL)	To (mbGL)	Interpreted By	Substance	Lithological Description
0.000	4.880	Non geologistUnknown Org Type		Fine-med. Light brown sand.
4.880	7.920	Non geologistUnknown Org Type		Medium white sand.

Stratigraphy Log (Site reference: 61605801)

From (mbGL)	To (mbGL)	Interpreted By	Interpreted Date	Stratigraphy	Lithology1	Lithology2	Lithology3
0.000	7.920	Non geologist Unknown Org Type	4/10/1996	Quaternary	sand	(none)	(none)

Date: 08/12/2020

Advanced Data Summary (Site reference: 61605801 WIN Site ID: 61605801)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement		No of Measurements
61605801	WA-G- PRE1996AQWADATA	Pre 1996 AQWABase Data Capture	22/12/1977	22/12/1977	1

Readings by Data Category

Default Site Reference	Data Category	First Measurement		No of Measurements
61605801	Water levels - discrete	22/12/1977	22/12/1977	1

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61605801	Water Level (discrete)	22/12/1977	22/12/1977	1

Site reference 61606003 - Swan Coastal Catchment 616 - No1 - No1

Site Details Report

Date:

08/12/2020

Alternative Site References

Numbering System	Reference Code	Site Name	Short Name
AWRC	61606003	Swan Coastal Catchment 616 - No1	No1
WIN_ID	20029712		No1
AQWAB	2034-2-SW-0806	SWAN COASTAL CATCHMENT 616 - BORE NO. 1	No1

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground
Northing		Easting		Zone	
Latitude	-31.973134651	Longitude	115.854312809	Spheroid	GDA94
Thou250 Map Index	SH5014	Geographic Precision (+/- m)			
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon
Catchment	SwanAvon_Lower Swan	Estuary		BOM Rainfall District	9 - Central Coast
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A
Site Comment	Developing hours: 2. Diam of b	ore : 4.5in.			

Depth Measurement Points (Site reference: 61606003)

Measurement Point Type	Elevation (m as per Datum Plane)	Datum	Measurement Method	Date	Comments
Ground level	0	NA	(none)	23/03/1978	

Date: 08/1

08/12/2020

Borehole Information (Site reference: 61606003)

Completed Date	23/03/1978	Drill Method Name	Unknown		
Owner Name	Darley Heights	Drill Rig Name	Unknown		
Drill Company Name	Western Irrigation Pty Ltd	Total Construction Depth (mbGL)	0	Depth Drilled (mbGL)	32
Comments					

Casing (Site reference: 61606003)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)	Aperture (mm)	Comments
0.000	0.000	Unknown	Unknown	Not applicable				Slot/perf/scr: length 5ft (cusil bronze), diam 4in, aperture 0.20in

Fill - No Data Available

Aquifers - No Data Available

<u>Lithology Log</u> (Site reference: 61606003)

From (mbGL)	To (mbGL)	Interpreted By	Substance	Lithological Description
0.000	10.670	Non geologistUnknown Org Type		Sand
10.670	32.000	Non geologistUnknown Org Type		Sand bars - small thick strata of clay

Stratigraphy Log (Site reference: 61606003)

From (mbGL)	To (mbGL)	Interpreted By	Interpreted Date	Stratigraphy	Lithology1	Lithology2	Lithology3
0.000	32.000	Non geologist Unknown Org Type	9/10/1996	Quaternary	sand	clay	(none)

Date: 08/12

08/12/2020

Advanced Data Summary (Site reference: 61606003 WIN Site ID: 61606003)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement		No of Measurements
61606003	WA-G- PRE1996AQWADATA	Pre 1996 AQWABase Data Capture	23/03/1978	23/03/1978	2

Readings by Data Category

Default Site Reference	Data Category	First Measurement		No of Measurements
61606003	Water levels - discrete	23/03/1978	23/03/1978	2

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61606003	Water Level (discrete)	23/03/1978	23/03/1978	2

Site reference 61606004 - Swan Coastal Catchment 616 - No2 - No2

Site Details Report

Date:

08/12/2020

Alternative Site References

Numbering System	Reference Code	Site Name	Short Name
AWRC	61606004	Swan Coastal Catchment 616 - No2	No2
WIN_ID	20029713		No2
AQWAB	2034-2-SW-0807	SWAN COASTAL CATCHMENT 616 - BORE NO. 2	No2

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground			
Northing	6461968	Easting	391748	Zone	50			
Latitude	-31.973143575	Longitude	115.854302115	Spheroid	GDA94			
Thou250 Map Index	SH5014	Geographic Precision (+/- m)						
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon			
Catchment	SwanAvon_Lower Swan	Estuary		BOM Rainfall District	9 - Central Coast			
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth			
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A			
Site Comment	Developing hours : 2. Diam of bore: 4.5in							

Depth Measurement Points (Site reference: 61606004)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	0	NA	(none)	23/03/1978	

Date:

08/12/2020

Borehole Information (Site reference: 61606004)

Completed Date	23/03/1978	Drill Method Name	Unknown		
Owner Name	Darley Heights	Drill Rig Name	Unknown		
Drill Company Name	Western Irrigation Pty Ltd	Total Construction Depth (mbGL)	0	Depth Drilled (mbGL)	21.34
Comments					

Casing (Site reference: 61606004)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)	Aperture (mm)	Comments
0.000	0.000	Unknown	Unknown	Not applicable				Slot/perf/scr: length 5ft (cusil bronze), diam 4in, aperture 0.20in

Fill - No Data Available

Aquifers - No Data Available

Lithology Log (Site reference: 61606004)

From (mbGL)	To (mbGL)	Interpreted By	Substance	Lithological Description
0.000	10.670	Non geologistUnknown Org Type		Yellow sand
10.670	12.190	Non geologistUnknown Org Type		Clay
12.190	21.340	Non geologistUnknown Org Type		Very coarse sand small clay bits and very thin clay bars

Stratigraphy Log (Site reference: 61606004)

From (mbGL)	To (mbGL)	Interpreted By	Interpreted Date	Stratigraphy	Lithology1	Lithology2	Lithology3
0.000	21.340	Non geologist Unknown Org Type	9/10/1996	Quaternary	coarse sand	sand	clay

Date: 08/12/2020

Advanced Data Summary (Site reference: 61606004 WIN Site ID: 61606004)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement		No of Measurements
61606004	WA-G- PRE1996AQWADATA	Pre 1996 AQWABase Data Capture	23/03/1978	23/03/1978	2

Readings by Data Category

Default Site Reference	Data Category	First Measurement	Last Measurement	No of Measurements
61606004	Water levels - discrete	23/03/1978	23/03/1978	2

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61606004	Water Level (discrete)	23/03/1978	23/03/1978	2

Site reference 61606521 - Swan Coastal Catchment 616 - Bore - Bore

Site Details Report

Date:

08/12/2020

Alternative Site References

 Numbering System
 Reference Code
 Site Name
 Short Name

 AWRC
 61606521
 Swan Coastal Catchment 616 - Bore
 Bore

 WIN_ID
 20030365
 Bore

 AQWAB
 2034-2-SW-1459
 SWAN COASTAL CATCHMENT 616 Bore

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground			
Northing	6462528	Easting	391303	Zone	50			
Latitude	-31.968049744	Longitude	115.849656189	Spheroid	GDA94			
Thou250 Map Index	SH5014	Geographic Precision (+/- m)						
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon			
Catchment	SwanAvon_Lower Swan	Estuary	Swan River	BOM Rainfall District	9 - Central Coast			
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth			
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A			
Site Comment	Quality also recorded as: 50.0. Supply originally recorded as; using 3 hp centrifugal approx 3500 gph.							

Depth Measurement Points (Site reference: 61606521)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	0	NA	(none)	05/05/1979	

Date:

08/12/2020

Borehole Information (Site reference: 61606521)

Completed Date	5/05/1979	Drill Method Name	Unknown			
Owner Name	Private Owner	Drill Rig Name	Unknown			
Drill Company Name	Water Well Reticulation	Total Construction Depth (mbGL)	0	Depth Drilled (mbGL)	11.58	
Comments						

Casing (Site reference: 61606521)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)	Aperture (mm)	Comments
0.000	0.000	Unknown	Unknown	Not applicable				No casing. PVC frame, s/s mesh - 10ft.

Fill - No Data Available

Aquifers - No Data Available

Lithology Log - No Data Available

Stratigraphy Log - No Data Available

Date: 08/12/2020

Advanced Data Summary (Site reference: 61606521 WIN Site ID: 61606521)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement	Last Measurement	No of Measurements
61606521	WA-G- PRE1996AQWADATA	Pre 1996 AQWABase Data Capture	5/05/1979	5/05/1979	3

Readings by Data Category

Default Site Reference	Data Category	First Measurement	Last Measurement	No of Measurements
61606521	Water levels - discrete	5/05/1979	5/05/1979	2
61606521	Water quality indicators - discrete	5/05/1979	5/05/1979	1

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61606521	Physical	5/05/1979	5/05/1979	1
61606521	Water Level (discrete)	5/05/1979	5/05/1979	2

Site reference 61606684 - Swan Coastal Catchment 616 - Bore - Bore

Site Details Report

Date:

08/12/2020

Alternative Site References

Numbering System	Reference Code	Site Name	Short Name
AWRC	61606684	Swan Coastal Catchment 616 - Bore	Bore
WIN_ID	20030585		Bore
AQWAB	2034-2-SW-1679	SWAN COASTAL CATCHMENT 616 -	Bore

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground		
Northing	6462059	Easting	391201	Zone	50		
Latitude	-31.972270367	Longitude	115.848524076	Spheroid	GDA94		
Thou250 Map Index	SH5014	Geographic Precision (+/- m)					
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon		
Catchment	SwanAvon_Lower Swan	Estuary		BOM Rainfall District	9 - Central Coast		
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth		
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A		
Site Comment Drilled: in progress. Depth originally: 33ft, 32ft. Quality originally: 32.3ft - 3550; 33ft7 = 2600. Rec by: jmw.							

Depth Measurement Points (Site reference: 61606684)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	0	NA	(none)	01/01/1900	

Date:

08/12/2020

Borehole Information (Site reference: 61606684)

Completed Date	1/01/1900	Drill Method Name	Unknown			
Owner Name	Private Owner	Drill Rig Name	Unknown			
Drill Company Name	Private Owner	Total Construction Depth (mbGL)	0	Depth Drilled (mbGL)	0	
Comments						

Casing (Site reference: 61606684)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)	Aperture (mm)	
0.000	0.000	Unknown	Unknown	Not applicable				6in; 6in PVC slotted 5ft

Fill - No Data Available

Aquifers - No Data Available

Lithology Log - No Data Available

Stratigraphy Log - No Data Available

Date: 08/12/2020

Advanced Data Summary (Site reference: 61606684 WIN Site ID: 61606684)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement	Last Measurement	No of Measurements
61606684	WA-G- PRE1996AQWADATA	Pre 1996 AQWABase Data Capture	1/01/1900	1/01/1900	2

Readings by Data Category

Default Site Reference	Data Category	First Measurement		No of Measurements
61606684	Water levels - discrete	1/01/1900	1/01/1900	2

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61606684	Water Level (discrete)	1/01/1900	1/01/1900	2

Site reference 61606685 - Swan Coastal Catchment 616 - Bore - Bore

Site Details Report

Date:

08/12/2020

Alternative Site References

 Numbering System
 Reference Code
 Site Name
 Short Name

 AWRC
 61606685
 Swan Coastal Catchment 616 - Bore
 Bore

 WIN_ID
 20030586
 Bore

 AQWAB
 2034-2-SW-1680
 SWAN COASTAL CATCHMENT 616 Bore

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground		
Northing	6462058	Easting	391201	Zone	50		
Latitude	-31.972279387	Longitude	115.848523963	Spheroid	GDA94		
Thou250 Map Index	SH5014	Geographic Precision (+/- m)					
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon		
Catchment	SwanAvon_Lower Swan	Estuary		BOM Rainfall District	9 - Central Coast		
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth		
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A		
Site Comment	nt Swl originally: 4-5ft. Tds also recorded as: 3.4 ms/cm. Rec by: sl martin.						

Depth Measurement Points (Site reference: 61606685)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	0	NA	(none)	07/04/1984	

Date:

08/12/2020

Borehole Information (Site reference: 61606685)

Completed Date	7/04/1984	Drill Method Name	Unknown		
Owner Name	Private Owner	Drill Rig Name	Unknown		
Drill Company Name	Private Owner	Total Construction Depth (mbGL)	0	Depth Drilled (mbGL)	9.14
Comments					

Casing (Site reference: 61606685)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)	
0.000	0.000	Unknown	Unknown	Not applicable			6in; slot/perf/scrn: 5ft.

Fill - No Data Available

Aquifers - No Data Available

Lithology Log - No Data Available

Stratigraphy Log - No Data Available

Date: 08/12/2020

Advanced Data Summary (Site reference: 61606685 WIN Site ID: 61606685)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement		No of Measurements
61606685	WA-G- PRE1996AQWADATA	Pre 1996 AQWABase Data Capture	7/04/1984	7/04/1984	1

Readings by Data Category

Default Site Reference	Data Category	First Measurement	_0.01	No of Measurements
61606685	Water quality indicators - discrete	7/04/1984	7/04/1984	1

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61606685	Physical	7/04/1984	7/04/1984	1

Site reference 61616195 - Swan Coastal Catchment 616 - Bore - Bore

Site Details Report

Date:

08/12/2020

Alternative Site References

Numbering System	Reference Code	Site Name	Short Name
AWRC	61616195	Swan Coastal Catchment 616 - Bore	Bore
WIN_ID	20029928		Bore
AQWAB	2034-2-SW-1022	SWAN COASTAL CATCHMENT 616 -	Bore

General Details

Site Type	Groundwater	Sub Type	Unknown	Site Geofeature	Ground
Northing	6461660	Easting	391240	Zone	50
Latitude	-31.975873114	Longitude	115.848891835	Spheroid	GDA94
Thou250 Map Index	SH5014	Geographic Precision (+/- m)			
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon
Catchment	SwanAvon_Lower Swan	Estuary		BOM Rainfall District	9 - Central Coast
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A
Site Comment	Rec by: tehnas.				

Depth Measurement Points (Site reference: 61616195)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	0	NA	(none)	01/01/1900	

Date:

08/12/2020

Borehole Information (Site reference: 61616195)

Completed Date		Drill Method Name	Unknown		
Owner Name	Bey Investments Pty Ltd	Drill Rig Name	Unknown		
Drill Company Name	Unknown Company	Total Construction Depth (mbGL)	0	Depth Drilled (mbGL)	0
Comments					

Casing - No Data Available

Fill - No Data Available

Aquifers - No Data Available

Lithology Log - No Data Available

Stratigraphy Log - No Data Available

Advanced Data Summary (Site reference: 61616195 WIN Site ID: 61616195)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement	Last Measurement	No of Measurements
61616195	WA-G- PRE1996AQWADATA	Pre 1996 AQWABase Data Capture	1/01/1900	1/01/1900	1

Readings by Data Category

Default Site Reference	Data Category	First Measurement		No of Measurements
61616195	Water quality indicators - discrete	1/01/1900	1/01/1900	1

Readings By Variable Type

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61616195	Physical	1/01/1900	1/01/1900	1

Date:

08/12/2020

Site reference 61670857 - South Perth - Company - Company

Alternative Site References

Numbering System	Reference Code	Site Name	Short Name
AWRC	61670857	South Perth - Company	Company
WIN_ID	23052662		Company

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground
Northing	6461647	Easting	391530	Zone	50
Latitude	-31.976017949	Longitude	115.851959384	Spheroid	GDA94
Thou250 Map Index	SH5014	Geographic Precision (+/- m)			
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon
Catchment	SwanAvon_Lower Swan	Estuary		BOM Rainfall District	9 - Central Coast
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A
Site Comment Richardson Park Replacement Bore					

Depth Measurement Points (Site reference: 61670857)

Measurement Point Type	Elevation (m as per Datum Plane)	Datum	Measurement Method	Date	Comments
Ground level	0	GL	Unknown	09/05/2008	

Drilling - No Data Available

Date: 08

08/12/2020

Borehole Information (Site reference: 61670857)

Completed Date	9/05/2008	Drill Method Name	See Comment		
Owner Name	City of South Perth	Drill Rig Name	Unknown		
Drill Company Name	RBM Drilling	Total Construction Depth (mbGL)	23	Depth Drilled (mbGL)	23
Comments	Method: Rotary mud How pump tested: Submersible				

Casing (Site reference: 61670857)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)	Aperture (mm)	
0.000	17.000	Casing	PVC - Class 12	Not applicable	203.000			
17.000	23.000	Inlet (screen)	Stainless St 304	Screen	203.000		0.500	

Fill (Site reference: 61670857)

From (mbGL)	To (mbGL)	Fill Type	Material Type	Fill Volume (m3)	Grain Size (mm)
0.000	23.000	Annular Fill	Gravel		

Aquifers (Site reference: 61670857)

Aquifer Name	Depth From/To (mbGL)	Comments
Reported Aquifer	-	Reported aquifer: Perth-Superficial Swan

Date: 08/12

08/12/2020

<u>Lithology Log</u> (Site reference: 61670857)

From (mbGL)	To (mbGL)	Interpreted By	Substance	Lithological Description
0.000	15.000	Driller	Sand	Sand; white; fine
15.000	16.000	Driller	Clay	Clay; orange
16.000	17.000	Driller	Clay	Clay; grey to black
17.000	23.000	Driller	Sand	Sand; cloured; fine to medium

Stratigraphy Log - No Data Available

Advanced Data Summary (Site reference: 61670857 WIN Site ID: 61670857)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement	Last Measurement	No of Measurements
61670857	SG-G-PRCACSFORM2	PRCACS Form 2 & 2A Data Capture	9/05/2008	9/05/2008	1
61670857	SG-G-PRCACSFORM2	PRCACS Form 2 & 2A Data Capture	9/05/2008	9/05/2008	3

Readings by Data Category

Default Site Reference	Data Category	First Measurement	Last Measurement	No of Measurements
61670857	Water levels - discrete	9/05/2008	9/05/2008	1
61670857	Water quality indicators - discrete	9/05/2008	9/05/2008	3

Readings By Variable Type

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61670857	Physical	9/05/2008	9/05/2008	3
61670857	Water Level (discrete)	9/05/2008	9/05/2008	1

Date: (

08/12/2020

Site reference 61670945 - South Perth - MB1 - MB1

Alternative Site References

Numbering System	Reference Code	Site Name	Short Name
AWRC	61670945	South Perth - MB1	MB1
WIN_ID	23052949		MB1

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground
Northing	6462045	Easting	391760	Zone	50
Latitude	-31.972449966	Longitude	115.854437872	Spheroid	GDA94
Thou250 Map Index	SH5014	Geographic Precision (+/- m)			
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon
Catchment	SwanAvon_Lower Swan	Estuary	Swan River	BOM Rainfall District	9 - Central Coast
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A
Site Comment					

Depth Measurement Points (Site reference: 61670945)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	0	GL	Unknown	08/10/2009	

<u>Drilling</u> (Site reference: 61670945)

From (mbGL)	To (mbGL)	Diameter (mm)	Fluid Name
0.000	7.500		Unknown

Date:

08/12/2020

Borehole Information (Site reference: 61670945)

Completed Date	8/10/2009	Drill Method Name	See Comment		
Owner Name	Private Owner	Drill Rig Name	Unknown		
Drill Company Name	Direct Push Probing	Total Construction Depth (mbGL)	7.5	Depth Drilled (mbGL)	7.5
Comments	Method: Auger				

Casing (Site reference: 61670945)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)		Comments
0.000	1.500	Casing	PVC	Not applicable	44.000	50		
1.500	7.500	Inlet (screen)	Unknown	Slotted		50	0.500	

Fill (Site reference: 61670945)

From (mbGL)	To (mbGL)	Fill Type	Material Type	Fill Volume (m3)	Grain Size (mm)
1.500	7.500	Annular Fill	Gravel		
0.300	1.200	Annular Fill	Unknown		
1.200	1.500	Seal	Bentonite		

Aquifers (Site reference: 61670945)

Aquifer Name	Depth From/To (mbGL)	Comments
Reported Aquifer	-	Reported aquifer: Perth-Superficial Swan

Date: 08/

08/12/2020

<u>Lithology Log</u> (Site reference: 61670945)

From (mbGL)	To (mbGL)	Interpreted By	Substance	Lithological Description
0.000	0.800	Driller	Sand	Sand; fine; light brown; well sorted; subround; subspherical; loose
0.800	1.200	Driller	Sand	Sand; medium; greyish brown; well sorted; subround; subspherical; loose
1.200	1.600	Driller	Clay	Clay; sandy; very dark grey; organic; with sulphur odour
1.600	2.400	Driller	Sand	Sand; medium; grey; well sorted; subround to round; subspherical; loose
2.400	2.800	Driller	Sand	Sand; fine to medium; brownish pale yellow; subround; subspherical; low dense
2.800	3.400	Driller	Sand	Sand; fine with clay; light grey; well sorted; round; spheric; low dense
3.400	5.500	Driller	Sand	Sand; fine to medium; brownish pale yellow; subround; subspherical; dense
5.500	6.000	Driller	Sand	Sand; clayey; medium; brownish yellow to light red; dense; medium plasticity
6.000	7.500	Driller	Unknown	Not sampled past 6m

Stratigraphy Log - No Data Available

Date: 08/12/2020

Advanced Data Summary (Site reference: 61670945 WIN Site ID: 61670945)

Readings by Project

Default Site Reference	Project Code	Project Name	First Measurement		No of Measurements
61670945	SG-G-PRCACSFORM2	PRCACS Form 2 & 2A Data Capture	8/10/2009	8/10/2009	1
61670945	SG-G-PRCACSFORM2	PRCACS Form 2 & 2A Data Capture	8/10/2009	8/10/2009	3

Readings by Data Category

Default Site Reference	Data Category	First Measurement	Last Measurement	No of Measurements
61670945	Water levels - discrete	8/10/2009	8/10/2009	1
61670945	Water quality indicators - discrete	8/10/2009	8/10/2009	3

Readings By Variable Type

Default Site Reference	Variable Type	First Measurement	Last Measurement	No of Measurements
61670945	Physical	8/10/2009	8/10/2009	3
61670945	Water Level (discrete)	8/10/2009	8/10/2009	1

Site reference 61670946 - South Perth - Private Mb2 - Private Mb2

Site Details Report

Date:

08/12/2020

Alternative Site References

Numbering System	Reference Code	Site Name	Short Name
AWRC	61670946	South Perth - Private Mb2	Private Mb2
WIN_ID	23052950		Private Mb2

General Details

Concrai Dotalio					
Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground
Northing	6462064	Easting	391773	Zone	50
Latitude	-31.972279826	Longitude	115.854577563	Spheroid	GDA94
Thou250 Map Index	SH5014	Geographic Precision (+/- m)			
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon
Catchment	SwanAvon_Lower Swan	Estuary	Swan River	BOM Rainfall District	9 - Central Coast
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A
Site Comment					

Depth Measurement Points (Site reference: 61670946)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	0	GL	Unknown	08/10/2009	

<u>Drilling</u> (Site reference: 61670946)

From (mbGL)	To (mbGL)	Diameter (mm)	Fluid Name
0.000	7.500		Unknown

Date:

08/12/2020

Borehole Information (Site reference: 61670946)

Completed Date	8/10/2009	Drill Method Name	See Comment		
Owner Name	Private Owner	Drill Rig Name	Unknown		
Drill Company Name	Direct Push Probing	Total Construction Depth (mbGL)	7.5	Depth Drilled (mbGL)	7.5
Comments	Method: Auger				

Casing (Site reference: 61670946)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)	Aperture (mm)	Comments
0.000	1.500	Casing	PVC	Not applicable	44.000	50		
1.500	7.500	Inlet (screen)	PVC	Slotted			0.500	

Fill (Site reference: 61670946)

From (mbGL)	To (mbGL)	Fill Type	Material Type	Fill Volume (m3)	Grain Size (mm)
1.500	7.500	Annular Fill	Gravel		
0.300	1.200	Annular Fill	Unknown		
1.200	1.500	Seal	Bentonite		

Aquifers (Site reference: 61670946)

Aquifer Name	Depth From/To (mbGL)	Comments
Reported Aquifer	-	Reported aquifer: Perth-Superficial Swan

Date: 08/1

08/12/2020

<u>Lithology Log</u> (Site reference: 61670946)

From (mbGL)	To (mbGL)	Interpreted By	Substance	Lithological Description
0.000	1.200	Driller	Sand	Sand; fine; light brown; well sorted; subround; subspherical; loose
1.200	1.500	Driller	Clay	Clay; sandy; very dark grey; organic; with sulphur odour
1.500	2.000	Driller	Sand	Sand; clayey medium; grey; dense; well sorted; subangular to subround
2.000	2.500	Driller	Sand	Sand; medium; grey; well sorted; subround to round; subspherical; loose
2.500	4.200	Driller	Sand	Sand; fine to medium; white; well sorted; subround; spheric; low dense
4.200	6.000	Driller	Sand	Sand; fine to medium; brownish pale yellow; well sorted; low dense; subround; medium sphericity; gets dense and clayey about 5.8m
6.000	7.500	Driller	Unknown	No sampling beyond 6m

Stratigraphy Log - No Data Available

Advanced Data Summary - No Data Available

Site reference 61670947 - South Perth - Private Mb3 - Private Mb3

Site Details Report

Date:

08/12/2020

Alternative Site References

Numbering System	Reference Code	Site Name	Short Name
AWRC	61670947	South Perth - Private Mb3	Private Mb3
WIN_ID	23052951		Private Mb3

General Details

Site Type	Groundwater	Sub Type	Bore or Well	Site Geofeature	Ground
Northing	6462035	Easting	391778	Zone	50
Latitude	-31.972541885	Longitude	115.854627222	Spheroid	GDA94
Thou250 Map Index	SH5014	Geographic Precision (+/- m)			
Local Govt Authority	CITY OF SOUTH PERTH	Locality	SOUTH PERTH	DWER Region	Swan-Avon
Catchment	SwanAvon_Lower Swan	Estuary	Swan River	BOM Rainfall District	9 - Central Coast
River Basin	616 - Swan Coastal	Groundwater Area	Perth	Groundwater Province	Perth
Surface Water Area	Swan River and Tributaries	Surface Water SubArea	Swan/Canning Estuary	GgStn Catchment Area(km2)	N/A
Site Comment					

Depth Measurement Points (Site reference: 61670947)

Measurement Point Type	Elevation (m as per Datum Plane)		Measurement Method	Date	Comments
Ground level	0	GL	Unknown	08/10/2009	

<u>Drilling</u> (Site reference: 61670947)

From (mbGL)	To (mbGL)	Diameter (mm)	Fluid Name
0.000	7.500		Unknown

Date: (

08/12/2020

Borehole Information (Site reference: 61670947)

Completed Date	8/10/2009 Drill Method Name See Comment										
Owner Name	Private Owner	Drill Rig Name	Unknown	'n							
Drill Company Name	Direct Push Probing	Total Construction Depth (mbGL)	7.5	Depth Drilled 7.5 (mbGL)							
Comments	Method: Auger										

Casing (Site reference: 61670947)

From (mbGL)	To (mbGL)	Element	Material	Inlet Type	Inside Dia. (mm)	Outside Dia. (mm)		Comments
0.000	1.500	Casing	PVC	Not applicable	44.000	50		
1.500	7.500	Inlet (screen)	PVC	Slotted		50	0.500	

Fill (Site reference: 61670947)

From (mbGL)	To (mbGL)	Fill Type	Material Type	Fill Volume (m3)	Grain Size (mm)
1.500	7.500	Annular Fill	Gravel		
0.300	1.200	Annular Fill	Unknown		
1.200	1.500	Seal	Bentonite		

Aquifers (Site reference: 61670947)

Aquifer Name	Depth From/To (mbGL)	Comments
Reported Aquifer	-	Reported aquifer: Perth-Superficial Swan

Date: 08/12/2020

<u>Lithology Log</u> (Site reference: 61670947)

From (mbGL)	To (mbGL)	Interpreted By	Substance	Lithological Description
0.000	0.400	Driller	Sand	Sand; fine; light brown; well sorted; subround; subspherical; loose
0.400	1.200	Driller	Sand	Sand; medium; light grey; well sorted; round; spheric; loose
1.200	1.400	Driller	Clay	Clay; sandy; very dark grey; organic; with sulphur odour
1.400	1.600	Driller	Sand	Sand; clayey medium; brown; well sorted; round; spheric; loose
1.600	2.500	Driller	Sand	Sand; medium; grey; well sorted; subround to round; subspherical; loose
2.500	4.600	Driller	Sand	Sand; fine to medium; white; well sorted; subround; spheric; low dense
4.600	6.000	Driller	Sand	Sand; fine to medium; brownish pale yellow; subround; subspheric; dense
6.000	7.500	Driller	Unknown	No sampling past 6m

Stratigraphy Log - No Data Available

Advanced Data Summary - No Data Available

Appendix C Soil Bore and Well Construction Logs

Client: NS Projects

Project: 88 Mill Point Road Location: 88 Mill Point Road Project ID: PER2020-0345

Section Sect	Date:												1	:50		Sheet 1 of 3
Page			С			Positio	n:	E.39	1381m N.6462127m			Plant	: Geo	probe 7	7822	2
Popular in the property of the		d by:				Elevati	ion:	1.7	m			Contr	actor			Geotech
1.7	ling Method	oundwater			1	RL (m)	Depth (m)	raphic Log	Rock/Soil Description	uisistericy	Moisture	VL L M H VH EH	mentation/ /eathering	Spaci (mm	ing 1)	Samples, test results and additional Data
100		Ö		S	28	1.6 1.5	-	9	SM: Silty SAND: pale brown, dry to moist, poorly graded, fine to medium grained, subrounded to subangular; with rootlets; trave gravel, fine (Fill) SM: Silty SAND: red brown, dry to moist, poorly graded, fine to medium grained, subrounded to subangular; trave gravel, fine (Fill) SP: SAND: brown, dry to moist, poorly graded, fine to coarse grained, subrounded to subangular; trave silt; trave demolition debris		D to	UCS (MPa) VUCS (from Is50)	% S ∧	204 204 100-1	300-	
DPP 100 3.0m:SPT: (3.7,9) N=16 3.0m:SPT: (3.7,9) N=16 3.0m:SPT: (3.9,12) N=21 4.5m:SPT: (3.9,12) N=21 5.7 100 5.7 100 5.7 100 5.7 100 5.7 100 5.7 100 5.7 100 5.7 100 5.7 100 5.7 100 10	SPT		100			0.2	2 -		medium to coarse grained, subrounded to subangular; trace gravel, fine to medium,							1.5m:SPT: (3,4,4) N=8
SPT 100 3 - SANUT, SANUT, girely, wet, line to soldiser, subangular to subrounded (Alluvium) 3.0m:SPT: (3,7,9) N=16 SPT 100 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	DPP		100			-12	-									
SPT 100 4.5m:SPT: (3,9,12) N=21 DPP 100 6 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	SPT		100				3 -									3.0m:SPT: (3,7,9) N=16
SPT 100 6.0m:SPT: (4,8,11) N=19	DPP		100				4 -									- - - - - - - -
SPT 100 6.0m:SPT: (4,8,11) N=19	SPT		100				5 -									4.5m:SPT: (3,9,12) N=21
SPT 100	DPP		100				-									-
DPP 100 7 - 1	SPT		100				6 -									6.0m:SPT: (4,8,11) N=19
7.5m:SPT: (3,4,9) N=13	DPP		100				7 -									7.5m;SDT; (2.4.0) N=12
SPT 100 8	SPT		100				8 -									
DPP 100	DPP		100				-									-
	HQ3		100				9 -	key ke Incorrect incor	above/below (Alluvium)							0.5m;CDT (5.0.40) \ 0.0
subangular to subrounded (Alluvium) SPT 20 / SP: CORELOSS: wash out. Assume SAND as	SPT		20			_Q 3	10 -		subangular to subrounded (Alluvium) / SP: CORELOSS: wash out. Assume SAND as							9.5m:SP1: (5,9,12) N=21 -
Termination reason: Traget Depth Reached	Townsia C	1	<u> </u>	<u> </u>					above, possibly with day as below (Alluvium)						\pm	

Remarks:

Client: NS Projects

Project: 88 Mill Point Road Location: 88 Mill Point Road Project ID: PER2020-0345

Date: 1:50 Sheet 2 of 3

																1:50		Sheet 2 of 3
Logged	-)			Positio			381m N.6462127m								probe 7		
Checked	T	(Coring		Elevati		1.7 607	m	ency	nre	tion		k Stre			Defed Spacing	ct ng	Geotech Samples, test results and
Well	Groundwater	TCR	SCR	RQD	RL (m)	Depth (m)	Graphic Log	Rock/Soil Description	Consistency	Moisture		UCS (MPa)	60	Cementation/ Weathering	<20 20-40 40-100 100-300		
Q3		10					key ke incorrect incor key ke incorrect incor	SP: CORELOSS: wash out. Assume SAND as above, possibly with clay as below (Alluvium)										
20		10			-9.3	11 -	key ke incorrect incor key ke incorrect incor											11.0m:SPT: (3,1,1) N=2
т		100						SP: SAND: grey brown, wet, poorly graded, fine to medium, non plastic to low plasticity; with clay			1							
23		100						from 11.90m to 12.50m, becomes grey mottled										
15		100				12 -		orange				4						
т		100			-10.8			SC: Clayey SAND: grey mottled , wet, poorly graded, low plasticity, poorly graded; sand is fine to medium (Alluvium)			1							12.5m:SPT: (1,0,1) N=1
					-11.3	13 -	××× ××× ×××	ML: Clayey SILT: red brown, wet, low plasticity; trace sand, fine to medium (Alluvium)			1				-			
3		100			-11.9	-	<u>×××</u> × – ×	CH: CLAY: greyish brown, wet, high plasticity; with silt; trace sand, finer to medium (Alluvium)					1		-			
-		100			-12.4	14 -		CH: CLAY: brown grey, wet, stiff, high plasticity (Alluvium)							-			14.0m:SPT: (6,9,9) N=18
=					-12.8		X X X X X X X X X X	CH: CLAY: brown grey, wet, stiff, high plasticity; trace sand, fine to medium (Alluvium)			-							
3		100				15 -	× ×			v	v				-			
		100	4	7	-13.8	-	× × × × × × × × × × × × × × × × × × ×	ML: SILT: brown grey, wet, medium plasticity; with clay (Alluvium)							-			15.5m:SPT: (2,3,3) N=6
					-14.4	16 -	<u>*×*</u>	SC: Clayey SAND: grey brown, wet, non plastic,							-			
		80			-14.7 -14.9	-		fine to medium (Alluvium) SC: CORELOSS: wash out. Assume Clayey SAND as above/below (Alluvium) SC: Clayey SAND: grey brown, wet, non plastic,			ŀ				-			
		100			-15.3	17 -		fine to medium (Alluvium) SP: SAND: grey brown, wet, poorly graded, non plastic, fine grained; trace silt (Alluvium)	-									17.0m:SPT: (1,3,3) N=6
					-15.8		key ke incorrectincor key ke	SP: CORELOSS: wash out. Assume SAND trace silt as above/below (Alluvium)			-							
		50			-16.3	18 -	incorrect incor key ke	SP: SAND: grey brown, wet, poorly graded, non plastic, fine grained; trace silt (Alluvium)			-	+			-			
-		460			-16.7 -17.0	-		SC: Clayey SAND: grey brown, wet, low plasticity; sand is fine (Alluvium)			-	+						18.5m:SPT: (1,6,6) N=12
		100				19 -		SP: SAND: grey brown, wet, poorly graded, non plastic; trace silt (Alluvium)			-	\parallel						
3		100			-17.5 -17.9	-		SP: Gravely SAND: brown, wet, poorly graded, medium to coarse grained, subangular; gravel is fine, subangular to subrounded (Alluvium)			-							
					17.5	20 -	× × × × × ×	SM: Silty SAND: brown, wet, fine to coarse grained, subangular to subrounded, low plasticity; trace gravel, fine, subangular (Alluvium)										20.0m:SPT: (4,7,10) N=17
	1				-18.5		`x : >			-	4					+++	${oldsymbol{\sqcup}}$	

Remarks:

Client: NS Projects

Project: 88 Mill Point Road Location: 88 Mill Point Road Project ID: PER2020-0345

Date: 1:50 Sheet 3 of 3

	ate:	1//				D#-		F 20	1004 N C400407							N	. 0-	1:5		700	Sheet 3 of 3
1	ogged b hecked	-	;			Positio Elevati		1.7	1381m N.6462127m								t: Ged	•			22 I Geotech
Drilling Method	Well	Groundwater 5	TCR	Coring & S	RQD	RL (m)	Depth (m)	Graphic Log	Rock/Soil Description	Consistency	Moisture	Condition	LL	ck St	treng H VI	th	Cementation/	9	Defe Spac (mr	ect	Samples, test results and
		9		Ø	œ			U	SW: SAND: brown, wet, well graded, fine to	0			UCS	(MPa) (from) Is50)		0 >	8 8	¥ 4 5	2 8 9 TT	<u> </u>
SPT			100			-18.8	-	× ×	coarse, subangular to subrounded; trace silt; trace gravel, fine, rounded (Alluvium) SW: CORELOSS: wash out. Assume SAND above and below (Alluvium)								K				=
HQ3			50			-19.3 -19.5	21 -	X X X	SW: SAND: brown, wet, well graded, fine to coarse, subangular to subrounded; trace silt; trace gravel, fine, rounded (Alluvium)												
SPT			100			-19.8	-	. × . ?	SW: Silty SAND: brown, wet, well graded, fine to coarse, subangular to subrounded, non plastic; with clay; trace gravel, fine rounded (Alluvium) SW: SAND: pale brown, wet, well graded, fine to coarse grained, angular to subrounded; trace												21.5m;SPT: (8,19,16) N=35 —
HQ3			50			-20.3	22 -		gravel, fine to medium, subrounded to subangular (Alluvium) SW: CORELOSS: wash out. Assume SAND trace gravel as above and below (Alluvium)							>	-				
пцз			50			-20.8	23 -		SW: SAND: pale brown, wet, well graded, fine to coarse grained, angular to subrounded; trace gravel, fine to medium, subrounded to subangular; trace silt (Alluvium)			1									23.0m:SPT: (4,10,16) N=26
SPT			100			_	-										-				
HQ3			75				24 -									·					-
SPT			100			-22.6 -22.8	-	×. ×.	SW: CORELOSS: wash out. Assume Gravel and SAND mix as above and below (Alluvium) GM: Silty GRAVEL: pale brown, wet, fine, subangular to subrounded, poorly graded; trace												24.5m:SPT: (7,8,9) N=17 -
			100			-23.3	25	× × × ,	sand, fine to coarse (Alluvium) GM: CORELOSS: wash out. Outside return material is the same as above (Alluvium)												<u>-</u>
HQ3			0				-	× ×, × ×													- - - -
SPT			100			-24.3	26	× × × × × × × × × × × × × × × × × × ×	ML: Gravely SILT: pale brown yellow, wet, non plastic; gravel is fine occasionally medium grained, sub angular to angular (Alluvium)												26.0m:SPT: (23,50,) N=R -
HQ3			20			-24.8	27 -	Awaiting Awa	ML: CORELOSS: wash out. Assume gravely silt as above and below (Alluvium)												-
						-25.6 -25.8	2	Image	ML: Gravely SILT: pale brown yellow, wet, non plastic; gravel is fine occasionally medium												27.5m:SPT: (40,50/0.11mm) —
SPT			100				28 -	Image	grained, sub angular to angular (Alluvium) SW: SAND: grey brown, wet, well graded, fine to coarse, sub angular to subrounded; trace silt; trace gravel, fine, subrounded (Alluvium)												N=R
HQ3			30			-26.6	 -	Awaiting Awa Image	SW: CORELOSS: was wash out. Assume SANE trave grave, trave silt, as above and below (Alluvium)												-
SPT			100			-27.3	29 -	Awaiting Awa Image	SW: SAND: grey brown, wet, well graded, fine to coarse, sub angular to subrounded; trace silt;							+	-				29.0m:SPT: (21,40/0.9mm) — N=R
Oi- I			100			_	-	Keraiting Arra Image Ima	trace gravel, fine, subrounded (Alluvium) Borehole terminated at 29.4 m			_				+					- -
							30 -									<u> </u>	-				-
Tern	nination	reas	on:	T	raget	Depth I	L Reacl	ned									I	щ	Ш	ــــــــــــــــــــــــــــــــــــــ	
D																					

Remarks:

Client: NS Projects

Project: 88 Mill Point Road Location: 88 Mill Point Road Project ID: PER2020-0345

Sheet 1 of 3 Date:

Termination reason:

Traget Depth Reached

Client: NS Projects

Project: 88 Mill Point Road Location: 88 Mill Point Road Project ID: PER2020-0345

Date: 1:50 Sheet 2 of 3

	1//				D		F 00	1007 N 0400070				1:50	Sheet 2 of 3
Logged b	-	;			Positio Elevati		£.39°	1387m N.6462079m m				Geoprobe 782 actor: National	
Drilling Method	Groundwater	TCR	Coring NOS		RL (m)	Depth (m)	Graphic Log	Rock/Soil Description	Consistency	Moisture Condition	1	Cementation/ Weathering 220 22040 Caroling 40-1000 (mm 300-1000 (mm 30	Samples, test results and
Dir	o —	T	Š	Ē.	-8.2			CH: CLAY: dark grey, moist, high plasticity, very stiff; trace sand, fine grained (Alluvium) SC: Clayey SAND: orange brown, wet, high plasticity, poorly graded, fine grained (Alluvium)			V UCS (MPa) V UCS (from Is50)	Q \ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	10.5m:SPT: (2,3,4) N=7
PT		100			-8.8	11 -		CH: CLAY: dark grey mottled orange, moist, high plasticity, very stiff (Alluvium)		М			
PP		100			-9.7	-		SP: SAND: orange, wet, low plasticity, poorly					
PT		100			10.5	12 -		graded, non plastic, fine grained; with clay; trace silt (Alluvium)		w			12.0m:SPT: (7,4,3) N=7
PP		100			-10.5	13 -		CH: CLAY: grey brown, moist, high plasticity; with sand, fine to medium grained (Alluvium) from 13.00m to 13.10m, trace grave, feric concertions from 13.20m to 13.40m, mottled orange, wet		М			
PT		100			-11.8	14 —		CH: CLAY: dark grey, wet, high plasticity		w			13.5m:SPT: (1,3,5) N=8
PP *****		100			-12.3	14 -		(Alluvium) GM: Sandy CLAY: orange brown, moist to wet, high plasticity; sand is fine grained (Alluvium)		М			
T		100			-12.9	15 -		GM: Sandy CLAY: orange brown, wet, high plasticity; sand is fine grained (Alluvium)					15.0m:SPT: (2,3,6) N=9
					-13.4 -13.6	16 -		CH: CORELOSS: Assume to be sand clay mix as above and below (Alluvium) CH: CLAY: brown, wet, high plasticity; with sand, fine grained (Alluvium)					
23		100				-							
T		100			-14.9	17 -		CM: Sandy CLAY: brown, wet, medium plasticity; sand is fine grained (Alluvium)					17.0m:SPT: (4,5,7) N=12
3		100			-15.8	18 -		SC: Clayey SAND: pale brown, wet, poorly graded, non plastic, fine to coarse grained					
Γ		100			-16.3	-		(Alluvium) SP: SAND: pale brown, wet, poorly graded, fine to medium occasionally coarse grained, subrounded, non plastic; trace silt (Alluvium)					18.5m:SPT: (5,7,11) N=18
3		50			-16.9 -17.4	19 -		SP: CORELOSS: wash out. Assumed SAND as above and below (Alluvium)					
						20 -		SP: SAND: pale brown, wet, poorly graded, fine to medium occasionally coarse grained, subrounded, non plastic; trace silt; trace gravel, fine to medium, subrounded (Alluvium)					20.0m:SPT: (7,7,11) N=18

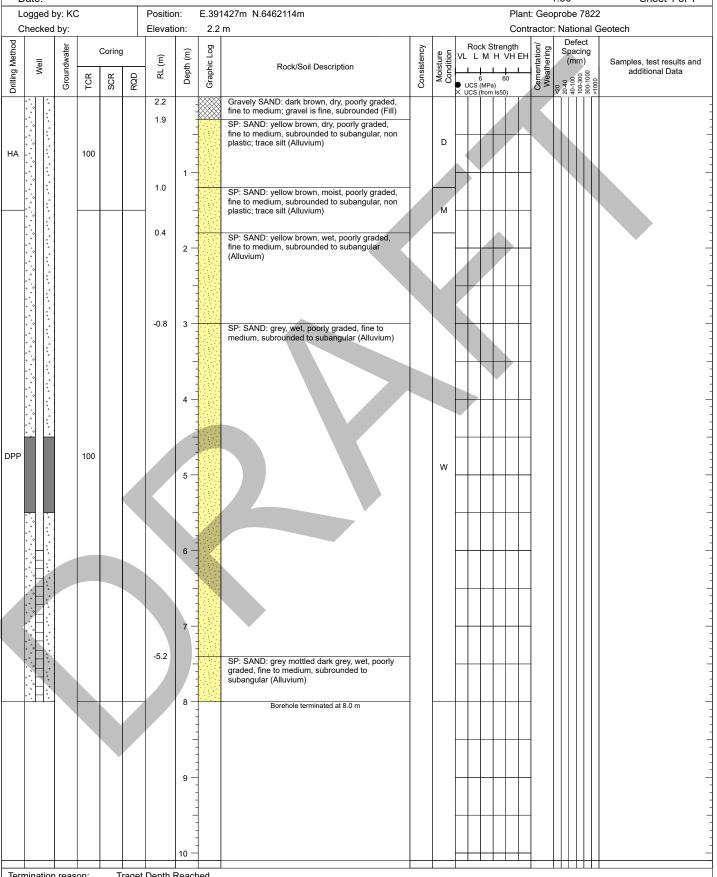
Remarks:

Client: NS Projects

Remarks:

Project: 88 Mill Point Road Location: 88 Mill Point Road Project ID: PER2020-0345

Date: 1:50 Sheet 3 of 3


Logged	hw K (•			Positio	n·	E 30	1387m N.6462079m				Plant	: Geo	nroha	782	2
Checked	-	,			Elevati		2.1									Z Geotech
Drilling Method	Groundwater '	TCR	Coring S	RQD	RL (m)	Depth (m)	Graphic Log	Rock/Soil Description	Consistency	Moisture		VH EH	Cementation/ Weathering	Def Spa (m 04-100 04-100	cing m)	Samples, test results and additional Data
SPT		100			-18.4	-		SP: SAND: pale brown, wet, poorly graded, fine to medium occasionally coarse grained, subrounded, non plastic; trace silt; trace gravel, fine to medium, subrounded (Alluvium) SP: CORELOSS: wash out. Assumed SAND as above and below (Alluvium)			X UCS (from Is:	50)		N 2 4	=	
HQ3		50			-18.9	21 -		SP: SAND: red brown, wet, poorly graded, non plastic, fine to coarse; with silt; with clay; trace gravel, fine to medium, surrounded (Alluvium)								-
SPT		100			-19.4 -19.9	22 —		SP: Gravely SAND: pale brown, wet, poorly graded, non plastic; gravel is fine to medium, sub angular to sub rounded; with silt; with clay (Alluvium)								21.5m:SPT: (2,5,7) N=12
HQ3		100			-20.4	-		GP: GRAVEL: yellow brown, wet, poorly graded, medium grained, subrounded; trace silt (Alluvium) SP: Gravely SAND: red brown, wet, poorly								
					-20.9	23 -		graded, fine to to coarse, subrounded to subangular, low plasticity; gravel is fine to medium, subrounded; with silt (Alluvium) GM: Silty Gravel: yellow brown, wet, poorly								23.0m:SPT: (7,16,16) N=32 -
SPT		100				-		graded, fine grained, subrounded to subangular (Alluvium)								
HQ3		100				24 -										-
SPT		100			-22.3	-	ale	GM: Sandy GRAVEL: yellow brown, wet, fine, subangular to subrounded; sand is coarse, subangular to subrounded; with silt (Alluvium)		w						24.5m:SPT: (7,16,18) N=34
HQ3		0	,		-22.8	25 -	ale ale	GM: CORELOSS: wash out. Material in outside return is sandy GRAVEL as above (Alluvium)								
SPT		100			-23.9	26		SP: SAND: yellow brown, wet, poorly graded, fine to medium occasionally coarse, subangular to subrounded, non plastic; trace silt (Alluvium)								26.0m:SPT: (50,,) N=R -
HQ3		100				27 -										-
SPT		100				28 —		from 28.00m to 29.45m, yellow brown mottled dark								27.5m:SPT: (26,42,50/1.2mm) N=R
HQ3		100				-		grey								
SPT		100				29 — -										29.0m:SPT: (19,50,/1.4mm) - N=R
						30 —		Borehole terminated at 29.4 m								
						-										

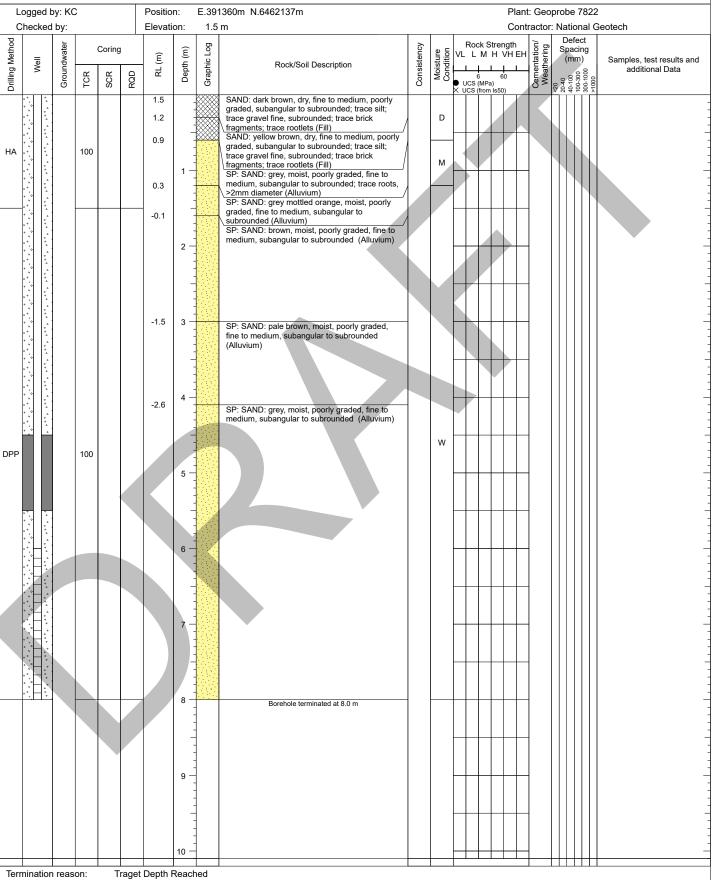
Client: NS Projects

Project: 88 Mill Point Road Location: 88 Mill Point Road Project ID: PER2020-0345

Date: Sheet 1 of 1

Termination reason:

Traget Depth Reached


Remarks:

Client: NS Projects

Project: 88 Mill Point Road Location: 88 Mill Point Road Project ID: PER2020-0345

Date: 1:50 Sheet 1 of 1

Appendix D Laboratory Documentation

WE	STERN IRONHIENTAL					СНА	IN O	F CUSTOD	Y REC	ORI	D		1,2	33	Sen Jacob					Page 1 o	
_	pany Name: WESTERN ENVIROR	NMENTAL PTY LTI		Contact	Name :		¥°-1			3.5	18 190			MAS		E 194 .			118	rage 1 0	
-									Purchase (Jraer :	20.22							CoC Nu	mber :	1942	
_	e Address : Level 3, 25 Prowse St	treet, west Perth	, WA 6005	Project	Vlanager	: Ruth Alle	n		Project Nu	mber	20.227	,						Quote I	D:	190301V	1
	ratory Address : Eurofins			Email fo	r results:	ruth.a	وسو	stenv. com	CC 1 & 3	an	es. g	وسو	Hem	CON	٧. مر	4		Courier	Consign	ment#:	
Unit	2, 91 Leach Hwy							Analyte						7					001131811		
Kew	dale WA 6105					, , ,		Allulyte			T	_		Special	Direction	s & Comr	nents:				
	act: Rob Johnston, +61 (0)8 9251 l: Robertjohnston@eurofins.con		357 9286	pH Field & Fox	CAS	Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)	9														
				Field	SPOCAS	P, Me	HOLD							-			Containe	or .			
#	Sample ID	Sample Date	Matrix	Hd		Suite B PAH, OC Cr. Cu,								1L- Green	250ml Green	Black MB	100ml Red	100ml Purple	VIAL	Glass Jar	ASS Soil Bag
1	BH01 0.25	25/11/2020	SOIL	х							1					plastic	Plastic	Plastic			
2	BH01 0.5	25/11/2020	SOIL	Х		х					1									-	1
3	BH01 0.75	25/11/2020	SOIL	х																1	1
4	BH01 1.0	25/11/2020	SOIL	х								1									1
	BH01 1.25	25/11/2020	SOIL	х																1	1
6	BH01 1.5	25/11/2020	SOIL	х																1	1
	BH01 1.75	25/11/2020	SOIL	х								iate/Time:	1/12/2	10	77					1	1
8	BH01 2.0	25/11/2020	SOIL	х					6				414	10:	25 C	4			_		1
9	BH01 2.25	25/11/2020	SOIL	х					6	10	9	hilled:	19.7	(tis) (tio						1	1
10	BH01 2.5	25/11/2020	SOIL	х						9.6			19.3								1
11	BH01 2.75	25/11/2020	SOIL	х								timection: Final Tempi	19.3	,					-		1
12	BH01 3.0	25/11/2020	SOIL	х								, was rempt	19	2°C			-				1
13	BH01 3.25	25/11/2020	SOIL	х									31 83								1
	BH01 3.5	25/11/2020	SOIL	х																	1
15	BH01 3.75	25/11/2020	SOIL	х																	1
Relinqu Date &	ished By:			Received By	, /	nong	ve o	actson 10:23 am	-		Turn aro	und Time :		5 Days			P			Shipment :	1
						11	1											- 1	Courier Hand Deliv	ered	
ignatu	re:		-	Signature: Report Num		7	6106	7			Comments	\$ 2	Please provi	ide prelimin	ary report	for pH Field	i & Fox resu		ostal	e.eu	

4
WESTERN

CHAIN OF CUSTODY RECORD

Page 2 of

Company Name: WESTERN ENVIRONMENTAL PTY LTD	Contact Name :	Ruth Alle	1		Purch	ase Order :	20.227						CoC Num	nber:	1942	
Office Address : Level 3, 25 Prowse Street, West Perth, WA 6005	Project Manager	: Ruth Alle	1		Projec	t Number :	20.227						Quote ID):	190301W	
mgt-Eurofins	Email for results	: ruth.a@w	estenv.co		CC:	james.g(@westenv.c	com.au	0				Courier (Consignm	ent#:	
Jnit 2, 91 Leach Hwy				Analy	es				Special I	Directions	& Comm	ents:				
Kewdale WA 6105		, D =														
Contact: Rob Johnston, +61 (0)8 9251 9605, +61 (0)4 2357 9286	ŏ	A (A EX							-							
anan. Robertjoniston@edionis.com	CAS	th, B etals 2b, Z	ا و													
	pH Field & Fox	9: TR	HOLD									Containe	r			
# Sample ID Sample Matrix	Hd	Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)							1L- Green	250mi Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil Bag
16 BH01 4.0 25/11/2020 SOIL	х															1
BH01 4.25 25/11/2020 SOIL	Х															1
18 BH01 4.5 25/11/2020 SOIL	х															1
19 BH01 4.75 25/11/2020 SOIL	Х															1
20 BH01 5.0 25/11/2020 SOIL	х															1
21 BH01 5.25 25/11/2020 SOIL	х															1
22 BH01 5.5 25/11/2020 SOIL	х															1
23 BH01 5.75 25/11/2020 SOIL	х															1
24 BH01 6.0 25/11/2020 SOIL	х															1
25 BH01 6.25 25/11/2020 SOIL	х															1
26 BH01 6.5 25/11/2020 SOIL			х													1
27 BH01 6.75 25/11/2020 SOIL			х													1
28 BH01 7.0 25/11/2020 SOIL			х													1
25/11/2020 SOIL			Х													1
30 BH01 7.5 25/11/2020 SOIL			х													1
elinquished By:	Received By:	No	rique	10:23,	01		Turn arour	nd Time :						Method O	Shipment :	
ate & Time :	Date & Time :		2/20	10:23	in									Courier		Yes
ignature:	Signature:	-	A				Comments :	Please are	vide prelimi	nan/ renort	for nH Fiel	d & Fov res		Hand Deliv Postal	rered	
	Report Number :	7(1027	-			Comments :	riedse pro	riac premili	any report	.o. pii iet	S G T ON TES		. Jacut		

4
WESTERN

CHAIN OF CUSTODY RECORD

Page 3 of

Com	pany Name: WESTERN ENVIRONM	MENTAL PTY LTD) .	Contact I	Name :	Ruth Alle	n	1	Purch	ase Order :	20.227						CoC Nur	nber :	1942	
Office	e Address : Level 3, 25 Prowse Stre	eet, West Perth,	WA 6005	Project N	/lanager :	Ruth Aile	n		Projec	t Number :	: 20.227						Quote II):	190301W	
mgt-i	ratory Address : Eurofins 2, 91 Leach Hwy			Email for	results:	ruth.a@w	estenv.c	om.au Analy	CC:	james.g	g@westenv.com.au		0	D:				Consignn	nent#:	
1	lale WA 6105					g' l		Allaly	ies				Special	Direction	s & Comr	nents:				
Conta	act: Rob Johnston, +61 (0)8 9251 9	3605, +61 (0)4 23	357 9286			SXN, Is, C														
Email	: Robertjohnston@eurofins.com			<u>6</u>	ر ا	BTE Is (A														
				- S	SPOCAS	RH,	HOLD													
	0:	Campie		pH Field & Fox	SP.	. P. N.	Ĭ									Contain	er			
#	Sample ID	Sample Date	Matrix	4		Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)							1L- Green	250ml Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil Bag
31	BH01 7.75	25/11/2020	SOIL				Х								pidotio	- idotic	Trabele			1
32	BH01 8.0	25/11/2020	SOIL				Х													1
33	BH01 8.25	25/11/2020	SOIL				Х													1
34	BH01 8.5	25/11/2020	SOIL				Х													1
35	BH01 8.75	25/11/2020	SOIL				Х													1
36	BH01 9.0	25/11/2020	SOIL				Х													1
37	BH01 9.25	25/11/2020	SOIL				Х													1
38	BH01 9.5	25/11/2020	SOIL				Х													1
39	BH01 9.75	25/11/2020	SOIL				Х													1
40	BH01 10.0	25/11/2020	SOIL				Х												1.5	1
41	BH01 10.25	25/11/2020	SOIL				Х													1
72	BH01 10.5	25/11/2020	SOIL				Х													1
43	BH01 10.75	25/11/2020	SOIL				Х													1
44	BH01 11.0	25/11/2020	SOIL				Х							0.0						1
45	BH01 11.25	25/11/2020	SOIL				Х													1
Relinqu Date &	ished By:			Received By Date & Time			20	je Tacke 10:23 av			Turn around Time :							Courier	Shipment:	Yes
Signatu	re:		Te	Signature: Report Num	ber :	7	5106	7	-		Comments :	Please prov	ide prelimin	eary report	for pH Field	d & Fox res		land Deliv	ered	

W[SSTERN IRONMENTAL					СНА	IN O	F CUSTO	DDY RI	ECORI	D _								Page 4 o	f
Com	pany Name: WESTERN ENVIRO	ONMENTAL PTY LT	0	Contact	Name :	Ruth Alle	n		Purch	ase Order :	20.227						CoC Nun	nber :	1942	
Offic	e Address : Level 3, 25 Prowse	Street, West Perth,	, WA 6005	Project I	Manager	: Ruth Alle	n		Proje	ct Number	: 20.227						Quote ID) :	190301W	
mgt-	ratory Address : Eurofins 2, 91 Leach Hwy			Email fo	r results:	ruth.a@w	vestenv.c		cc:	james.	g@westenv.c	om.au	0 Exected	Direction	s P Comr	nonto i	Courier	Consignn	nent#:	
Kew	dale WA 6105 act: Rob Johnston, +61 (0)8 92 il: Robertjohnston@eurofins.co		357 9286	pH Field & Fox	SPOCAS	Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)	9	Aire	lytes				Special	Direction	s & Com	nents .				
				ᅴ ᇐ	SPO	9: T	HOLD									Contain	ег			
#	Sample ID	Sample Date	Matrix	吊		Suite B PAH, OCF Cr, Cu,							1L- Green	250ml Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil B
46	BH01 11.5	25/11/2020	SOIL				Х													1
47	BH01 11.75	25/11/2020	SOIL				Х													1
48	BH01 12.0	25/11/2020	SOIL				х													1
49	BH01 12.25	25/11/2020	SOIL				Х													1
50	BH01 12.5	25/11/2020	SOIL				х													1
51	BH01 12.75	25/11/2020	SOIL				Х													1
52	BH01 13.00	25/11/2020	SOIL				Х													1
53	BH01 13.25	25/11/2020	SOIL				Х													1
54	BH01 13.5	25/11/2020	SOIL				Х													1
55	BH01 13.75	25/11/2020	SOIL				Х													1
56	BH01 14.0	25/11/2020	SOIL				х													1
57	BH01 14.25	25/11/2020	SOIL				Х													1
58	BH01 14.5	25/11/2020	SOIL				Х													1
59	BH01 14.75	25/11/2020	SOIL	1			х													1
60	BH01 15.0	25/11/2020	SOIL				х													1
	uished By:			Received B	y:	Mo	nia	ve 70 10:23 c	desa)	Turn arour	nd Time :	1					Method O	f Shipment :	
Date 8	k Time :			Date & Tin	ne :		170	10:430	マック 								- 1	Courier		Yes
Signat	uro			Signature		1		Acco			Comment	al.		1mmm	444421101	IA 0 C		Hand Deli	vered	
Signat	ш с.			Signature: Report Nu	mber:	761	067				Comments :	Pleas	e provide prelim	mary repor	L for pH Fle	ici & rox re	suits.	Postal		L

4
WESTERN

CHAIN OF CUSTODY RECORD

Page 6 of

Com	pany Name: WESTERN ENVIRONM	ΛΕΝΤΔΙ PTY ΙΤΙ)	Contact	Name :	Ruth Alle	20			Downhai		20.007							1			
				-						Purchas	se Order :	20.227							CoC Nun	nber :	1942	
_	e Address : Level 3, 25 Prowse Stre	eet, West Perth,	WA 6005	Project I	Manager	: Ruth Alle	n			Project	Number :	20.227							Quote II):	190301W	
mgt-l	ratory Address : Eurofins			Email for	r results:	ruth.a@v	estenv.c			cc:	james.g	@westenv	.com.au		0				Courier	Consignn	nent#:	
	2, 91 Leach Hwy								Analyte	es			0		Special	Direction:	s & Comn	nents:				
	dale WA 6105					², g, ≅																
	act: Rob Johnston, +61 (0)8 9251 9	605, +61 (0)4 2	357 9286	×		As,				=												
Emai.	l: Robertjohnston@eurofins.com			8 5	SA	1, Brals	0	1														
		I I		pH Field & Fox	SPOCAS	TR Met	HOLD															
		Sample		臣	l s	CP,											,	Containe	er			
#	Sample ID	Date	Matrix	<u>a</u>		Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)									1L- Green	250ml Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil Bag
76	BH01 19.0	25/11/2020	SOIL				Х															1
77	BH01 19.25	25/11/2020	SOIL				Х															1
78	BH01 19.5	25/11/2020	SOIL				Х															1
79	BH01 19.75	25/11/2020	SOIL				Х															1
80	BH01 20.0	25/11/2020	SOIL				Х															1
81	BH01 0.0	25/11/2020	SOIL			х															1	1
82		25/11/2020	SOIL																			
83		25/11/2020	SOIL																			
84		25/11/2020	SOIL																			
85		25/11/2020	SOIL																			
86		25/11/2020	SOIL																			
87		25/11/2020	SOIL																			
88		25/11/2020	SOIL																			
89		25/11/2020	SOIL																			
90		25/11/2020	SOIL																			
elinqu	ished By:		=3	Received By	y:	Mo	rig.	re J	0:23	0		Turn arou	nd Time :						, n	Nethod Of	Shipment :	
ate &	Time:		-	Date & Tim	e:		12/20		0:23	dm										Courier	. [Yes
gnatu	re:			Signature:				P	1			Comments	Ple	ease provi	de prelimin	ary report	for pH Field	& Fox rest		łand Deliv 'ostal	ered	
				Report Num	nber:	-	7610	67						-			,				L	
				1																		

WI	SSTERN					СНА	IN O	F CUST	ΓOD\	Y REC	CORE										Page 5 o	f
Com	pany Name: WESTERN ENVIRO	NMENTAL PTY LT)	Contact	Name :	Ruth Alle	n			Purchas	e Order :	20.227							CoC Nun	nber:	1942	
Offic	e Address : Level 3, 25 Prowse S	Street, West Perth,	, WA 6005	Project I	Manager :	: Ruth Alle	n			Project I	Number :	20.227							Quote ID):	190301W	
Labo	ratory Address :			<u> </u>																		
mgt-	Eurofins			Email fo	r results:	ruth.a@w	estenv.c	om.au		CC:	james.g	@westenv	.com.au		0				Courier (Consignm	nent#:	
Unit	2, 91 Leach Hwy				_			, Aı	nalyte	S	_			, .	Special	Directions	s & Comn	nents:				
	dale WA 6105					, S, &																
	act: Rob Johnston, +61 (0)8 925		357 9286	l s		(As,																
Emai	l: Robertjohnston@eurofins.co	om		% 	AS	H, B tals b, Zr	Ω															
				pH Field & Fox	SPOCAS	te B9: TRH, BTEXN, OCP, Metals (As, C Cu, Ni, Pb, Zn, HE)	HOLD											Contain	er			
#	Sample ID	Sample Date	Matrix	摄	,	Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)									1L- Green	250ml Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil Ba
61	BH01 15.25	25/11/2020	SOIL				х															1
62	BH01 15.5	25/11/2020	SOIL				Х															1
63	BH01 15.75	25/11/2020	SOIL				Х															1
64	BH01 16.0	25/11/2020	SOIL				Х															1
65	BH01 16.25	25/11/2020	SOIL				Х															1
66	BH01 16.5	25/11/2020	SOIL				Х															1
67	BH01 16.75	25/11/2020	SOIL				Х															1
68	BH01 17.0	25/11/2020	SOIL				Х															1
69	BH01 17.25	25/11/2020	SOIL				Х															1
70	BH01 17.5	25/11/2020	SOIL				Х															1
71	BH01 17.75	25/11/2020	SOIL				Х															1
72	BH01 18.0	25/11/2020	SOIL				Х															1.
73	BH01 18.25	25/11/2020	SOIL				Х															1
74	BH01 18.5	25/11/2020	SOIL				Х															1
75	BH01 18.75	25/11/2020	SOIL				Х															1
Relinq	uished By:	11"		Received 6	Ву:	Mo	niq	e To:	cksu	^		Turn aro	und Time	:						Method O	Of Shipment :	
Date 8	t Time :			Date & Tin	ne:		2/20	0.2	War	^										Courler		Yes
Ciam				Signature:			-	TA				Commercial		Diagram	ada madros		s dan alt fit.	I 0 Fau		Hand Deli	vered	
Signat	uie:			Report Nu		7610	6					Comment	5 (riease pro	vide prelim	rary report	LIOF PH FIE	a & rox re	suits.	Postal		

Western Environmental Pty Ltd Level 3, 25 Prowse Street West Perth WA 6005

NATA Accredited Accreditation Number 1261 Site Number 23736

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ruth Allen

Report 761067-S

Project name

Project ID 20.227

Received Date Dec 01, 2020

Client Sample ID			BH01 0.25	BH01 0.5	BH01 0.75	BH01 1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De06958	P20-De06959	P20-De06960	P20-De06961
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test	<u>'</u>					
pH-F (Field pH test)*	0.1	pH Units	8.9	9.6	9.7	9.6
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.7	7.5	7.6	7.6
Reaction Ratings*S05	-	comment	2.0	2.0	2.0	3.0
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions	•				
TRH C6-C9	20	mg/kg	-	< 20	-	-
TRH C10-C14	20	mg/kg	-	< 20	-	-
TRH C15-C28	50	mg/kg	-	< 50	-	-
TRH C29-C36	50	mg/kg	-	< 50	-	-
TRH C10-C36 (Total)	50	mg/kg	-	< 50	-	-
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	-	-
Toluene	0.1	mg/kg	-	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	-
o-Xylene	0.1	mg/kg	-	< 0.1	-	-
Xylenes - Total*	0.3	mg/kg	-	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	-	87	-	-
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	-	-
TRH C6-C10	20	mg/kg	-	< 20	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	-
Acenaphthene	0.5	mg/kg	-	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	-
Anthracene	0.5	mg/kg	-	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	-
Benzo(b&j)fluorantheneN07	0.5	mg/kg	-	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	-
Chrysene	0.5	mg/kg	-	< 0.5	-	-

Client Sample ID			BH01 0.25	BH01 0.5	BH01 0.75	BH01 1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De06958	P20-De06959	P20-De06960	P20-De06961
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	-
Fluoranthene	0.5	mg/kg	-	< 0.5	-	-
Fluorene	0.5	mg/kg	-	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	-
Naphthalene	0.5	mg/kg	-	< 0.5	-	-
Phenanthrene	0.5	mg/kg	-	< 0.5	=	-
Pyrene	0.5	mg/kg	-	< 0.5	-	-
Total PAH*	0.5	mg/kg	-	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	-	76	-	-
p-Terphenyl-d14 (surr.)	1	%	-	68	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	=	-
a-BHC	0.05	mg/kg	-	< 0.05	=	-
Aldrin	0.05	mg/kg	-	< 0.05	=	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	=	-
Heptachlor	0.05	mg/kg	-	< 0.05	=	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor (T. 1.1)*	0.05	mg/kg	-	< 0.05	-	=-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	=-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	99	-	-
Tetal Recoverable Hydrogerhone 2013 NERM	1	%	-	62	-	-
Total Recoverable Hydrocarbons - 2013 NEPM		n				
TRH >C10-C16	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	-	< 100	-	-
TRH >C34-C40	100	mg/kg	-	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	-
Heavy Metals					+	
Arsenic	2	mg/kg	-	< 2	-	
Cadmium	0.4	mg/kg	-	< 0.4	-	-
Chromium	5	mg/kg	-	12	-	
Copper	5	mg/kg	-	< 5	-	-
Lead	5	mg/kg	-	30	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH01 0.25 Soil P20-De06958 Nov 25, 2020	BH01 0.5 Soil P20-De06959 Nov 25, 2020	BH01 0.75 Soil P20-De06960 Nov 25, 2020	BH01 1.0 Soil P20-De06961 Nov 25, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel	5	mg/kg	-	< 5	-	-
Zinc	5	mg/kg	-	29	-	-
		•				
% Moisture	1	%	-	7.7	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH01 1.25 Soil P20-De06962 Nov 25, 2020	BH01 1.5 Soil P20-De06963 Nov 25, 2020	BH01 1.75 Soil P20-De06964 Nov 25, 2020	BH01 2.0 Soil P20-De06965 Nov 25, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	9.5	9.6	9.6	9.5
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.5	7.2	7.4	7.6
Reaction Ratings*S05	-	comment	3.0	2.0	2.0	2.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Acid Sulfate Soils Field pH Test	LOR		BH01 2.25 Soil P20-De06966 Nov 25, 2020	BH01 2.5 Soil P20-De06967 Nov 25, 2020	BH01 2.75 Soil P20-De06968 Nov 25, 2020	BH01 3.0 Soil P20-De06969 Nov 25, 2020
pH-F (Field pH test)*	0.1	pH Units	9.4	8.4	7.8	9.2
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.5	5.4	2.9	7.4
Reaction Ratings*S05	-	comment	2.0	3.0	2.0	2.0

Client Sample ID			BH01 3.25	BH01 3.5	BH01 3.75	BH01 4.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De06970	P20-De06971	P20-De06972	P20-De06973
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	8.8	7.7	7.5	7.8
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	5.4	3.0	2.9	2.8
Reaction Ratings*S05	-	comment	2.0	2.0	1.0	1.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Acid Sulfate Soils Field pH Test	LOR	Unit	BH01 4.25 Soil P20-De06974 Nov 25, 2020	BH01 4.5 Soil P20-De06975 Nov 25, 2020	BH01 4.75 Soil P20-De06976 Nov 25, 2020	BH01 5.0 Soil P20-De06977 Nov 25, 2020
pH-F (Field pH test)*	0.1	pH Units	8.3	9.8	9.5	6.5
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	3.4	6.2	6.8	3.4
Reaction Ratings*S05	-	comment	2.0	2.0	2.0	2.0

Client Sample ID Sample Matrix			BH 5.25 Soil	BH01 5.5 Soil	BH01 5.75 Soil	BH01 6.0 Soil
Eurofins Sample No.			P20-De06978	P20-De06979	P20-De06980	P20-De06981
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	9.8	9.4	9.5	9.4
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.8	6.7	6.9	5.5
Reaction Ratings*S05	-	comment	2.0	2.0	2.0	2.0

Client Comple ID			DU04 0 05	DUIG 4 0 0
Client Sample ID			BH01 6.25 Soil	BH01 0.0 Soil
Sample Matrix				
Eurofins Sample No.			P20-De06982	P20-De07038
Date Sampled			Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit		
Acid Sulfate Soils Field pH Test				
pH-F (Field pH test)*	0.1	pH Units	9.6	-
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.4	-
Reaction Ratings*S05	-	comment	2.0	-
Total Recoverable Hydrocarbons - 1999 NEPM				
TRH C6-C9	20	mg/kg	-	< 20
TRH C10-C14	20	mg/kg	-	< 20
TRH C15-C28	50	mg/kg	=	< 50
TRH C29-C36	50	mg/kg	-	< 50
TRH C10-C36 (Total)	50	mg/kg	-	< 50
ВТЕХ				
Benzene	0.1	mg/kg	=	< 0.1
Toluene	0.1	mg/kg	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	107
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50
TRH C6-C10	20	mg/kg	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20

Client Sample ID			BH01 6.25	BH01 0.0
Sample Matrix			Soil	Soil
Eurofins Sample No.			P20-De06982	P20-De07038
Date Sampled			Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons		-		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2
Acenaphthene	0.5	mg/kg	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5
Total PAH*	0.5	mg/kg	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	74
p-Terphenyl-d14 (surr.)	1	%	-	80
Organochlorine Pesticides	I			
Chlordanes - Total	0.1	mg/kg	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05
a-BHC	0.05	mg/kg	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05
b-BHC	0.05	mg/kg	-	< 0.05
d-BHC	0.05	mg/kg	-	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05
Endrin	0.05	mg/kg	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05
Hexachlorobenzene Methovychlor	0.05	mg/kg	-	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1
Dibutylchlorendate (surr.) Tetrachloro-m-xylene (surr.)	1	%	-	89 53

Client Sample ID Sample Matrix Eurofins Sample No.			BH01 6.25 Soil P20-De06982	BH01 0.0 Soil P20-De07038
Date Sampled	1		Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 2013 NEPM Fract				
TRH >C10-C16	50	mg/kg	-	< 50
TRH >C16-C34	100	mg/kg	-	< 100
TRH >C34-C40	100	mg/kg	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	< 100
Heavy Metals				
Arsenic	2	mg/kg	-	3.5
Cadmium	0.4	mg/kg	-	< 0.4
Chromium	5	mg/kg	-	10
Copper	5	mg/kg	-	< 5
Lead	5	mg/kg	-	< 5
Mercury	0.1	mg/kg	-	< 0.1
Nickel	5	mg/kg	-	< 5
Zinc	5	mg/kg	-	8.2
% Moisture	1	%	-	8.4

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Acid Sulfate Soils Field pH Test	Testing Site Perth	Extracted Dec 03, 2020	Holding Time 7 Days
- Method: LTM-GEN- 7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests			
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Perth	Dec 04, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters Soils Sediments by ICP-MS			•
% Moisture	Perth	Dec 03, 2020	14 Days

⁻ Method: LTM-GEN-7080 Moisture

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
600 Phone : +61 8 9251 9600
10794 NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Company Name:

Project ID: 20.227

Order No.: Report #:

761067 08 6162 8980

Phone: Fax:

Received: Dec 1, 2020 10:23 AM

Due: Dec 8, 2020
Priority: 5 Day
Contact Name: Ruth Allen

			mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
		ory - NATA Site		271					
Sydr	ney Laboratory	- NATA Site # 1	8217						
		y - NATA Site #							
		NATA Site # 237	36			Х	Х	Х	Х
	field Laboratory								
	rnal Laboratory			1					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH01 0.25	Nov 25, 2020		Soil	P20-De06958		Х		
2	BH01 0.5	Nov 25, 2020		Soil	P20-De06959		Х	Х	Х
3	BH01 0.75	Nov 25, 2020		Soil	P20-De06960		Х		
4	BH01 1.0	Nov 25, 2020		Soil	P20-De06961		Х		
5	BH01 1.25	Nov 25, 2020		Soil	P20-De06962		Х		
6	BH01 1.5	Nov 25, 2020		Soil	P20-De06963		Х		
7	BH01 1.75	Nov 25, 2020		Soil	P20-De06964		Х		
8	BH01 2.0	Nov 25, 2020		Soil	P20-De06965		Х		
9	BH01 2.25	Nov 25, 2020		Soil	P20-De06966		Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Company Name:

Address:

Project ID: 20.227

Order No.: Report #:

761067 08 6162 8980

Phone: Fax:

Received: Dec 1, 2020 10:23 AM

Due: Dec 8, 2020
Priority: 5 Day
Contact Name: Ruth Allen

		Sai	mple Detail				HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
		ory - NATA Site		71						
		- NATA Site # 1								\vdash
_		ry - NATA Site #								
		NATA Site # 237	36				Х	Х	Х	X
	field Laboratory									
	rnal Laboratory	7 1 1		l				.,		\vdash
10	BH01 2.5	Nov 25, 2020		Soil		20-De06967		Х		\vdash
11	BH01 2.75	Nov 25, 2020		Soil		20-De06968		Х		
12	BH01 3.0	Nov 25, 2020		Soil		20-De06969		Х		
13	BH01 3.25	Nov 25, 2020		Soil		20-De06970		Х		
14	BH01 3.5	Nov 25, 2020		Soil		20-De06971		Х		\vdash
15	BH01 3.75	Nov 25, 2020		Soil		20-De06972		Х		
16	BH01 4.0	Nov 25, 2020		Soil	P	20-De06973		Х		
17	BH01 4.25	Nov 25, 2020		Soil		20-De06974		Х		
18	BH01 4.5	Nov 25, 2020		Soil		20-De06975		Х		
19	BH01 4.75	Nov 25, 2020		Soil	P	20-De06976		Х		
20	BH01 5.0	Nov 25, 2020		Soil	P	20-De06977		Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone: +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761067 08 6162 8980

Phone: Fax:

Received: Dec 1, 2020 10:23 AM

Due: Dec 8, 2020
Priority: 5 Day
Contact Name: Ruth Allen

			ple Detail		HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
		tory - NATA Site #						
		y - NATA Site # 182						
		ory - NATA Site # 20						
		- NATA Site # 23736	5		Х	X	X	X
	field Laborato							
	rnal Laborato		0-11	D00 D - 00070		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
21	BH 5.25	Nov 25, 2020	Soil	P20-De06978		X		
22	BH01 5.5	Nov 25, 2020	Soil Soil	P20-De06979		X		
24	BH01 5.75 BH01 6.0	Nov 25, 2020	Soil	P20-De06980		X		
25	BH01 6.25	Nov 25, 2020 Nov 25, 2020	Soil	P20-De06981 P20-De06982		X		
26	BH01 6.25	Nov 25, 2020	Soil	P20-De06982	Х	^		\vdash
27	BH01 6.75	Nov 25, 2020	Soil	P20-De06983	X			
28	BH01 7.0	Nov 25, 2020	Soil	P20-De06984	X			
29	BH01 7.25	Nov 25, 2020	Soil	P20-De06985	X			
30	BH01 7.5	Nov 25, 2020	Soil	P20-De06987	X			
31	BH01 7.75	Nov 25, 2020	Soil	P20-De06988	X			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761067 08 6162 8980

Phone: Fax:

 Received:
 Dec 1, 2020 10:23 AM

 Due:
 Dec 8, 2020

 Priority:
 5 Day

 Contact Name:
 Ruth Allen

			mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
		ory - NATA Site		71					
		- NATA Site # 18							
		y - NATA Site #							
Pert	h Laboratory - I	NATA Site # 237	36			Х	Х	Х	Х
May	field Laboratory	у							
Exte	rnal Laboratory	/							
32	BH01 8.0	Nov 25, 2020		Soil	P20-De06989	Х			
33	BH01 8.25	Nov 25, 2020		Soil	P20-De06990	Х			
34	BH01 8.5	Nov 25, 2020		Soil	P20-De06991	Х			
35	BH01 8.75	Nov 25, 2020		Soil	P20-De06992	Х			
36	BH01 9.0	Nov 25, 2020		Soil	P20-De06993	Х			
37	BH01 9.5	Nov 25, 2020		Soil	P20-De06995	Х			
38	BH01 9.75	Nov 25, 2020		Soil	P20-De06996	Х			
39	BH01 10.0	Nov 25, 2020		Soil	P20-De06997	Х			
40	BH01 11.0	Nov 25, 2020		Soil	P20-De07001	Х			
41	BH01 11.25	Nov 25, 2020		Soil	P20-De07002	Х			
42	BH01 11.5	Nov 25, 2020		Soil	P20-De07003	Х			

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth 1/21 Smallwood Place 2/91 Leach Highway Kewdale WA 6105 Murarrie QLD 4172 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Western Environmental Pty Ltd

Level 3, 25 Prowse Street

West Perth

WA 6005

Project Name:

Address:

Company Name:

Project ID: 20.227 Order No.: Report #:

Phone:

Fax:

761067

08 6162 8980

Received: Dec 1, 2020 10:23 AM Due: Dec 8, 2020 Priority: 5 Day **Contact Name:** Ruth Allen

		Sa	mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
Mell	oourne Laborat	tory - NATA Site	# 1254 & 142	71					
Syd	ney Laboratory	/ - NATA Site # 1	8217						
Bris	bane Laborato	ry - NATA Site #	20794						
Pert	h Laboratory -	NATA Site # 237	'36			Х	Х	Х	Х
May	field Laborator	у							
Exte	rnal Laborator	у		1					
43	BH01 11.75	Nov 25, 2020		Soil	P20-De07004	Х			
44	BH01 12.0	Nov 25, 2020		Soil	P20-De07005	Х			
45	BH01 12.25	Nov 25, 2020		Soil	P20-De07006	Х			
46	BH01 12.5	Nov 25, 2020		Soil	P20-De07007	Х			
47	BH01 12.75	Nov 25, 2020		Soil	P20-De07008	Х			
48	BH01 13.0	Nov 25, 2020		Soil	P20-De07009	Х			
49	BH01 13.25	Nov 25, 2020		Soil	P20-De07010	Х			
50	BH01 13.5	Nov 25, 2020		Soil	P20-De07011	Х			
51	BH01 13.75	Nov 25, 2020		Soil	P20-De07012	Х			
52	BH01 14.0	Nov 25, 2020		Soil	P20-De07013	Х			
53	BH01 14.25	Nov 25, 2020		Soil	P20-De07014	Х			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone: +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street

West Perth

WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761067

08 6162 8980

Phone: Fax:

Received: Due:

Dec 1, 2020 10:23 AM Dec 8, 2020

Priority: 5 Day
Contact Name: Ruth Allen

		Sa	mple Detail				HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
		tory - NATA Site		71						
		/ - NATA Site # 1								
		ry - NATA Site #								
		NATA Site # 237	36				Х	Х	Х	Х
	field Laborator									
	rnal Laborator			1						
54	BH01 14.5	Nov 25, 2020		Soil	1	De07015	Х			
55	BH01 14.75	Nov 25, 2020		Soil		De07016	Х			
56	BH01 15.0	Nov 25, 2020		Soil	1	De07017	Х			
57	BH01 15.25	Nov 25, 2020		Soil	†	De07018	Х			
58	BH01 15.5	Nov 25, 2020		Soil	P20-0	De07019	Х			
59	BH01 15.75	Nov 25, 2020		Soil	P20-0	De07020	Х			
60	BH01 16.0	Nov 25, 2020		Soil	P20-0	De07021	Х			
61	BH01 16.25	Nov 25, 2020		Soil	P20-0	De07022	Х			
62	BH01 16.75	Nov 25, 2020		Soil	P20-0	De07024	Х			
63	BH01 17.0	Nov 25, 2020		Soil	P20-0	De07025	Х			
64	BH01 17.25	Nov 25, 2020		Soil	P20-E	De07026	Х			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone: +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761067 08 6162 8980

Phone: Fax:

Received: Dec 1, 2020 10:23 AM Due: Dec 8, 2020

Priority: 5 Day
Contact Name: Ruth Allen

		Sai	mple Detail				HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
		ory - NATA Site		71						
		- NATA Site # 1								
_		ry - NATA Site #								
		NATA Site # 237	36				Х	Х	Х	X
	field Laborator									\vdash
	rnal Laborator	* 1			ı	Dan D. 1711				
65	BH01 17.5	Nov 25, 2020	-	Soil		P20-De07027	X			
66	BH01 18.0	Nov 25, 2020		Soil	-	P20-De07029	Х			\vdash
67	BH01 18.25	Nov 25, 2020		Soil		P20-De07030	Х			\vdash
68	BH0118.5	Nov 25, 2020		Soil		P20-De07031	Х			
69	BH01 18.75	Nov 25, 2020		Soil		P20-De07032	Х			\vdash
70	BH01 19.0	Nov 25, 2020		Soil		P20-De07033	Х			\square
71	BH01 19.25	Nov 25, 2020		Soil		P20-De07034	Х			
72	BH01 19.5	Nov 25, 2020		Soil		P20-De07035	Х			
73	BH01 19.75	Nov 25, 2020		Soil		P20-De07036	Х			
74	BH01 20.0	Nov 25, 2020		Soil		P20-De07037	Х			
75	BH01 0.0	Nov 25, 2020	;	Soil		P20-De07038			Х	Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Company Name:

Project ID: 20.227 Order No.: Report #:

761067 08 6162 8980

Phone: Fax:

Received: Dec 1, 2020 10:23 AM

Due: Dec 8, 2020 Priority: 5 Day **Contact Name:** Ruth Allen

Sample Detail	HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
Melbourne Laboratory - NATA Site # 1254 & 14271				
Sydney Laboratory - NATA Site # 18217				
Brisbane Laboratory - NATA Site # 20794				
Perth Laboratory - NATA Site # 23736	Χ	Х	Х	Х
Mayfield Laboratory				
External Laboratory				
Test Counts	49	25	2	2

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.

10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Aldrin and Dieldrin (Total)*	mg/kg	-	0.05	N/A	
Method Blank				1 411	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery				1	
Organochlorine Pesticides					
Chlordanes - Total	%	81	70-130	Pass	
4.4'-DDE	%	75	70-130	Pass	
a-BHC	%	87	70-130	Pass	
b-BHC	%	77	70-130	Pass	
d-BHC	%	93	70-130	Pass	
Endosulfan sulphate	%	82	70-130	Pass	
Endrin	%	75	70-130	Pass	
Endrin ketone	%	114	70-130	Pass	
g-BHC (Lindane)	%	82	70-130	Pass	
Heptachlor	%	105	70-130	Pass	
Heptachlor epoxide	%	79	70-130	Pass	
Methoxychlor	%	105	70-130	Pass	
LCS - % Recovery	70	1.00	70 100	, , 400	
Heavy Metals					
Arsenic	%	91	80-120	Pass	
Cadmium	%	90	80-120	Pass	
Cadmiditi	/0	50	00-120	1 000	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Copper			%	94	80-120	Pass	
Lead			%	94	80-120	Pass	
Mercury			%	88	80-120	Pass	
Nickel			%	91	80-120	Pass	
Zinc			%	94	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 1999 NEPM Frac	tions		Result 1			
TRH C6-C9	P20-De06959	CP	%	90	70-130	Pass	
TRH C10-C14	P20-De06959	CP	%	73	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	P20-De06959	CP	%	99	70-130	Pass	
Toluene	P20-De06959	CP	%	99	70-130	Pass	
Ethylbenzene	P20-De06959	CP	%	105	70-130	Pass	
m&p-Xylenes	P20-De06959	СР	%	108	70-130	Pass	
o-Xylene	P20-De06959	CP	%	109	70-130	Pass	
Xylenes - Total*	P20-De06959	СР	%	108	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Frac	tions		Result 1			
Naphthalene	P20-De06959	СР	%	104	70-130	Pass	
TRH C6-C10	P20-De06959	СР	%	90	70-130	Pass	
Spike - % Recovery					·	•	
Total Recoverable Hydrocarbons	- 2013 NEPM Frac	tions		Result 1			
TRH >C10-C16	P20-De06959	СР	%	71	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	P20-De06959	СР	%	78	75-125	Pass	
Cadmium	P20-De06959	СР	%	87	75-125	Pass	
Chromium	P20-De06959	СР	%	93	75-125	Pass	
Copper	P20-De06959	СР	%	102	75-125	Pass	
Lead	P20-De06959	СР	%	90	75-125	Pass	
Mercury	P20-De06959	СР	%	86	75-125	Pass	
Nickel	P20-De06959	СР	%	86	75-125	Pass	
Zinc	P20-De06959	CP	%	83	75-125	Pass	
Spike - % Recovery			7.5	-			
Polycyclic Aromatic Hydrocarbon	ns			Result 1			
Acenaphthene	P20-De07038	СР	%	83	70-130	Pass	
Acenaphthylene	P20-De07038	CP	%	123	70-130	Pass	
Anthracene	P20-De07038	CP	%	117	70-130	Pass	
Benzo(a)pyrene	P20-De07038	CP	%	83	70-130	Pass	
Dibenz(a.h)anthracene	P20-De07038	CP	//	102	70-130	Pass	
Fluoranthene	P20-De07038	CP	//	74	70-130	Pass	
Fluorene	P20-De07038	CP	//	81	70-130	Pass	
Indeno(1.2.3-cd)pyrene	P20-De07038	CP	//	113	70-130	Pass	
Naphthalene	P20-De07038	CP	//	85	70-130	Pass	
Phenanthrene	P20-De07038	CP	// 6	94	70-130	Pass	
Pyrene	P20-De07038	CP	<u> </u>	83	70-130	Pass	
Spike - % Recovery	1 20-0601030	L OI	/0	00	10-130	1 033	
				Result 1			
Organochlorine Pesticides Chlordanes - Total	P20-De07038	СР	%	Result 1	70.120	Pass	
		CP	<u>%</u> %	78	70-130		
4.4'-DDE	P20-De07038	CP	<u>%</u> %	94	70-130 70-130	Pass Pass	
a-BHC	P20-De07038						

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
b-BHC	P20-De07038	CP	%	76			70-130	Pass	
d-BHC	P20-De07038	CP	%	110			70-130	Pass	
Endosulfan II	P20-De07038	CP	%	80			70-130	Pass	
Endosulfan sulphate	P20-De07038	СР	%	85			70-130	Pass	
Endrin	P20-De07038	СР	%	78			70-130	Pass	
Endrin ketone	P20-De07038	СР	%	111			70-130	Pass	
g-BHC (Lindane)	P20-De07038	СР	%	86			70-130	Pass	
Heptachlor	P20-De07038	СР	%	122			70-130	Pass	
Heptachlor epoxide	P20-De07038	СР	%	85			70-130	Pass	
Methoxychlor	P20-De07038	CP	%	114			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate								<u> </u>	
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	P20-De06958	СР	pH Units	8.9	8.8	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	P20-De06958	СР	pH Units	7.7	7.6	pass	30%	Pass	
Reaction Ratings*	P20-De06958	CP	comment	2.0	2.0	pass	30%	Pass	
Duplicate	1 20 2000000	<u> </u>	COMMITTER	2.0		puse	3070		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	P20-De06959	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	P20-De06959	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	P20-De06959	CP	mg/kg	< 50	< 50	<1	30%	Pass	
	F20-De06959	L CF	Hig/kg	< 50	< 50	< 1	30%	Fass	
Duplicate Polycyclic Arometic Hydrocerbon	•			Dogult 1	Popult 2	RPD			
Polycyclic Aromatic Hydrocarbons		CD		Result 1	Result 2		200/	Dana	
Acceptable	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	P20-De06959	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	P20-De06959	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	P20-De06959	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	P20-De06959	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	P20-De06959	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	P20-De06959	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	P20-De06959	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	P20-De06959	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	P20-De06959	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	P20-De06959	CP		< 0.05	< 0.05		30%		
			mg/kg			<1		Pass	
Endosulfan I	P20-De06959	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	P20-De06959	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	P20-De06959	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	P20-De06959	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

			Dogult 1	Dogult 2	BDD			
D00 D-000F0	CD					200/	Dana	
							+	
				1				
				1			+	
				1			Pass	
P20-De06959	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
2013 NEPM Fract	ions		Result 1	Result 2	RPD			
P20-De06959	CP	mg/kg	< 50	< 50	<1	30%	Pass	
P20-De06959	CP	mg/kg	< 100	< 100	<1	30%	Pass	
P20-De06959	CP	mg/kg	< 100	< 100	<1	30%	Pass	
			Result 1	Result 2	RPD			
P20-De06968	CP	pH Units	7.8	7.9	pass	30%	Pass	
P20-De06968	CP	pH Units	2.9	2.9	pass	30%	Pass	
P20-De06968	CP	comment	2.0	2.0	pass	30%	Pass	
			Result 1	Result 2	RPD			
P20-De06978	СР	pH Units	9.8	9.7	pass	30%	Pass	
P20-De06978	СР	pH Units	7.8	7.8	pass	30%	Pass	
P20-De06978	СР	comment	2.0	2.0	pass	30%	Pass	
					·			
			Result 1	Result 2	RPD			
P20-De07038	СР	mg/kg	3.5	3.2	10	30%	Pass	
P20-De07038	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
P20-De07038	CP		10	9.0	11	30%	Pass	
P20-De07038	CP		< 5	< 5	<1	30%	Pass	
P20-De07038	CP			< 5	<1		Pass	
							+ - +	
	P20-De06959 P20-De06959 P20-De06959 P20-De06959 P20-De06968 P20-De06968 P20-De06968 P20-De06978 P20-De06978 P20-De06978 P20-De07038 P20-De07038 P20-De07038 P20-De07038	P20-De06959 CP P20-De06968 CP P20-De06968 CP P20-De06968 CP P20-De06978 CP P20-De06978 CP P20-De07038 CP	P20-De06959 CP mg/kg P20-De06959 CP pH Units P20-De06968 CP pH Units P20-De06968 CP pH Units P20-De06978 CP pH Units P20-De06978 CP pH Units P20-De06978 CP pH Units P20-De07038 CP mg/kg P20	P20-De06959 CP mg/kg < 0.05 P20-De06959 CP mg/kg < 0.05	P20-De06959 CP mg/kg < 0.05 < 0.05 P20-De06959 CP mg/kg < 0.05	P20-De06959 CP mg/kg < 0.05 < 0.05 < 1 P20-De06959 CP mg/kg < 0.05	P20-De06959 CP mg/kg < 0.05 < 1 30% P20-De06959 CP mg/kg < 0.05	P20-De06959 CP mg/kg < 0.05 < 0.05 < 1 30% Pass

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace No Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction. S05

Authorised By

N02

Rhys Thomas Analytical Services Manager Elden Garrett Senior Analyst-Metal (WA) Patrick Patfield Senior Analyst-Organic (WA) Patrick Patfield Senior Analyst-Volatile (WA) Rhys Thomas Senior Analyst-SPOCAS (WA)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

	4				SI HUG	N 15 15	Teg IX	1.875	N. I.	a Village		(P 10	S 0 12		F075		3 18 3		-			
	STERN					СНА	IN O	F CU	STOE	Y RE	CORI	D									Page 1 of	6
Com	pany Name: WESTERN ENVIRONN	MENTAL PTY LTI	D	Contact	Name :	Ruth Alle	n			Purchas	e Order :	20.227							CoC Nu	mber :	1950	
Offic	e Address : Level 3, 25 Prowse Stre	et, West Perth,	, WA 6005	Project I	Manager	: Ruth Alle	n			Project	Number	20.227							Quote I	D:	190301W	
	ratory Address :			Fmail fo	r recults:	ruth.a@v	vostanu	com au		CC 1 &	lamas											
_	Eurofins 2, 91 Leach Hwy				r results.	1461.4664	vestelly.			2:	james.	g@westen	v.com.au		leah.p@	westen	.com.au		Courier	Consignr	nent#:	
1	lale WA 6105			-		Trì Trì		T	Analyt	es	_	_	1	Ţ.	Special	Direction	s & Comr	nents:				
Conta	act: Rob Johnston, +61 (0)8 9251 9	1605, ±61 (0)4 2	357 9286	1		XN, LS, CC																
Email	: Robertjohnston@eurofins.com			pH Field & Fox	CAS	tH, BTE stals (A	9															
				Field	SPOCAS	39: TF P, Me	HOLD											Containe	er			
#	Sample ID	Sample Date	Matrix	Hq		Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)									1L- Green	250ml Green	Black MB plastic	100mi Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil Bag
1	BH02 0.0	30/11/2020	SOIL	х	·	х											piastic	Tidatic	riastic		1	1
2	BH02 0.25		SOIL	Х																		1
3	BH02 0.5		SOIL	х		х															1	1
4	BH02 0.75		SOIL	х																		1
5	BH02 1.0		SOIL	Х			Х														1	1
6	BH02 1.25		SOIL	Х																		1
7	BH02 1.50		SOIL	х			Х														1	1
8	BH02 1.75		SOIL	Х													= 170	2 5				1
9	BH02 2.0		SOIL	х			Х							@ Q			211	2 4	SON		1	1
10	BH02 2.25		SOIL	Х									6	000			4 8	/ Na				1
·11	BH02 2.5		SOIL	Х										9 0			19.6					1
	BH02 2.75		SOIL	х									Ç.,	,	i i	an t	16.3		_			1
13	BH02 3.0		SOIL	Х									18		Final	-emp:						1
- 47	BH02 3.25	W	SOIL	Х																		1
15	BH02 3.5		SOIL	Х																		1
Relinqu	ished By:Leah Petrie			Received By	r:	0.1	cmo	ک				Turn aros	und Time	:	5 Days					Method O	f Shipment :	
Date &	Time : 2/12/2020		_	Date & Time	e:	21/2	_	305 PY	<u>~</u>										- 1	Courier Hand Deliv	rorad .	х
Signatu	re:	'á	-	Signature: Report Num	ber:	7610	396			5 5		Comments	:	Please prov	ride prelimir	nary report	for pH Field	l & Fox rest		Postal	erea [

	STERN TO NITE HEALT AL					СНА	IN O	F CU	STOD	Y REG	CORD								Ä	Page 2 o
Comp	any Name: WESTERN ENVIRONM	ENTAL PTY LT	D .	Contact	Name: .	Ruth Alle	en.			Purchase	Order :	20.227						CoC Nun	nber :	1950
Office	Address : Level 3, 25 Prowse Stree	et, West Perth	, WA 6005	Project N	Vanager:	Ruth Alle	n			Project I	lumber :	20.227						Quote II) :	190301W
	atory Address : urofins	-		Email for	results:	ruth.a@\	westenv.c	om.au		CC:	james.g@	@westenv	.com.au	leah.p@	westenv.	.com.au		Courier	Consignm	nent#:
Unit 2	, 91 Leach Hwy					o			Analyte	es .				Special	Direction:	s & Comn	nents:			
Email	ct: Rob Johnston, +61 (0)8 9251 96 : Robertjohnston@eurofins.com	Sample		pH Field & Fox	SPOCAS	Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)	HOLD									I	Contain			
#	Sample ID	Date	Matrix			Suite PAH, C Cr. C	c							1L- Green	250ml Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar
16	BH01 3.75		SOIL	х																
17	BH02 4.0		SOIL	х																
18	BH02 4.25		SOIL	х																
19	BH02 4.5		SOIL	х																
20	BH02 4.75		SOIL	х																
21	вно2 5.0		SOIL	х																
22	вно2 5.25		SOIL	х																

		Date				Su PAH Cr								Green	Green	MB plastic	Red Plastic	Purple Plastic	VIAL	Glass Jar	
16	BH01 3.75		SOIL	Х																	1
17	BH02 4.0		SOIL	х																	1
	BH02 4.25		SOIL	х																	1
19	BH02 4.5		SOIL	х																	1
20	вно2 4.75		SOIL	х																	1
21	BH02 5.0		SOIL	х																	1
22	вно2 5.25		SOIL	х																	1
	BH02 5.5		SOIL	х																	1
24	BH02 5.75		SOIL	х																	1
25	вно2 6.0		SOIL	х																	1
26	BH02 6.25		SOIL				Х														1
27	BH02 6.5		SOIL				Х														1
	вно2 6.75		SOIL				х														1
	вно2 7.0		SOIL				Х														1
30	BH02 7.25		SOIL				Х														1
Relinqui	ished By:Leah Petrie			Received B	у:	2/1	10	-as		ē.	Turn arou	und Time	:						Method O	f Shipment :	
Date &	Time :			Date & Tim	e:	2/1	2	2,08	٤~١										Courier	. [Yes
								-	-/	/									Hand Deliv	/ered	
Signatuı	re:		_	Signature:		-		_	_		Comments	:	Please prov	ide prelimi	nary report	for pH Fiel	d & Fox res	sults.	Postal	1	
				Report Nun	nber:		7610	9,6		-											
(4)				-																	

Page 2 of

ASS Soil Bag

,	4
	STERN

CHAIN OF CUSTODY RECORD

Page 3 of

Com	pany Name: WESTERN ENVIRON	IMENTAL PTY LTD)	Contact I	Name :	Ruth Alle	า			Purchas	e Order :	20.227						CoC Nur	nber :	1950	
_	e Address : Level 3, 25 Prowse St	reet, West Perth,	WA 6005	Project N	/lanager :	Ruth Alle	า			Project	Number :	20.227						Quote II) :	190301W	
mgt-l	ratory Address : Eurofins			Email for	results:	ruth.a@w	estenv.c			CC:	james.g	@westenv	.com.au	ieah.p@	westenv	.com.au		Courier	Consignn	nent#:	
1	2, 91 Leach Hwy							/	Analyte	S				Special	Direction	s & Comr	nents:				
1	ale WA 6105					- g -															
	ict: Rob Johnston, +61 (0)8 9251		357 9286	×		E & E															
Email	: Robertjohnston@eurofins.com	1		pH Field & Fox	S	1, B als	_														
<u> </u>				₽	SPOCAS	Met Al	НОГД														
		Sample		臣	S S	:68 I d l	Ŧ				1						Contain	er			
#	Sample ID	Date	Matrix	d d		Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)								1L- Green	250ml Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil Bag
31	BH02 7.5	1/12/20	SOIL				Х														1
32	BH02 7.75	1 //	SOIL				Х														1
33	BH02 8.0		SOIL				Х														1
34	BH02 8.25		SOIL				Х														1
35	BH02 8.5		SOIL				Х														1
36	BH02 8.75		SOIL				Х														1
37	BH02 9.0		SOIL				х														1
38	BH02 9.25		SOIL				х														1
39	BH02 9.5		SOIL				х														1
40	BH02 9.75		SOIL				х														1
41	BH02 10.0		SOIL				х														1
42	вног 10.25		SOIL				х														1
	вно2 10.5		SOIL				Х		-												1
	BH02 10.75	11/2	SOIL				х														1
45	BH02 11.0		SOIL				х														1
	ished By:Leah Petrie			Received By		2/12	رهه <u>.</u> د ځ	3	Ь			Turn arou	and Time :						Method Of	Shipment :	Yes
Signatu	re:		 5:	Signature: Report Num	ber :	2/12 76/	946		2			Comments	: Pleas	e provide prelimi	nary report	for pH Fiel	d & Fox res		Hand Deliv	ered	165

	STERN OMBERTAL					СНА	IN O	F CUSTOD'	Y RE	CORD)								Page 4 o	of
Comp	any Name: WESTERN ENVIRO	NMENTAL PTY LT	D	Contact	Name :	Ruth Alle	n		Purcha	se Order :	20.227						CoC Nun	nber:	1950	
Office	Address : Level 3, 25 Prowse S	treet, West Perth	, WA 6005	Project I	Manager	: Ruth Alle	n		Project	Number :	20.227						Quote II);	190301W	
mgt-E	atory Address : urofins , 91 Leach Hwy			Email fo	r results:	ruth.a@w	vestenv.c		CC:	james.g	@westenv	.com.au		westenv			Courier	Consignr	nent #:	
	ale WA 6105				1	-		Analyte	S	_	Т		Special	Direction	s & Comr	nents :				
Conta	ct: Rob Johnston, +61 (0)8 925: Robertjohnston@eurofins.com		2357 9286	pH Field & Fox	AS	Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)	Q													
				Field	SPOCAS	9: TR 9, Me Ni, P	HOLD									Contain	er			
#	Sample ID	Sample Date	Matrix	돕		Suite B PAH, OCF Cr, Cu,							1L- Green	250ml Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil B
46	BH02 11.25		SOIL				х													1
47	BH02 11.5		SOIL				х													1
48	BH02 11.75		SOIL				х													1
49	BH02 12.0		SOIL				х													1
50	BH02 12.25		SOIL				х													1
51	BH02 12.5		SOIL				Х													1
52	вно2 12.75		SOIL				Х													1
53	вно2 13.00		SOIL				Х													1
54	BH02 13.25		SOIL				Х													1
55	BH02 13.5		SOIL				Х													1
56	BH02 13.75		SOIL				Х													1
57	BH02 14.0		SOIL				Х													1
58	BH02 14.25		SOIL				Х													1
59	BH02 14.5		SOIL				Х													1
60	BH02 14.75		SOIL				Х													1
Relinqu	ished By: _Leah Petrie			Received E		2.1	12_	sicsem			Turn aro	und Time :						Method C	Of Shipment :	Yes

Comments :

Signature:

Report Number:

761096

Signature:

Hand Delivered

Postal

Please provide preliminary report for pH Field & Fox results.

ME ME	ESTERN IRONNENTAL					СНА	IN O	F CUS	STOD	Y RE	COR	D	1818	1			114	5		, e	Page 5	of
Com	pany Name: WESTERN ENVIRON	MENTAL PTY LTE)	Contact	Name :	Ruth Alle	n			Purcha	se Order	: 20.227							CoC Nu	nber :	1950	
Offic	e Address : Level 3, 25 Prowse Str	eet, West Perth,	WA 6005	Project I	Manager :	Ruth Alle	n			Project	Number	: 20.227							Quote II		190301W	
Labo	ratory Address :			Email fa																		_
1 -	Eurofins			Email to	r results:	ruth.a@v	vestenv.	com.au		CC:	james.	g@westen	v.com.au		leah.p@	westenv	.com.au		Courier	Consign	nent#:	
4	2, 91 Leach Hwy				1			,	Analyt	es	_				Special	Direction	s & Comn	nents:				
Conta	lale WA 6105 act: Rob Johnston, +61 (0)8 9251 l: Robertjohnston@eurofins.com	,	357 9286	pH Field & Fox	SPOCAS	Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)	НОГР															
				Fiel	SPC	P, N	포											Containe	er			
#	Sample ID	Sample Date	Matrix	퓝		Suite E PAH, OC Cr, Cu									1L- Green	250ml Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil Bag
61	BH02 15.0	1/12/19	SOIL				Х															1
62	BH02 15.25		SOIL				Х				1.7.											1
63	BH02 15.5	1	SOIL				Х															1
64	BH02 15.75		SOIL	-			Х															1
65	BH02 16.0		SOIL				Х															1
66	BH02 16.25		SOIL				Х															1
67	BH02 16.5		SOIL				Х															1
68	BH02 16.75		SOIL				Х															1
69	BH02 17.0		SOIL				Х															1
70	BH02 17.25		SOIL				Х															1
71	BH02 17.5		SOIL				X															1
72	BH02 17.75	a hadaa	SOIL	-			Х					-										1
73	BH02 18.0	3/2/20	SOIL	-			Х															1
74	BH02 18.25 BH02 18.5	+V-	SOIL				X															1
75	BHUZ 16.5		SOIL	-			Х															1
Relinqu Date &	rished By:Leah Petrie			Received B	/: e :	2/17 2/17 76	حــــــــــــــــــــــــــــــــــــ	510S (pn	ē D		Turn aro	und Time :							Method Of Courier Hand Deliv	Shipment :	Yes
Signatu	rre:			Signature: Report Num	iber:	76	090	,		0		Comments	s: P	Please provi	de prelimir	ary report	for pH Fleio	l & Fox resu		Postal		

4	
WESTER	\

CHAIN OF CUSTODY RECORD

Page 6 of

Comp	any Name: WESTERN ENVIRO	NMENTAL PTY LTI		Contact N	lame :	Ruth Aller	l			Purchas	e Order :	20.227							CoC Nur	nber :	1950	
Office	Address : Level 3, 25 Prowse S	treet, West Perth,	WA 6005	Project N	anager :	Ruth Aller	l			Project	Number :	20.227							Quote II) :	190301W	
	atory Address : urofins			Email for	results:	ruth.a@w	estenv.c	om.au		CC:	james.go	@westenv	.com.au		leah.p@v	vestenv.co	om.au		Courier	Consignm	nent#:	
Unit 2	, 91 Leach Hwy								Analyte	es					Special I	Directions	& Comn	nents:				
Kewd	ale WA 6105					_ G _																
Conta	ct: Rob Johnston, +61 (0)8 925:	1 9605, +61 (0)4 2	357 9286			EXN FS,																
Email	Robertjohnston@eurofins.com	n		6	10	IS (
				⊗ □	Š	RH, eta Pb,	HOLD															
				pH Field & Fox	SPOCAS	7. S. I	오		1									Contain	er			
#	Sample ID	Sample Date	Matrix	Hd		Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)									1L- Green	250ml Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil Bag
76	BH02 18.75	1	SOIL				Х															1
77	BH02 19.0		SOIL				Х															1
78	BH02 19.25		SOIL				х															1
	BH02 19.5		SOIL				х															1
80	BH02 19.75		SOIL				Х															1
81	вно2 20.0		SOIL				Х															1
82			SOIL																			
83			SOIL																			
84			SOIL																			
85			SOIL																			
86			SOIL																			
87			SOIL																			
88			SOIL																			
89			SOIL																			
90			SOIL																			
telinqu	ished By: _Leah Petrie			Received By	:	2.7	c	ans				Turn aro	und Time :							Method O	f Shipment :	
ate &	Time:)		Date & Time	:	2/17	<u> </u>	:05 P	w	6										Courier		Yes
ignatu	re: 23	>	_	Signature:		2/12	000		7			Comments	: Pl	ease prov	ide prelimi	nary report	for pH Fiel	d & Fox res		Hand Deli Postal	ered/	
7				Report Num	ber:	705	-16															

Robert Johnston

From: Leah Petrie < leah.p@westenv.com.au>
Sent: Friday, 4 December 2020 14:40

To: Robert Johnston

Cc: James Gibson; Ruth Allen

Subject: RE: Attention - Eurofins Sample Receipt Advice - Report 761096 : Site 20.227

Follow Up Flag: Follow up **Flag Status:** Completed

EXTERNAL EMAIL*

Hi Rob,

These samples were not collected, please exclude from the CoC. Apologies for any inconvenience.

Kind regards,

Leah Petrie

Environmental Scientist

BSc Environmental Science and
Conservation Biology

Level 3/25 Prowse St, West Perth WA 6005

P: (08) 6162 8980 M:_0473 674 761

E: leah.p@westenv.com.au

The information contained in this email, including any attachments, may contain confidential, commercially sensitive or restricted information. If you are not the intended recipient, any use, disclosure or copying of this information is unauthorised.

If you have received this email in error, please notify the sender immediately by return email and then delete it from your system. Please consider the environment before printing this email.

From: RobertJohnston@eurofins.com < RobertJohnston@eurofins.com >

Sent: Friday, 4 December 2020 9:40 AM **To:** Ruth Allen <ruth.a@westenv.com.au>

Cc: James Gibson < james.g@westenv.com.au>; Leah Petrie < leah.p@westenv.com.au> **Subject:** Attention - Eurofins Sample Receipt Advice - Report 761096 : Site 20.227

BH02 15.75 and BH02 19.25 not received

Dear Valued Client,

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins Analytical Services Manager as soon as possible to make certain that they get changed.

Western Environmental Pty Ltd Level 3, 25 Prowse Street West Perth WA 6005

NATA Accredited Accreditation Number 1261 Site Number 23736

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ruth Allen

Report 761096-S

Project name

Project ID 20.227

Received Date Dec 02, 2020

Client Sample ID			BH02 0.0	BH02 0.25	BH02 0.5	BH02 0.75
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De07294	P20-De07295	P20-De07296	P20-De07297
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	< 40	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	< 50	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-C36 (Total)	50	mg/kg	< 50	-	< 50	-
ВТЕХ	•					
Benzene	0.1	mg/kg	< 0.2	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.2	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.2	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.4	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.2	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.6	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	55	-	81	-
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 1	-	< 0.5	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 50	-
TRH C6-C10	20	mg/kg	< 40	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 40	-	< 20	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 1	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.2	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	2.4	-	1.2	-
Acenaphthene	0.5	mg/kg	< 1	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 1	-	< 0.5	-
Anthracene	0.5	mg/kg	< 1	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 1	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 1	-	< 0.5	-
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 1	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 1	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 1	-	< 0.5	-
Chrysene	0.5	mg/kg	< 1	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 1	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 1	-	< 0.5	-
Fluorene	0.5	mg/kg	< 1	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 1	-	< 0.5	-

011 10 110						
Client Sample ID			BH02 0.0	BH02 0.25	BH02 0.5	BH02 0.75
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De07294	P20-De07295	P20-De07296	P20-De07297
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 1	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 1	-	< 0.5	-
Pyrene	0.5	mg/kg	< 1	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 1	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	73	-	80	-
p-Terphenyl-d14 (surr.)	1	%	68	-	82	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.2	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.1	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.1	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.1	-	< 0.05	-
a-BHC	0.05	mg/kg	< 0.1	-	< 0.05	-
Aldrin	0.05	mg/kg	< 0.1	-	< 0.05	-
b-BHC	0.05	mg/kg	< 0.1	-	< 0.05	-
d-BHC	0.05	mg/kg	< 0.1	-	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.1	-	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.1	-	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.1	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.1	-	< 0.05	-
Endrin	0.05	mg/kg	< 0.1	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.1	-	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.1	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.1	-	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.1	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.1	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.1	-	< 0.05	-
Methoxychlor	0.05	mg/kg	< 0.1	-	< 0.05	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.1	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.1	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	99	-	117	-
Tetrachloro-m-xylene (surr.)	1	%	74	-	57	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	-
Heavy Metals		, 5 5				
Arsenic	2	mg/kg	< 2	-	< 2	-
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	-
Chromium	5	mg/kg	6.6	-	< 5	-
Copper	5	mg/kg	5.5	-	11	-
Lead	5	mg/kg	31	-	15	-
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	-
Nickel	5	mg/kg	< 5	-	< 5	-
Zinc	5	mg/kg	49	-	26	_

Client Sample ID Sample Matrix			BH02 0.0 Soil	BH02 0.25 Soil	BH02 0.5 Soil	BH02 0.75 Soil
Eurofins Sample No.			P20-De07294	P20-De07295	P20-De07296	P20-De07297
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test	·					
pH-F (Field pH test)*	0.1	pH Units	9.4	9.3	9.3	9.5
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.4	7.1	6.9	7.2
Reaction Ratings*S05	-	comment	3.0	3.0	2.0	2.0
% Moisture	1	%	4.2	-	15	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Acid Sulfate Soils Field pH Test	LOR	Unit	BH02 1.0 Soil P20-De07298 Nov 30, 2020	BH02 1.25 Soil P20-De07299 Nov 30, 2020	BH02 1.5 Soil P20-De07300 Nov 30, 2020	BH02 1.75 Soil P20-De07301 Nov 30, 2020
pH-F (Field pH test)*	0.1	pH Units	8.7	8.2	8.4	7.8
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	6.8	6.8	6.9	5.4
Reaction Ratings*S05	-	comment	2.0	3.0	3.0	3.0

Client Sample ID			BH02 2.0	BH02 2.25	BH02 2.5	BH02 2.75
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.				P20-De07303	P20-De07304	P20-De07305
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	8.9	8.9	8.9	7.4
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	5.5	7.2	6.7	2.7
Reaction Ratings*S05	_	comment	3.0	3.0	3.0	4.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Acid Sulfate Soils Field pH Test	LOR	Unit	BH02 3.0 Soil P20-De07306 Nov 30, 2020	BH02 3.25 Soil P20-De07307 Nov 30, 2020	BH02 3.5 Soil P20-De07308 Nov 30, 2020	BH02 3.75 Soil P20-De07309 Nov 30, 2020
pH-F (Field pH test)*	0.1	pH Units	7.5	8.0	7.7	7.9
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	2.6	2.6	2.7	2.7
Reaction Ratings*S05	-	comment	2.0	2.0	3.0	3.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH02 4.0 Soil P20-De07310 Nov 30, 2020	BH02 4.25 Soil P20-De07311 Nov 30, 2020	BH02 4.5 Soil P20-De07312 Nov 30, 2020	BH02 4.75 Soil P20-De07313 Nov 30, 2020
Test/Reference	LOR	Unit			, , , , , ,	
Acid Sulfate Soils Field pH Test	•					
pH-F (Field pH test)*	0.1	pH Units	7.4	7.4	7.5	8.5
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	2.7	2.9	3.1	5.3
Reaction Ratings*S05	-	comment	3.0	3.0	2.0	2.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH02 5.0 Soil P20-De07314 Nov 30, 2020	BH 5.25 Soil P20-De07315 Nov 30, 2020	BH02 5.5 Soil P20-De07316 Nov 30, 2020	BH02 5.75 Soil P20-De07317 Nov 30, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test	·	•				
pH-F (Field pH test)*	0.1	pH Units	7.6	8.0	7.4	7.3
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	2.9	3.5	3.0	2.8
Reaction Ratings*S05	-	comment	3.0	2.0	2.0	2.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH02 6.0 Soil P20-De07318 Nov 30, 2020
Test/Reference	LOR	Unit	
Acid Sulfate Soils Field pH Test			
pH-F (Field pH test)*	0.1	pH Units	7.1
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	2.7
Reaction Ratings*S05	-	comment	2.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Perth	Dec 09, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Perth	Dec 09, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Perth	Dec 09, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Perth	Dec 09, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Perth	Dec 09, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Perth	Dec 09, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Perth	Dec 09, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters Soils Sediments by ICP-MS			
Acid Sulfate Soils Field pH Test	Perth	Dec 04, 2020	7 Days
- Method: LTM-GEN- 7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests			
% Moisture	Perth	Dec 03, 2020	14 Days

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Order No.: Report #:

761096 08 6162 8980

Phone: Fax:

Received: Dec 2, 2020 5:05 PM

Due: Dec 9, 2020
Priority: 5 Day
Contact Name: Ruth Allen

Eurofins Analytical Services Manager: Robert Johnston

Project Name:

Company Name:

Address:

Project ID: 20.227

		HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9				
Melb	ourne Laborate								
Sydı	ney Laboratory	- NATA Site # 1	8217						
Bris	bane Laborator	y - NATA Site #	20794						
		NATA Site # 237	36			Х	Х	Х	Х
_	field Laboratory								
	rnal Laboratory			1	_				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH02 0.0	Nov 30, 2020		Soil	P20-De07294		Х	Х	Х
2	BH02 0.25	Nov 30, 2020		Soil	P20-De07295		Х		
3	BH02 0.5	Nov 30, 2020		Soil	P20-De07296		Х	Х	Х
4	BH02 0.75	Nov 30, 2020		Soil	P20-De07297		Х		
5	5 BH02 1.0 Nov 30, 2020 Soil P20-De07298								
6	6 BH02 1.25 Nov 30, 2020 Soil P20-De07299								
7 BH02 1.5 Nov 30, 2020 Soil P20-De07300									
8	BH02 1.75	Nov 30, 2020		Soil	P20-De07301		Х		
9	BH02 2.0	Nov 30, 2020		Soil	P20-De07302		Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761096 08 6162 8980

Phone: Fax:

Received: Dec 2, 2020 5:05 PM

Due: Dec 9, 2020
Priority: 5 Day
Contact Name: Ruth Allen

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								Eurofins Suite B9
				71					
		y - NATA Site # 1							
		ory - NATA Site #							
		NATA Site # 237	'36			X	X	X	X
	field Laborato								
	rnal Laborato								
10	BH02 2.25	Nov 30, 2020		Soil	P20-De07303		X		
11	BH02 2.5	Nov 30, 2020		Soil	P20-De07304		X		
12	BH02 2.75	Nov 30, 2020		Soil	P20-De07305	1	X		\vdash
13	BH02 3.0	Nov 30, 2020		Soil	P20-De07306	-	X		\vdash
14	BH02 3.25	Nov 30, 2020		Soil	P20-De07307	-	X		\vdash
15	BH02 3.5	Nov 30, 2020		Soil	P20-De07308	1	X		
	16 BH02 3.75 Nov 30, 2020 Soil P20-De07309								\square
17	BH02 4.0	Nov 30, 2020		Soil	P20-De07310	1	X		
18 BH02 4.25 Nov 30, 2020 Soil P20-De07311 19 BH02 4.5 Nov 30, 2020 Soil P20-De07312									
19	BH02 4.5	P20-De07312	1	X					
20	BH02 4.75	Nov 30, 2020		Soil	P20-De07313		Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Company Name:

Project ID: 20.227

Order No.: Report #:

761096 08 6162 8980

Phone: Fax:

Received: Dec 2, 2020 5:05 PM

Due: Dec 9, 2020
Priority: 5 Day
Contact Name: Ruth Allen

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								Moisture Set	Eurofins Suite B9
				71						
_		y - NATA Site # 18								
		ory - NATA Site #								
		NATA Site # 237	36				Х	Х	Х	Х
	field Laborato									
	rnal Laborato	<u> </u>								
21	BH02 5.0	Nov 30, 2020		Soil		P20-De07314		Х		
22	BH 5.25	Nov 30, 2020		Soil		P20-De07315		X		
23	BH02 5.5	Nov 30, 2020		Soil		P20-De07316		X		
24	BH02 5.75	Nov 30, 2020		Soil		P20-De07317		Х		
25	BH02 6.0	Nov 30, 2020		Soil		P20-De07318		Х		
26	BH02 6.25	Nov 30, 2020		Soil		P20-De07319	Х			
27	27 BH02 6.5 Nov 30, 2020 Soil P20-De07320									
28	28 BH02 6.75 Nov 30, 2020 Soil P20-De07321									
29	29 BH02 7.0 Nov 30, 2020 Soil P20-De07322									
30 BH02 7.25 Nov 30, 2020 Soil P20-De07323										
31	BH02 7.5	Nov 30, 2020		Soil		P20-De07324	Х			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone: +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761096 08 6162 8980

Phone: Fax:

Received: Dec 2, 2020 5:05 PM Due: Dec 9, 2020

Priority: 5 Day
Contact Name: Ruth Allen

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
		- NATA Site # 1								
		y - NATA Site #								
		NATA Site # 237	36				Х	Х	Х	Х
	field Laborator									
	rnal Laboratory		Ţ		-					
32	BH02 7.75	Nov 30, 2020		Soil	P20-E	De07325	Х			
33	BH02 8.0	Nov 30, 2020		Soil		De07326	Х			
34	BH02 8.25	Nov 30, 2020		Soil	P20-E	De07327	Х			
35	BH02 8.5	Nov 30, 2020		Soil	P20-0	De07328	Х			
36	BH02 8.75	Nov 30, 2020		Soil	P20-0	De07329	Х			
37	BH02 9.0	Nov 30, 2020		Soil	P20-0	De07330	Х			
38	38 BH02 9.25 Nov 30, 2020 Soil P20-De07331									
39 BH02 9.5 Nov 30, 2020 Soil P20-De07332							Χ			
40 BH02 9.75 Nov 30, 2020 Soil P20-De07333										
41 BH02 10.0 Nov 30, 2020 Soil P20-De07334										
42	BH02 10.25	Nov 30, 2020		Soil	P20-0	De07335	Χ			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street

West Perth WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761096 08 6162 8980

Phone: Fax:

Received: Dec 2, 2020 5:05 PM

Due: Dec 9, 2020
Priority: 5 Day
Contact Name: Ruth Allen

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
Sydney Laboratory - NATA Site # 18217										
Brisbane Laboratory - NATA Site # 20794							.,			
Perth Laboratory - NATA Site # 23736							Х	Х	Х	X
Mayfield Laboratory										
	rnal Laboratory BH02 10.5	1 1		Soil	P20-De073	26	Х			
-	BH02 10.5	Nov 30, 2020		Soil	<u> </u>		<u>^</u>			
-	BH02 10.75	Nov 30, 2020		Soil	P20-De073		^ X			
-	BH02 11.0	Nov 30, 2020 Nov 30, 2020		Soil	P20-De073		^ X			
	BH02 11.25	· ·		Soil	P20-De073		^ X			
-	ВН02 11.75	Nov 30, 2020 Nov 30, 2020		Soil	P20-De073		^ X			
-	BH02 11.75	Nov 30, 2020		Soil	P20-De073		<u>^</u>			
-	BH02 12.25	Nov 30, 2020		Soil	P20-De073		^ X			
	BH02 12.25	Nov 30, 2020		Soil	P20-De073		^ X			
-	BH02 12.75	Nov 30, 2020		Soil	P20-De073		^ X			
	BH02 13.0	Nov 30, 2020		Soil	P20-De073		<u>^</u>			

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Western Environmental Pty Ltd

Level 3, 25 Prowse Street

WA 6005

West Perth

Project Name:

Address:

Company Name:

Project ID: 20.227 Order No.: Report #:

761096 08 6162 8980

Phone: Fax:

Received: Dec 2, 2020 5:05 PM

Due: Dec 9, 2020 Priority: 5 Day **Contact Name:** Ruth Allen

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
				71						
Sydney Laboratory - NATA Site # 18217										
Brisbane Laboratory - NATA Site # 20794										
		NATA Site # 237	36				Х	Х	Х	X
	field Laborator									
	rnal Laborator	' 1 1								
54	BH02 13.25	Nov 30, 2020		Soil		P20-De07347	Х			
55	BH02 13.5	Nov 30, 2020		Soil		P20-De07348	Х			
56	BH02 13.75	Nov 30, 2020		Soil		P20-De07349	Х			
57	BH02 14.0	Nov 30, 2020		Soil		P20-De07350	Х			
58	BH02 14.25	Nov 30, 2020		Soil		P20-De07351	Χ			
59	BH02 14.5	Nov 30, 2020		Soil		P20-De07352	Х			
60	BH02 14.75	Nov 30, 2020		Soil		P20-De07353	Х			
61	BH02 15.0	Nov 30, 2020		Soil		P20-De07354	Х			
62	BH02 15.25	Nov 30, 2020		Soil		P20-De07355	Х			
63	BH02 15.5	Nov 30, 2020		Soil		P20-De07356	Х			
64	BH02 16.0	Nov 30, 2020		Soil		P20-De07358	Χ			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

Phone:

Fax:

761096 08 6162 8980

Received: Dec 2, 2020 5:05 PM **Due:** Dec 9, 2020

Due: Dec 9, 202
Priority: 5 Day
Contact Name: Ruth Allen

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
				71						
Sydney Laboratory - NATA Site # 18217										
Brisbane Laboratory - NATA Site # 20794										
Perth Laboratory - NATA Site # 23736						Х	X	X	Х	
	field Laborator	•								
	ernal Laborator		Г	l						
65	BH02 16.25	Nov 30, 2020		Soil		P20-De07359	X			
66	BH02 16.5	Nov 30, 2020		Soil		P20-De07360	X			
67	BH02 16.75	Nov 30, 2020		Soil		P20-De07361	X			
68	BH02 17.0	Nov 30, 2020		Soil		P20-De07362	X			
69	BH02 17.25	Nov 30, 2020		Soil		P20-De07363	Х			
70	BH02 17.5	Nov 30, 2020		Soil		P20-De07364	Х			
71	BH02 17.75	Nov 30, 2020		Soil		P20-De07365	Х			
72	BH02 18.0	Nov 30, 2020		Soil		P20-De07366	Х			
73	BH02 18.25	Nov 30, 2020		Soil		P20-De07367	Х			
74	BH0218.5	Nov 30, 2020		Soil		P20-De07368	Х			
75	BH02 18.75	Nov 30, 2020		Soil		P20-De07369	Х			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Company Name:

Project ID: 20.227

Order No.:

Report #: Phone: 761096 08 6162 8980

Fax:

Received: Dec 2, 2020 5:05 PM

Due: Dec 9, 2020
Priority: 5 Day
Contact Name: Ruth Allen

		Sa	mple Detail				HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
Melbourne Laboratory - NATA Site # 1254 & 14271										
		- NATA Site # 1								
		y - NATA Site #								
		NATA Site # 237	36				Х	Х	Х	X
	ield Laboratory									
	rnal Laboratory	1		1						
76	BH02 19.0	Nov 30, 2020		Soil	P	20-De07370	Х			
77	BH02 19.5	Nov 30, 2020		Soil	P	20-De07372	Х			
78	BH02 19.75	Nov 30, 2020		Soil	P	20-De07373	Х			
79 BH02 20.0 Nov 30, 2020 Soil P20-De07374							Х			
Test	Test Counts							25	3	2

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank			 		
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	1 3 3				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
		< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Mathod Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank		T			
Organochlorine Pesticides		.04	0.4	Dana	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Method Blank	1g,g	1 0.00	3.33		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	iiig/iig	1 100	1 100	1 466	
Heavy Metals		T			
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
	- 5 5			Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	1	
Zinc	mg/kg	< 5	5	Pass	_
LCS - % Recovery		Т		I	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	93	70-130	Pass	
TRH C10-C14	%	75	70-130	Pass	
LCS - % Recovery		T		ı	
BTEX					1
Benzene	%	88	70-130	Pass	-
Toluene	%	97	70-130	Pass	
Ethylbenzene	%	111	70-130	Pass	
m&p-Xylenes	%	116	70-130	Pass	
Xylenes - Total*	%	117	70-130	Pass	
LCS - % Recovery				1	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	111	70-130	Pass	
TRH C6-C10	%	95	70-130	Pass	
LCS - % Recovery				,	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	72	70-130	Pass	
Acenaphthylene	%	109	70-130	Pass	
Anthracene	%	105	70-130	Pass	
Benz(a)anthracene	%	73	70-130	Pass	
Benzo(a)pyrene	%	91	70-130	Pass	
Benzo(b&j)fluoranthene	%	109	70-130	Pass	
Benzo(g.h.i)perylene	%	102	70-130	Pass	
Benzo(k)fluoranthene	%	100	70-130	Pass	
Chrysene	%	112	70-130	Pass	
Dibenz(a.h)anthracene	%	74	70-130	Pass	
Fluoranthene	%	87	70-130	Pass	
	%	73	70-130	Pass	
Fluorene	7/0		70.00	. 400	
Fluorene Indeno(1,2,3-cd)pyrene		80	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	80 74	70-130 70-130	Pass	
		80 74 89	70-130 70-130 70-130	Pass Pass Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery							
Organochlorine Pesticides							
Chlordanes - Total			%	81	70-130	Pass	
4.4'-DDE			%	75	70-130	Pass	
a-BHC			%	87	70-130	Pass	
b-BHC			%	77	70-130	Pass	
d-BHC			%	93	70-130	Pass	
Endosulfan sulphate			%	82	70-130	Pass	
Endrin			%	75	70-130	Pass	
Endrin ketone			%	114	70-130	Pass	
g-BHC (Lindane)			%	82	70-130	Pass	
Heptachlor			%	105	70-130	Pass	
Heptachlor epoxide			%	79	70-130	Pass	
Methoxychlor			%	105	70-130	Pass	
LCS - % Recovery			,,,				
Total Recoverable Hydrocarbons	- 2013 NFPM Fract	ions					
TRH >C10-C16	MIIAU		%	76	70-130	Pass	
LCS - % Recovery			/0	, ,,	70 100	1 433	
Heavy Metals							
Arsenic			%	93	80-120	Pass	
Cadmium			%	93	80-120	Pass	
Chromium			%	92	80-120	Pass	
				94			
Copper			%		80-120	Pass	
Lead			%	95	80-120	Pass	
Mercury			%	91	80-120	Pass	
Nickel			%	91	80-120	Pass	
Zinc	Lab Sample ID	QA	% Units	97 Result 1	80-120 Acceptance	Pass Pass	Qualifying
On the 0/ December 1		Source			Limits	Limits	Code
Spike - % Recovery	4000 NEDM 5	· · · · ·		Do andi 4			
Total Recoverable Hydrocarbons				Result 1			
Total Recoverable Hydrocarbons TRH C6-C9	- 1999 NEPM Fract P20-De15850	NCP	%	Result 1	70-130	Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery			%	115	70-130	Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX	P20-De15850	NCP		115 Result 1			
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene	P20-De15850 P20-De07891	NCP NCP	%	115 Result 1 92	70-130	Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene	P20-De15850 P20-De07891 P20-De15850	NCP NCP NCP	% %	115 Result 1 92 99	70-130 70-130	Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene	P20-De15850 P20-De07891 P20-De15850 P20-De15850	NCP NCP NCP	% % %	115 Result 1 92 99 121	70-130 70-130 70-130	Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850	NCP NCP NCP NCP NCP	% % %	115 Result 1 92 99 121 119	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850	NCP NCP NCP NCP NCP	% % % %	115 Result 1 92 99 121	70-130 70-130 70-130	Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850	NCP NCP NCP NCP NCP	% % %	115 Result 1 92 99 121 119	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850	NCP NCP NCP NCP NCP NCP NCP	% % % %	115 Result 1 92 99 121 119 111	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850	NCP NCP NCP NCP NCP NCP NCP	% % % % %	115 Result 1 92 99 121 119 111 117 Result 1	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % %	115 Result 1 92 99 121 119 111 117 Result 1 105	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850	NCP NCP NCP NCP NCP NCP NCP	% % % % %	115 Result 1 92 99 121 119 111 117 Result 1	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De178850 P20-De178850	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % %	115 Result 1 92 99 121 119 111 117 Result 1 105	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De178850 P20-De178850	NCP	% % % % %	115 Result 1 92 99 121 119 111 117 Result 1 105	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De178850 P20-De178850	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % %	115 Result 1 92 99 121 119 111 117 Result 1 105 125	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De07891 P20-De07891	NCP	% % % % % %	115 Result 1 92 99 121 119 111 117 Result 1 105 125 Result 1	70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides Chlordanes - Total	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De178850 - 2013 NEPM Fract P20-De07891 P20-De07891	NCP	% % % % % %	Result 1 92 99 121 119 111 117 Result 1 105 125 Result 1 89	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDE	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De07891 P20-De07038 P20-De07038	NCP	% % % % % %	Result 1 92 99 121 119 111 117 Result 1 105 125 Result 1 89 78	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDE a-BHC	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De07891 P20-De07038 P20-De07038 P20-De07038	NCP	% % % % % % %	Result 1 92 99 121 119 111 117 Result 1 105 125 Result 1 89 78 94	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDE a-BHC Aldrin	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De07891 P20-De07038 P20-De07038 P20-De07038 P20-De07038	NCP	% % % % % % %	Result 1 92 99 121 119 111 117 Result 1 105 125 Result 1 89 78 94 77	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDE a-BHC Aldrin b-BHC	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De07891 P20-De07038 P20-De07038 P20-De07038 P20-De07038 P20-De07038	NCP	% % % % % % % % % % % % % % % %	Result 1 92 99 121 119 111 117 Result 1 105 125 Result 1 89 78 94 77 76	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDE a-BHC Aldrin b-BHC d-BHC	P20-De15850 P20-De07891 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De15850 P20-De07891 P20-De07038 P20-De07038 P20-De07038 P20-De07038 P20-De07038 P20-De07038 P20-De07038	NCP	% % % % % % % % % % % % % % % % % % %	Result 1 92 99 121 119 111 117 Result 1 105 125 Result 1 89 78 94 77 76 110	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Report Number: 761096-S

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	P20-De07038	NCP	%	111			70-130	Pass	
g-BHC (Lindane)	P20-De07038	NCP	%	86			70-130	Pass	
Heptachlor	P20-De07038	NCP	%	122			70-130	Pass	
Heptachlor epoxide	P20-De07038	NCP	%	85			70-130	Pass	
Methoxychlor	P20-De07038	NCP	%	114			70-130	Pass	
Spike - % Recovery		,		•					
Heavy Metals				Result 1					
Arsenic	P20-De06959	NCP	%	78			75-125	Pass	
Cadmium	P20-De06959	NCP	%	87			75-125	Pass	
Chromium	P20-De06959	NCP	%	93			75-125	Pass	
Copper	P20-De06959	NCP	%	102			75-125	Pass	
Lead	P20-De06959	NCP	%	90			75-125	Pass	
Mercury	P20-De06959	NCP	%	86			75-125	Pass	
Nickel	P20-De06959	NCP	%	86			75-125	Pass	
Zinc	P20-De06959	NCP	%	83			75-125	Pass	
Spike - % Recovery	. 20 200000		,,,				10.20		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C10-C14	P20-De06959	NCP	%	73			70-130	Pass	
Spike - % Recovery	1 20 2000000	110.	,,,	1.0			70 100	1 400	
Polycyclic Aromatic Hydrocarbons				Result 1					
Acenaphthene	P20-De07038	NCP	%	83			70-130	Pass	
Acenaphthylene	P20-De07038	NCP	%	123			70-130	Pass	
Anthracene	P20-De07038	NCP	%	117			70-130	Pass	
Benz(a)anthracene	P20-No47851	NCP	%	93			70-130	Pass	
Benzo(a)pyrene	P20-De07038	NCP	%	83			70-130	Pass	
Benzo(b&j)fluoranthene	P20-No47851	NCP	%	94			70-130	Pass	
Benzo(g.h.i)perylene	P20-No47851	NCP	%	123			70-130	Pass	
Benzo(k)fluoranthene	P20-No47851	NCP	%	107			70-130	Pass	
Chrysene	P20-No47851	NCP	%	109			70-130	Pass	
Dibenz(a.h)anthracene	P20-De07038	NCP	%	103			70-130	Pass	
Fluoranthene	P20-De07038	NCP	%	74			70-130	Pass	
Fluorene	P20-De07038	NCP	<u> </u>	81			70-130	Pass	
Indeno(1.2.3-cd)pyrene	P20-De07038	NCP	%	113			70-130	Pass	
Naphthalene	P20-De07038	NCP	<u> </u>	85			70-130	Pass	
· ·	P20-De07038	NCP	%	94			70-130	Pass	
Phenanthrene Pyrene	P20-De07038	NCP	%	83			70-130	Pass	
	F20-De07036	INCP	70	03			70-130	Fass	
Spike - % Recovery Total Recoverable Hydrocarbons -	2012 NEDM Front	ione		Result 1			T		
TRH >C10-C16	P20-De06959	NCP	%	71			70-130	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
		Source		11000			Limits	Limits	Code
Duplicate	4000 11771			T			T		
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD	2001		
TRH C6-C9	P20-De15859	NCP	mg/kg	< 4000	< 40	<1	30%	Pass	
Duplicate				Ι				l	
BTEX				Result 1	Result 2	RPD		_	
Benzene	P20-De15859	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toluene	P20-De15859	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethylbenzene	P20-De15859	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
m&p-Xylenes	P20-De15859	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
o-Xylene	P20-De15859	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total*	P20-De15859	NCP	mg/kg	< 0.6	< 0.6	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	P20-De15859	NCP	mg/kg	730	see dil	<1	30%	Pass	
TRH C6-C10	P20-De15859	NCP	mg/kg	< 4000	< 40	<1	30%	Pass	

D II .									
Duplicate							T		
Organochlorine Pesticides	·	ī		Result 1	Result 2	RPD			
Chlordanes - Total	P20-De06959	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	P20-De06959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Heavy Metals			_	Result 1	Result 2	RPD			
Arsenic	P20-De07038	NCP	mg/kg	3.5	3.2	10	30%	Pass	
Cadmium	P20-De07038	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	P20-De07038	NCP	mg/kg	10	9.0	11	30%	Pass	
Copper	P20-De07038	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	P20-De07038	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	P20-De07038	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	P20-De07038	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	P20-De07038	NCP	mg/kg	8.2	7.4	10	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	P20-De07294	СР	pH Units	9.4	9.4	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	P20-De07294	СР	pH Units	7.4	7.3	pass	30%	Pass	
Reaction Ratings*	P20-De07294	CP	comment	3.0	3.0	pass	30%	Pass	
Duplicate						·			
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	P20-De06959	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	P20-De06959	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	P20-De06959	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate		<u> </u>					<u>'</u>		
Polycyclic Aromatic Hydrocarbons	<u> </u>			Result 1	Result 2	RPD			
Acenaphthene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	P20-De06959	NCP		< 0.5	< 0.5	<1	30%	Pass	
i iuoielle	FZU-DEU0909	INCP	mg/kg	< 0.5	< 0.5	< I	30%	r'ass	

D									
Duplicate Polyayolia Aramatia Hydrogarbana				Result 1	Result 2	RPD			
Polycyclic Aromatic Hydrocarbons	P20-De06959	NCP	m a/lea	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene			mg/kg					+	
Naphthalene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	P20-De06959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	P20-De06959	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	P20-De06959	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	P20-De06959	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	P20-De08562	NCP	%	17	16	6.0	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	P20-De07304	CP	pH Units	8.9	8.8	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	P20-De07304	CP	pH Units	6.7	6.8	pass	30%	Pass	
Reaction Ratings*	P20-De07304	CP	comment	3.0	3.0	pass	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	P20-De07314	CP	pH Units	7.6	7.8	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	P20-De07314	CP	pH Units	2.9	2.9	pass	30%	Pass	
Reaction Ratings*	P20-De07314	CP	comment	3.0	3.0	pass	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction.

Authorised By

N02

S05

Rhys Thomas Analytical Services Manager Elden Garrett Senior Analyst-Metal (WA) Patrick Patfield Senior Analyst-Organic (WA) Patrick Patfield Senior Analyst-Volatile (WA) Rhys Thomas Senior Analyst-SPOCAS (WA)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

	STERN COMMENTAL					СНА	IN O	F CUS	TOD	Y RE	CORD										Page 1 of	6
Comp	any Name: WESTERN ENVIRONM	IENTAL PTY LTD		Contact I	Name:	Ruth Alle	п			Purchas	e Order :	20.227	(per	(20	20-	031	+5)		CoC Nun	nber :	1951	
Office	Address : Level 3, 25 Prowse Stre	et, West Perth,	WA 6005	Project N	1anager	: Ruth Alle	n			Project	Number :	20.227	11				1		Quote II) :	190301W	
mgt-E Unit 2 Kewd Conta	atory Address : Furofins 1, 91 Leach Hwy ale WA 6105 ct: Rob Johnston, +61 (0)8 9251 9 : Robertjohnston@eurofins.com	605, +61 (0)4 23	357 9286	PH Field & Fox	results:	Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)			Analyto	CC 1 & 2:	james.g(@westenv.	com.au		_	westenv.		nents :	Courier	Consignn	nent#:	
#	Sample ID	Sample Date	Matrix	pH Fie	SP	Suite B9: ' PAH, OCP, N Cr, Cu, Ni	Ĭ								1L- Green	250ml Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil Bag
1	вноз о.о	2/12/2020	SOIL	х		x															1	1
2	вноз 0.25		SOIL	х																		1
3	вноз 0.5		SOIL	Х		х															1	1
4	вноз 0.75		SOIL	х																		1
5	BH03 1.0		SOIL	х			Х														1	1
6	BH03 1.25		SOIL	х													-2	35 Pr	2/17	,		1
7	BH03 1.50		SOIL	х			Х							00			3				1	1
8	вноз 1.75		SOIL	х										9 8	9		21	No				1
9	вноз 2.0		SOIL	х			Х							60	9		2,	,Z			1	1
10	вноз 2.25		SOIL	х									€.		4	-	2	-0.	7			1
11	вноз 2.5		SOIL	х											F	nai Temp:						1
12	BH03 2.75		SOIL	х																		1
13	вноз з.0		SOIL	х																		1
14	BH03 3.25		SOIL	х																		1
15	BH03 3.5	1/	SOIL	х																		1
Relinqu Date & Signatu	1			Received By Date & Tim Signature: Report Num	e:	3:,33	1a em 6122		<u></u>			Turn arou	hrs	Field Please prov			for pH Fiel	d & Fox res		Method O Courier Hand Deliv Postal	f Shipment : vered	x

	STERN ROWHENTAL					СНА	IN O	F CU	STOD	Y RE	CORE)								Page 4 o	of
Com	pany Name: WESTERN ENVIRON	IMENTAL PTY LTI)	Contact	Name :	Ruth Alle	n			Purchas	se Order :	20.227						CoC Nun	nber :	1951	
Office	e Address : Level 3, 25 Prowse St	reet, West Perth	, WA 6005	Project N	/lanager	: Ruth Alle	n			Project	Number :	20.227						Quote ID) :	190301W	
mgt-l Unit : Kewo	ratory Address : Eurofins 2, 91 Leach Hwy Iale WA 6105 act: Rob Johnston, +61 (0)8 9251	0605 61 (0)4 3	257 0396	Email for	results:	ruth.a@v			Analyt	cc:	james.g	g@westen	v.com.au		o@westen		nents :	Courier	Consignn	nent#:	
	l: Robertjohnston@eurofins.com		337 3280	pH Field & Fox	SPOCAS	rrh, BTE) Jetals (As Pb, Zn, H	НОГР									_					
#	Sample ID	Sample Date	Matrix	PH Fie	SP	Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)	Ī							1L- Gree	250ml n Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil Bag
46	BH04 0.0	2/12/20	SOIL	х		Х														1	1
47	BH04 0.25	1	SOIL	х																	1
48	BH04 0.5		SOIL	х		х														1	1
49	BH04 0.75		SOIL	х																	1
50	BH04 1.0		SOIL	х			Х													1	1
51	BH04 1.25		SOIL	х																	1
52	BH04 1.50		SOIL	х			Х													1	1
53	BH04 1.75		SOIL	х																	1
54	BH04 2.0		SOIL	х			Х													1	1
55	BH04 2.25		SOIL	х																	1
56	BH04 2.5		SOIL	х																	1
57	BH04 2.75		SOIL	х																	1
58	BH04 3.0		SOIL	х																	1
59	BH04 3.25		SOIL	х																	1
60	BH04 3.5		SOIL	х														- 1			1
Relinqu Date &	rished By: _Leah Petrie			Received B		R 71	2 3	:35	1			Turn aro	und Time :						Method Of	f Shipment :	Yes
			_					//	/	€:									Hand Deliv	/ered	: 62
Signatı			-	Signature: Report Nun	nber:	76	124	\$		7. 2.		Comments	9: P	lease provide prel	minary repor	t for pH Fie	d & Fox res	ults.	Postal	ŀ	

4
WESTERN

CHAIN OF CUSTODY RECORD

_	_	
Page	o	of

				- 11																		
Comp	pany Name: WESTERN ENVIRON	IMENTAL PTY LTD		Contact I	Name :	Ruth Aller	1			Purchas	e Order :	20.227							CoC Num	ber:	1951	
Office	e Address : Level 3, 25 Prowse St	reet, West Perth,	WA 6005	Project N	/lanager :	Ruth Allei	1			Project 1	Number :	20.227							Quote ID):	190301W	
	ratory Address : Eurofins			Email for	resuits:	ruth.a@w	estenv.c			CC:	james.g	@westenv	.com.au		leah.p@v	vestenv.co	m.au		Courier (Consignm	ent#:	
	2, 91 Leach Hwy							/	Analyte	S					Special D	Directions	& Comm	ents:				
	lale WA 6105					≥ g =																
	act: Rob Johnston, +61 (0)8 9251		357 9286	×		A S EX																
Email	l: Robertjohnston@eurofins.com	n		8 5	AS	H, BT tals b, Zn	Q															
				pH Field & Fox	SPOCAS	9: TR Ni, P	HOLD											Containe	er			
#	Sample ID	Sample Date	Matrix	Hd		Suite B9: TRH, BTEXN, PAH, OCP, Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg)									1L- Green	250ml Green	Black MB plastic	100ml Red Plastic	100ml Purple Plastic	VIAL	Glass Jar	ASS Soil Bag
76	BH03 7.5	2/12/20	SOIL				Х															1
77	вноз 7.75		SOIL				Х															1
78	вноз 8.0		SOIL				Х															1
79																						
80																						
81																						
82																						
83				1																		
84																						
85																						
86																						
87																						
88																						
89																						
90																						
Relinqu	uished By: _Leah Petrie			Received B		23 311	Tha 23	~o5 ;33				Turn arou	ınd Time :							Method Of	Shipment :	Yes
ilgnatu	ure:		_	Signature: Report Nun	nber:	761	244					Comments	: Ple	ase prov	de prelimir	nary report	for pH Flek	d & Fox res		Hand Deliv Postal	ered	

Western Environmental Pty Ltd Level 3, 25 Prowse Street West Perth WA 6005

NATA Accredited Accreditation Number 1261 Site Number 23736

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ruth Allen

Report 761244-S

Project name

Project ID 20.227

Received Date Dec 02, 2020

Client Sample ID			BH03 0.0	BH03 0.25	BH03 0.5	BH03 0.75
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De08623	P20-De08624	P20-De08625	P20-De08626
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions	•				
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	< 50	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-C36 (Total)	50	mg/kg	< 50	-	< 50	-
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	54	-	78	-
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 50	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-

Client Sample ID			BH03 0.0	BH03 0.25	BH03 0.5	BH03 0.75
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De08623	P20-De08624	P20-De08625	P20-De08626
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 0.5	_	< 0.5	_
Phenanthrene	0.5	mg/kg	< 0.5	_	< 0.5	_
Pyrene	0.5	mg/kg	< 0.5	_	< 0.5	_
Total PAH*	0.5	mg/kg	< 0.5	_	< 0.5	_
2-Fluorobiphenyl (surr.)	1	%	57	_	99	_
p-Terphenyl-d14 (surr.)	1	%	55	_	92	_
Organochlorine Pesticides		/0	33		52	
Chlordanes - Total	0.1	ma/ka	< 0.1	_	< 0.1	
4.4'-DDD	0.05	mg/kg				-
4.4'-DDE	0.05	mg/kg mg/kg	< 0.05 < 0.05	-	< 0.05 < 0.05	-
4.4'-DDE 4.4'-DDT	0.05	mg/kg mg/kg	< 0.05	-	< 0.05	<u> </u>
a-BHC	0.05	mg/kg mg/kg	< 0.05	-	< 0.05	-
Aldrin	0.05	mg/kg mg/kg	< 0.05	-	< 0.05	-
b-BHC	0.05	mg/kg mg/kg	< 0.05	-	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05		< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05		< 0.05	-
				-		-
Endosulfan I	0.05 0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan sulphate Endrin	0.05	mg/kg mg/kg	< 0.05 < 0.05	-	< 0.05 < 0.05	-
						-
Endrin aldehyde Endrin ketone	0.05	mg/kg	< 0.05		< 0.05	-
	0.05	mg/kg	< 0.05	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor epoxide Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	-
Methoxychlor	0.05 0.05	mg/kg	< 0.05	-	< 0.05	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
		mg/kg	< 0.05		< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
Vic EPA IMPG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)* Dibutylchlorendate (surr.)	0.1	mg/kg %	< 0.1 89	-	< 0.1 114	-
, ,	1	%	59		64	-
Tetrachloro-m-xylene (surr.)		70	59	-	04	-
Total Recoverable Hydrocarbons - 2013 NEPI			50			
TRH > C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	-
Heavy Metals	<u> </u>					
Arsenic	2	mg/kg	< 2	-	< 2	-
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	-
Chromium	5	mg/kg	13	-	< 5	-
Copper	5	mg/kg	< 5	-	< 5	-
Lead	5	mg/kg	16	-	6.9	-
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	-
Nickel	5	mg/kg	< 5	-	< 5	-
Zinc	5	mg/kg	19	-	95	-

Client Sample ID Sample Matrix			BH03 0.0 Soil	BH03 0.25 Soil	BH03 0.5 Soil	BH03 0.75 Soil
Eurofins Sample No.			P20-De08623	P20-De08624	P20-De08625	P20-De08626
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	9.3	9.3	8.9	8.5
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.4	7.4	7.1	7.1
Reaction Ratings*S05	-	comment	3.0	3.0	2.0	2.0
% Moisture	1	%	6.9	-	3.2	-

Client Sample ID			BH03 1.0	BH03 1.25	BH03 1.5	BH03 1.75
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De08627	P20-De08628	P20-De08629	P20-De08630
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	9.0	9.0	8.9	8.7
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.1	7.4	7.3	7.3
Reaction Ratings*S05	-	comment	2.0	2.0	2.0	2.0

Client Sample ID			BH03 2.0	BH03 2.25	BH03 2.5	BH03 2.75
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De08631	P20-De08632	P20-De08633	P20-De08634
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	8.0	7.8	7.6	7.1
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	6.6	6.5	6.5	6.0
Reaction Ratings*S05	_	comment	1.0	1.0	1.0	1.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Acid Sulfate Soils Field pH Test	LOR	Unit	BH03 3.0 Soil P20-De08635 Nov 30, 2020	BH03 3.25 Soil P20-De08636 Nov 30, 2020	BH03 3.5 Soil P20-De08637 Nov 30, 2020	BH03 3.75 Soil P20-De08638 Nov 30, 2020
pH-F (Field pH test)*	0.1	pH Units	6.8	7.4	7.4	7.2
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	4.8	6.4	5.9	5.6
Reaction Ratings*S05	-	comment	2.0	2.0	1.0	1.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Acid Sulfate Soils Field pH Test	LOR	Unit	BH03 4.0 Soil P20-De08639 Nov 30, 2020	BH03 4.25 Soil P20-De08640 Nov 30, 2020	BH03 4.5 Soil P20-De08641 Nov 30, 2020	BH03 4.75 Soil P20-De08642 Nov 30, 2020
pH-F (Field pH test)*	0.1	pH Units	7.0	7.0	6.9	7.2
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	5.7	5.5	5.5	6.0
Reaction Ratings*S05	-	comment	1.0	1.0	1.0	1.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH03 5.0 Soil P20-De08643 Nov 30, 2020	BH 5.25 Soil P20-De08644 Nov 30, 2020	BH03 5.5 Soil P20-De08645 Nov 30, 2020	BH03 5.75 Soil P20-De08646 Nov 30, 2020
Test/Reference	LOR	Unit	NOV 30, 2020	NOV 30, 2020	NOV 30, 2020	NOV 30, 2020
Acid Sulfate Soils Field pH Test	-					
pH-F (Field pH test)*	0.1	pH Units	7.5	7.0	7.0	7.1
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	6.0	5.1	5.1	4.7
Reaction Ratings*S05	_	comment	2.0	1.0	1.0	2.0

Client Sample ID			BH03 6.0	BH04 0.0	BH04 0.25	BH04 0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De08647	P20-De08656	P20-De08657	P20-De08658
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	•				
TRH C6-C9	20	mg/kg	-	< 20	-	< 20
TRH C10-C14	20	mg/kg	-	< 20	-	< 20
TRH C15-C28	50	mg/kg	-	< 50	-	< 50
TRH C29-C36	50	mg/kg	-	< 50	-	< 50
TRH C10-C36 (Total)	50	mg/kg	-	< 50	-	< 50
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	-	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	< 0.3	=	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	132	=	133
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	-	< 50
TRH C6-C10	20	mg/kg	-	< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	1.2
Acenaphthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5

Client Sample ID			BH03 6.0	BH04 0.0	BH04 0.25	BH04 0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De08647	P20-De08656	P20-De08657	P20-De08658
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOB	Linit	1407 30, 2020	1407 30, 2020	1107 30, 2020	1407 30, 2020
	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Total PAH*	0.5	mg/kg	-	< 0.5	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	83	-	86
p-Terphenyl-d14 (surr.)	1	%	-	87	-	72
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	_	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	_	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	_	< 0.05
a-BHC	0.05	mg/kg	_	< 0.05	_	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	_	< 0.05
b-BHC	0.05	mg/kg	-	< 0.05	_	< 0.05
d-BHC	0.05	mg/kg	_	< 0.05	_	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	_	< 0.05
Endosulfan I	0.05	mg/kg	_	< 0.05	_	< 0.05
Endosulfan II	0.05	mg/kg	_	< 0.05	_	< 0.05
Endosulfan sulphate	0.05	mg/kg	_	< 0.05	_	< 0.05
Endrin	0.05	mg/kg	_	< 0.05	_	< 0.05
Endrin aldehyde	0.05	mg/kg	_	< 0.05	_	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	-	< 0.05
q-BHC (Lindane)	0.05	mg/kg		< 0.05		< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05		-		-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
		mg/kg		< 0.05		1
Methoxychlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
Vic EPA IMPG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	150	-	130
Tetrachloro-m-xylene (surr.)	1	%	-	53	-	52
Total Recoverable Hydrocarbons - 2013 NEPN		T				
TRH >C10-C16	50	mg/kg	-	< 50	-	< 50
TRH >C16-C34	100	mg/kg	-	< 100	-	< 100
TRH >C34-C40	100	mg/kg	-	< 100	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	< 100

Client Sample ID			BH03 6.0 Soil	BH04 0.0	BH04 0.25	BH04 0.5 Soil
Sample Matrix				Soil	Soil	
Eurofins Sample No.			P20-De08647	P20-De08656	P20-De08657	P20-De08658
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	-	< 2	=	< 2
Cadmium	0.4	mg/kg	-	< 0.4	=	< 0.4
Chromium	5	mg/kg	-	5.8	-	18
Copper	5	mg/kg	-	< 5	-	< 5
Lead	5	mg/kg	-	15	-	8.7
Mercury	0.1	mg/kg	-	< 0.1	-	< 0.1
Nickel	5	mg/kg	-	< 5	-	5.1
Zinc	5	mg/kg	-	16	-	< 5
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	7.2	9.1	9.4	9.1
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	4.5	7.0	7.4	6.9
Reaction Ratings*S05	-	comment	2.0	3.0	3.0	3.0
% Moisture	1	%	-	5.3	-	3.9

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH04 0.75 Soil P20-De08659 Nov 30, 2020	BH04 1.0 Soil P20-De08660 Nov 30, 2020	BH04 1.25 Soil P20-De08661 Nov 30, 2020	BH04 1.5 Soil P20-De08662 Nov 30, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	9.1	8.6	9.0	8.8
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	6.7	6.0	6.6	6.3
Reaction Ratings*S05	-	comment	3.0	2.0	2.0	2.0

			-			
Client Sample ID			BH04 1.75	BH04 2.0	BH04 2.25	BH04 2.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De08663	P20-De08664	P20-De08665	P20-De08666
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	6.4	6.3	5.9	5.8
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	4.1	2.9	3.4	2.8
Reaction Ratings*S05	-	comment	2.0	2.0	2.0	3.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH04 2.75 Soil P20-De08667 Nov 30, 2020	BH04 3.0 Soil P20-De08668 Nov 30, 2020	BH04 3.25 Soil P20-De08669 Nov 30, 2020	BH04 3.5 Soil P20-De08670 Nov 30, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	6.0	5.5	6.5	6.4
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	2.7	2.6	3.1	2.6
Reaction Ratings*S05	-	comment	4.0	4.0	2.0	2.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Acid Sulfate Soils Field pH Test	LOR	Unit	BH04 3.75 Soil P20-De08671 Nov 30, 2020	BH04 4.0 Soil P20-De08672 Nov 30, 2020	BH04 4.25 Soil P20-De08673 Nov 30, 2020	BH04 4.5 Soil P20-De08674 Nov 30, 2020
pH-F (Field pH test)*	0.1	pH Units	6.1	5.6	5.4	6.5
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	2.1	2.5	2.5	2.5
Reaction Ratings*S05	-	comment	4.0	2.0	1.0	1.0

Client Sample ID			BH04 4.75	BH04 5.0	BH 5.25	BH04 5.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De08675	P20-De08676	P20-De08677	P20-De08678
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	6.4	6.5	6.7	6.2
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	2.9	2.9	3.0	3.0
Reaction Ratings*S05	-	comment	2.0	2.0	2.0	2.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Acid Sulfate Soils Field pH Test	LOR	Unit	BH04 5.75 Soil P20-De08679 Nov 30, 2020	BH04 6.0 Soil P20-De08680 Nov 30, 2020
pH-F (Field pH test)*	0.1	pH Units	5.2	6.2
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	2.8	2.9
Reaction Ratings*S05	-	comment	2.0	2.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Perth	Dec 04, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Perth	Dec 04, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters Soils Sediments by ICP-MS			
Acid Sulfate Soils Field pH Test	Perth	Dec 04, 2020	7 Days
- Method: LTM-GEN- 7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests			
% Moisture	Perth	Dec 03, 2020	14 Days

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000
NATA # 1261 Phone : +61 2:

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761244 08 6162 8980

Phone: Fax:

Received: Dec 2, 2020 5:05 PM

Due: Dec 9, 2020
Priority: 5 Day
Contact Name: Ruth Allen

		Sa	mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
Melb	ourne Laborate								
Sydı	ney Laboratory								
Bris	bane Laborator								
Pert	h Laboratory - I	NATA Site # 237	36			Х	Х	Х	Х
May	field Laboratory	/							
Exte	rnal Laboratory	<u>/</u>			_				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH03 0.0	Nov 30, 2020		Soil	P20-De08623		Х	Х	Х
2	BH03 0.25	Nov 30, 2020		Soil	P20-De08624		Х		
3	BH03 0.5	Nov 30, 2020		Soil	P20-De08625		Х	Х	Х
4	BH03 0.75	P20-De08626		Х					
5	BH03 1.0	P20-De08627		Х					
6	BH03 1.25	Nov 30, 2020	P20-De08628		Х				
7	BH03 1.5	P20-De08629		Х					
8	BH03 1.75	Nov 30, 2020		Soil	P20-De08630		Х		
9	BH03 2.0	Nov 30, 2020		Soil	P20-De08631		X		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: West

Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761244 08 6162 8980

Phone: Fax:

Received: Dec 2, 2020 5:05 PM

Due: Dec 9, 2020
Priority: 5 Day
Contact Name: Ruth Allen

		Sam	nple Detail			HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
	oourne Labora								
	ney Laboratory				\vdash				
		ry - NATA Site # 2							
		NATA Site # 2373	6			X	X	Х	X
	field Laborator								\vdash
	rnal Laborator	<u> </u>	10-		D00 D - 00000		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\vdash
10	BH03 2.25	Nov 30, 2020	So		P20-De08632		X		$\vdash\vdash$
11 12	BH03 2.5 BH03 2.75	Nov 30, 2020 Nov 30, 2020	So		P20-De08633 P20-De08634		X		\vdash
13	BH03 3.0	Nov 30, 2020	Sc		P20-De08635		X		\vdash
14	BH03 3.25	Nov 30, 2020	Sc		P20-De08636		X		\vdash
15	BH03 3.5	Nov 30, 2020	Sc		P20-De08637		X		\vdash
16	BH03 3.75	Nov 30, 2020	Sc		P20-De08638		X		\vdash
17	BH03 4.0	P20-De08639		X		\vdash			
18	BH03 4.25	Nov 30, 2020 Nov 30, 2020	P20-De08640		X		\Box		
19	BH03 4.5	Nov 30, 2020	P20-De08641		Х				
20	BH03 4.75	Nov 30, 2020	So		P20-De08642		Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

West Pertr

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761244 08 6162 8980

Phone: Fax:

 Received:
 Dec 2, 2020 5:05 PM

 Due:
 Dec 9, 2020

Priority: 5 Day
Contact Name: Ruth Allen

			iple Detail		HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
	oourne Labora							
	ney Laborator							
-		ory - NATA Site # 2						
		NATA Site # 2373	6		Х	X	X	X
	field Laborato							
	rnal Laborato		0 - 11	D00 D - 000 40		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
21	BH03 5.0	Nov 30, 2020	Soil	P20-De08643		X		
22	BH 5.25	Nov 30, 2020	Soil	P20-De08644		X		
23	BH03 5.5	Nov 30, 2020	Soil	P20-De08645		X		
24 25	BH03 5.75 BH03 6.0	Nov 30, 2020	Soil Soil	P20-De08646 P20-De08647		X		
26	BH03 6.25	Nov 30, 2020	Soil	P20-De08647	Х			
27	BH03 6.25	Nov 30, 2020 Nov 30, 2020	Soil	P20-De08649	^X			
28	BH03 6.75	Nov 30, 2020	Soil	P20-De08649	X			\vdash
29	BH03 6.75	Nov 30, 2020	Soil	P20-De08650	X			
30	BH03 7.25	Nov 30, 2020	Soil	P20-De08652	X			
31	BH03 7.5	Nov 30, 2020	Soil	P20-De08653	X			

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Dec 2, 2020 5:05 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Western Environmental Pty Ltd

Address: Level 3, 25 Prowse Street

West Perth

WA 6005

Project Name:

Company Name:

Project ID: 20.227 Order No.: Report #:

761244 08 6162 8980

Phone: Fax:

Received: Due: Priority:

Dec 9, 2020 5 Day **Contact Name:** Ruth Allen

		Sa	mple Detail				HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
Melk	ourne Laborat									
Sydı	Sydney Laboratory - NATA Site # 18217									
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - I	NATA Site # 237	36				Χ	Х	Х	Х
May	field Laboratory	у								
Exte	rnal Laboratory	/								
32	BH03 7.75	Nov 30, 2020		Soil	P20-De0	8654	Χ			
33	BH03 8.0	Nov 30, 2020		Soil	P20-De0	8655	Χ			
34	BH04 0.0	Nov 30, 2020		Soil	P20-De0	8656		Х	Х	Х
35	BH04 0.25	Nov 30, 2020		Soil	P20-De0	8657		Х		
36	BH04 0.5	Nov 30, 2020		Soil	P20-De0	8658		Х	Х	Х
37	BH04 0.75	Nov 30, 2020		Soil	P20-De0	8659		Х		
38	BH04 1.0	Nov 30, 2020		Soil	P20-De0	8660		Х		
39	BH04 1.25	Nov 30, 2020		Soil	P20-De0	8661		Х		
40	BH04 1.5	Nov 30, 2020		Soil	P20-De0	8662		Х		
41	BH04 1.75	Nov 30, 2020		Soil	P20-De0	8663		Х		
42	BH04 2.0	Nov 30, 2020		Soil	P20-De0	8664		Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street

West Perth

WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761244 08 6162 8980

Phone: Fax:

Received: Dec 2, 2020 5:05 PM

Due: Dec 9, 2020
Priority: 5 Day
Contact Name: Ruth Allen

		Sa	mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
		tory - NATA Site							
	ney Laborator								
		ory - NATA Site #							
		NATA Site # 237	'36			X	X	Х	X
	field Laborato								
	rnal Laborato			1					
43	BH04 2.25	Nov 30, 2020		Soil	P20-De08665		X		
44	BH04 2.5	Nov 30, 2020		Soil	P20-De08666		X		
45	BH04 2.75	Nov 30, 2020		Soil	P20-De08667		X		
46	BH04 3.0	Nov 30, 2020		Soil	P20-De08668		X		\square
47	BH04 3.25	Nov 30, 2020		Soil	P20-De08669		Х		
48	BH04 3.5	Nov 30, 2020		Soil	P20-De08670		Х		
49	BH04 3.75	Nov 30, 2020		Soil	P20-De08671		Х		
50	BH04 4.0	Nov 30, 2020		Soil	P20-De08672		Х		
51	BH04 4.25	P20-De08673		Х					
52	BH04 4.5	Nov 30, 2020		Soil	P20-De08674		Х		
53	BH04 4.75	Nov 30, 2020		Soil	P20-De08675		Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

Level 3, 25 Prowse Street

West Perth

WA 6005

Project Name:

Address:

Project ID: 20.227

Order No.: Report #:

761244 08 6162 8980

Phone: Fax:

Received: Dec 2, 2020 5:05 PM Due: Dec 9, 2020

Due: Dec 9, 2020
Priority: 5 Day
Contact Name: Ruth Allen

		Sa	mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
		tory - NATA Site		71					
	ney Laborator								
		ory - NATA Site #							
		NATA Site # 237	36			X	X	Х	X
	field Laborato								
	ernal Laborato			I					
54	BH04 5.0	Nov 30, 2020		Soil	P20-De08676	-	X		
55	BH 5.25	Nov 30, 2020		Soil	P20-De08677	-	X		
56	BH04 5.5	Nov 30, 2020		Soil	P20-De08678	-	X		
57	BH04 5.75	Nov 30, 2020		Soil	P20-De08679	-	X		
58	BH04 6.0	Nov 30, 2020		Soil	P20-De08680		X		
59	BH04 6.25	Nov 30, 2020		Soil	P20-De08681	X			
60	BH04 6.5	Nov 30, 2020		Soil	P20-De08682	X			
61	BH04 6.75	Nov 30, 2020		Soil	P20-De08683	X			
62	BH04 7.0	Nov 30, 2020		Soil	P20-De08684	X			
63	BH04 7.25	Nov 30, 2020		Soil	P20-De08685	X			
64	BH04 7.5	Nov 30, 2020		Soil	P20-De08686	Х			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Company Name:

Project ID: 20.227

Order No.: Report #:

7

761244 08 6162 8980

Phone: Fax:

Received: Dec 2, 2020 5:05 PM

Due: Dec 9, 2020
Priority: 5 Day
Contact Name: Ruth Allen

		Sa	mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71					
Sydr	ney Laboratory	- NATA Site # 1	8217						
Brisl	bane Laborator	y - NATA Site #	20794						
Perti	h Laboratory - N	IATA Site # 237	736			Х	Х	Х	Х
May	field Laboratory	•							
Exte	rnal Laboratory								
65	BH04 7.75	Nov 30, 2020		Soil	P20-De08687	Х			
66	BH04 8.0	Nov 30, 2020		Soil	P20-De08688	Х			
Test	st Counts						50	4	4

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 761244-S

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Arsenic			mg/kg	< 2			2	Pass	
Cadmium			mg/kg	< 0.4			0.4	Pass	
Chromium			mg/kg	< 5			5	Pass	
Copper			mg/kg	< 5			5	Pass	
Lead			mg/kg	< 5			5	Pass	
Mercury			mg/kg	< 0.1			0.1	Pass	
Nickel			mg/kg	< 5			5	Pass	
Zinc			mg/kg	< 5			5	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	93			80-120	Pass	
Cadmium			%	94			80-120	Pass	
Chromium			%	92			80-120	Pass	
Copper			%	94			80-120	Pass	
Lead			%	95			80-120	Pass	
Mercury			%	91			80-120	Pass	
Nickel			%	91			80-120	Pass	
Zinc			%	97			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	P20-De08623	СР	pH Units	9.3	9.3	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	P20-De08623	СР	pH Units	7.4	7.4	pass	30%	Pass	
Reaction Ratings*	P20-De08623	СР	comment	3.0	3.0	pass	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	P20-De08633	СР	pH Units	7.6	7.6	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	P20-De08633	СР	pH Units	6.5	6.5	pass	30%	Pass	
Reaction Ratings*	P20-De08633	СР	comment	1.0	1.0	pass	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	P20-De08643	СР	pH Units	7.5	7.6	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	P20-De08643	СР	pH Units	6.0	5.9	pass	30%	Pass	
Reaction Ratings*	P20-De08643	СР	comment	2.0	2.0	pass	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	P20-De08663	СР	pH Units	6.4	6.5	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	P20-De08663	СР	pH Units	4.1	3.8	pass	30%	Pass	
Reaction Ratings*	P20-De08663	СР	comment	2.0	2.0	pass	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	P20-De08673	СР	pH Units	5.4	5.5	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	P20-De08673	СР	pH Units	2.5	2.4	pass	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace No Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction. S05

Authorised By

N02

Rhys Thomas Analytical Services Manager Elden Garrett Senior Analyst-Metal (WA) Patrick Patfield Senior Analyst-Organic (WA) Patrick Patfield Senior Analyst-Volatile (WA) Rhys Thomas Senior Analyst-SPOCAS (WA)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 761244-S

WE	SSTERN ISO MINISTAL					CHA	AIN O	F CUS	STOD	Y RE	CORE		4/3			- 71E				200	Page 1 of	1
Com	pany Name: WESTERN ENVIRO	NMENTAL PTY LTI)	Contact	Name :	Ruth All	en			Purchas	e Order :	20.227		5-11	N LOE			en light	CoC Nu	mber :	1959	
Offic	e Address : Level 3, 25 Prowse 5	Street, West Perth,	WA 6005	Project I	Manager	Ruth All	en			Project	Number :	20.227							Quote I	D:	190301W	ES
	ratory Address : Eurofins			Email fo	r results:	ruth.a@	westenv.c	om.au		CC 1 & 2:	leah.p@	westenv.c	om.au		jordan.	wb@wes	tenv.com	.au		Consigni		
1	2, 91 Leach Hwy Iale WA 6105					_	_	,	Analyte	es					Special	Direction	ıs & Comi	nents:				
Conta	act: Rob Johnston, +61 (0)8 925 I: Robertjohnston@eurofins.co		357 9286			dı	9	110	ıns	4		Ni, Zn, g, Hg)		g total								
Linai	. Robertjonnston@earonns.co	m			BOD TSS Oil & Grease Acidity to pH I					as Sí	tivit	, Pb,		lgin Fe)	please filter for metals							
					TSS	8	lity t	nity	Phos	hate	Conductivity	r, Cu	품	(incl	-			Contain	er			1
#	Sample ID	Sample Date	Matrix			Ö	Acic	Alkalinity to pH 10	TKN, Phosphorus	Sulphate as SO4	Š	Metals (Cr, Cu, Pb, Ni, Zn, As, Cd, Mo, Se, Ag, Hg)		R15 suite (including total Al and Fe)	1L- Green	250ml Green	Black MB	100ml Red	100ml Purple	VIAL	Purple Jar	Plastic Bag
1	внз	9/12/2020	Water	Х	х	х	х	х	x	х	х	X	х	Х		2	plastic	Plastic 2	Plastic 1		2	
2	вн4	9/12/2020	Water											X		1		2	1			
3	DUP01	9/12/2020	Water											х		1		2	1			
4																						
5																						
6																						
7																						
8																q.	2.2021	1.2	1			
9													Q	(A)	LANKES 11							
10													9,	0.0	Chilled Temp.		1,021	(190)				
_11													10	0			7-4					
12															Correct	on:	22.0					
13				-														22.	15			
14																						
15 Relinqui	ished By: Jordan Wood-Bealing			Received By	у;	Dorin	rique	Ton !	1 50 M			Turn arou	nd Time :		3 Days					Method O	f Shipment :	
Date & 1	Cit			Date & Tim	e:	9-12	.2020		:210	in.									- 1	Courier Hand Deliv	vered	Yes
ignatu	re:			Signature: Report Num	nber:		>					Comments :								Postal	[

#762532

Western Environmental Pty Ltd Level 3, 25 Prowse Street West Perth WA 6005

NATA Accredited Accreditation Number 1261 Site Number 23736

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ruth Allen

Report 762532-W-V2

Project ID 20.227
Project ID 20.227
Received Date Dec 09, 2020

Client Sample ID			ВН3	BH4	DUP01
Sample Matrix			Water	Water	Water
Eurofins Sample No.			P20-De20019	P20-De20020	P20-De20021
Date Sampled			Dec 09, 2020	Dec 09, 2020	Dec 09, 2020
Test/Reference	LOR	Unit	200 00, 2020		200 00, 2020
Test/Neterence	LOIX	Offic			
Acidity (as CaCO3)	10	mg/L	< 10	< 10	< 10
Ammonia (as N)	0.01	mg/L	0.06	0.10	0.10
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	< 5	-	-
Chloride	1	mg/L	190	180	150
Conductivity (at 25°C)	10	uS/cm	710	580	590
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	< 0.05	0.08
Oil & Grease (HEM)	10	mg/L	< 10	-	-
pH (at 25 °C)	0.1	pH Units	7.9	7.4	7.4
Phosphate total (as P)	0.01	mg/L	0.01	< 0.01	< 0.01
Phosphorus filterable reactive (as P)	0.01	mg/L	< 0.01	0.11	< 0.01
Sulphate (as S)	5	mg/L	10	18	16
Total Dissolved Solids Dried at 180°C ± 2°C	10	mg/L	410	320	310
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	< 0.2
Total Nitrogen (as N)*	0.2	mg/L	< 0.2	< 0.2	< 0.2
Total Suspended Solids Dried at 103–105°C	1	mg/L	10	-	-
Alkalinity (speciated)					
Total Alkalinity (as CaCO3)	20	mg/L	73	62	63
Heavy Metals					
Aluminium	0.05	mg/L	0.34	< 0.05	0.10
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Copper	0.001	mg/L	0.002	-	-
Iron	0.05	mg/L	0.12	0.09	0.17
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05
Lead	0.001	mg/L	0.002	-	-
Manganese (filtered)	0.005	mg/L	0.11	0.078	0.082
Mercury	0.0001	mg/L	< 0.0001	-	-
Molybdenum	0.005	mg/L	0.076	-	-
Nickel (filtered)	0.001	mg/L	0.003	0.004	0.004
Selenium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Silver	0.005	mg/L	< 0.005	-	-
Zinc (filtered)	0.005	mg/L	0.025	0.016	0.015
Alkali Metals					
Sodium	0.5	mg/L	100	75	79

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
ASS Groundwater Quality Suite - WA Department of Environment and Conservation	า		
Acidity (as CaCO3)	Perth	Dec 10, 2020	14 Days
- Method: LTM-INO-4210 Acidity			
Ammonia (as N)	Perth	Dec 10, 2020	28 Days
- Method: LTM-INO-4200 Ammonia by Discrete Analyser			
Chloride	Melbourne	Dec 11, 2020	28 Days
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Conductivity (at 25°C)	Perth	Dec 10, 2020	28 Days
- Method: LTM-INO-4030 Conductivity			
pH (at 25 °C)	Perth	Dec 10, 2020	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Phosphate total (as P)	Melbourne	Dec 11, 2020	28 Days
- Method: LTM-INO-4040 Phosphate by CFA			
Phosphorus filterable reactive (as P)	Melbourne	Dec 11, 2020	2 Days
- Method: APHA 4500-P Phosphate (filterable reactive)			
Sulphate (as S)	Melbourne	Dec 11, 2020	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Total Dissolved Solids Dried at 180°C ± 2°C	Melbourne	Dec 11, 2020	7 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Alkalinity (speciated)	Perth	Dec 10, 2020	14 Days
- Method: LTM-INO-4250 Alkalinity by Electrometric Titration			
Heavy Metals	Perth	Dec 16, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Acid Sulphate Metals : Metals M9 filtered	Perth	Dec 10, 2020	180 Days
- Method:			
Alkali Metals	Perth	Dec 10, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	Dec 11, 2020	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water			
Oil & Grease (HEM)	Melbourne	Dec 11, 2020	28 Days
- Method: LTM-INO-4180 Oil and Grease (APHA 5520B)			
Total Suspended Solids Dried at 103–105°C	Melbourne	Dec 11, 2020	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Mercury	Perth	Dec 16, 2020	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Perth	Dec 10, 2020	28 Days
- Method: LTM-INO-4350 Aqueous Inorganic Analytes by Discrete Analyser			
Total Kjeldahl Nitrogen (as N)	Melbourne	Dec 11, 2020	7 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Sydney

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Western Environmental Pty Ltd

> Level 3, 25 Prowse Street West Perth

WA 6005

Project Name: Project ID:

Address:

20.227 20.227 Order No.: Report #:

Phone:

Fax:

20.227 762532 08 6162 8980

Brisbane

Due: **Priority: Contact Name:**

Received:

Dec 14, 2020 3 Day

Ruth Allen

Dec 9, 2020 1:21 PM

		Sa	mple Detail			Biochemical Oxygen Demand (BOD-5 Day)	Oil & Grease (HEM)	Total Suspended Solids Dried at 103–105°C	ASS Groundwater Quality Suite - WA Department of Environment and
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х
Sydr	ney Laboratory	- NATA Site # 1	8217						
	bane Laborator								
Perti	h Laboratory - N	IATA Site # 237	36						X
	field Laboratory								
	rnal Laboratory			ı					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	ВН3	Dec 09, 2020		Water	P20-De20019	Х	Х	Χ	Х
2	BH4	Dec 09, 2020		Water	P20-De20020				Х
3	DUP01	Dec 09, 2020		Water	P20-De20021				Х
Test	Counts					1	1	1	3

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	mg/L	< 5	5	Pass	
Chloride	mg/L	< 1	1	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Oil & Grease (HEM)	mg/L	< 10	10	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Phosphorus filterable reactive (as P)	mg/L	< 0.01	0.01	Pass	
Sulphate (as S)	mg/L	< 5	5	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Total Suspended Solids Dried at 103–105°C	mg/L	< 1	1	Pass	
Method Blank					
Heavy Metals					
Aluminium	mg/L	< 0.05	0.05	Pass	
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Iron	mg/L	< 0.05	0.05	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
Method Blank					
Alkali Metals					
Sodium	mg/L	< 0.5	0.5	Pass	
LCS - % Recovery					
Ammonia (as N)	%	102	70-130	Pass	
Biochemical Oxygen Demand (BOD-5 Day)	%	104	70-130	Pass	
Chloride	%	122	70-130	Pass	
Nitrate & Nitrite (as N)	%	106	70-130	Pass	
Oil & Grease (HEM)	%	76	70-130	Pass	
Phosphate total (as P)	%	87	70-130	Pass	
Sulphate (as S)	%	81	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	78	70-130	Pass	
Total Suspended Solids Dried at 103–105°C	%	90	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Aluminium	%	109	80-120	Pass	
Aluminium (filtered)	%	100	80-120	Pass	
Arsenic (filtered)	%	95	80-120	Pass	
Cadmium (filtered)	%	92	80-120	Pass	
Chromium (filtered)	%	99	80-120	Pass	
Iron	%	91	80-120	Pass	
Iron (filtered)	%	98	80-120	Pass	
Manganese (filtered)	%	98	80-120	Pass	
Nickel (filtered)	%	97	80-120	Pass	
Selenium (filtered)	%	93	80-120	Pass	
Zinc (filtered)	%	96	80-120	Pass	
LCS - % Recovery					
Alkali Metals					
Sodium	%	111	80-120	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Nitrate & Nitrite (as N)	P20-De20019	CP	%	106			70-130	Pass	
Phosphate total (as P)	M20-De20291	NCP	%	74			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	B20-De15577	NCP	%	77			70-130	Pass	
Total Suspended Solids Dried at									
103–105°C	S20-De14132	NCP	%	93			70-130	Pass	
Spike - % Recovery				T	1		1		
Heavy Metals		1		Result 1					
Aluminium	P20-De08596	NCP	%	105			75-125	Pass	
Iron	P20-De08596	NCP	%	91			75-125	Pass	
Spike - % Recovery				1					
Alkali Metals		1		Result 1					
Sodium	P20-De05428	NCP	%	101			75-125	Pass	
Spike - % Recovery									
		1		Result 1					
Ammonia (as N)	P20-De20020	CP	%	104			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Aluminium (filtered)	P20-De20020	CP	%	108			75-125	Pass	
Arsenic (filtered)	P20-De20020	CP	%	101			75-125	Pass	
Cadmium (filtered)	P20-De20020	CP	%	97			75-125	Pass	
Chromium (filtered)	P20-De20020	CP	%	104			75-125	Pass	
Iron (filtered)	P20-De20020	СР	%	89			75-125	Pass	
Manganese (filtered)	P20-De20020	СР	%	91			75-125	Pass	
Nickel (filtered)	P20-De20020	СР	%	99			75-125	Pass	
Selenium (filtered)	P20-De20020	СР	%	105			75-125	Pass	
Zinc (filtered)	P20-De20020	СР	%	102			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	P20-De20019	СР	mg/L	0.06	0.06	4.0	30%	Pass	
Biochemical Oxygen Demand									
(BOD-5 Day)	M20-De20270	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Chloride	P20-De20019	CP	mg/L	190	160	17	30%	Pass	
Nitrate & Nitrite (as N)	P20-De20019	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Oil & Grease (HEM)	S20-De10550	NCP	mg/L	< 10	< 10	<1	30%	Pass	
Phosphate total (as P)	M20-De20301	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Sulphate (as S)	P20-De20019	CP	mg/L	10	8.4	21	30%	Pass	
Total Dissolved Solids Dried at 180°C ± 2°C	M20-De17373	NCP	mg/L	60	61	1.7	30%	Pass	
Total Kjeldahl Nitrogen (as N)	S20-De15839	NCP	mg/L	0.5	0.8	43	30%	Fail	Q15
Total Suspended Solids Dried at 103–105°C	M20-De19910	NCP	mg/L	4.0	41	26	30%	Pass	
Duplicate									
Heavy Metals	T			Result 1	Result 2	RPD			
Aluminium	P20-De08595	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Aluminium (filtered)	P20-De20019	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic (filtered)	P20-De20019	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	P20-De20019	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	P20-De20019	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron	P20-De08595	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Iron (filtered)	P20-De20019	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Manganese (filtered)	P20-De20019	CP	mg/L	0.11	0.11	1.0	30%	Pass	
, , , , , , , , , , , , , , , , , , ,									

Duplicate										
Heavy Metals	Result 1	Result 2	RPD							
Selenium (filtered)	P20-De20019	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass		
Zinc (filtered)	P20-De20019	CP	mg/L	0.025	0.029	15	30%	Pass		
Duplicate	Duplicate									
Alkali Metals Result 1 Result 2 RPD										
Sodium	P20-De08595	NCP	mg/L	55	54	1.0	30%	Pass		

Comments

V2 report issued with additional metals results as per CoC.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	No
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Rhys Thomas Analytical Services Manager
Elden Garrett Senior Analyst-Metal (WA)
Rhys Thomas Senior Analyst-Inorganic (WA)
Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Robert Johnston

From:

Robert Johnston

Sent:

Thursday, 10 December 2020 12:23

To:

#AU06_EnviroSampleWA

Subject:

3 DAY: Eurofins Test Results - Report 761244 : Site 20.227

ADDITIONAL ANALYSIS - 3 DAY TAT

From: Leah Petrie < leah.p@westenv.com.au> Sent: Thursday, 10 December 2020 11:33

To: Robert Johnston < Robert Johnston@eurofins.com >

Cc: Ruth Allen <ruth.a@westenv.com.au>

Subject: RE: Eurofins Test Results - Report 761244 : Site 20.227

EXTERNAL EMAIL*

Thanks Rob,

Please resubmit the following for SPOCAS on a 3 day TAT. Thank you.

BH03 0.25	P20-De08624
BH03 1.0	P20-De08627
BH03 6.0	P20-De08647
BH04 0.5	P20-De08658
BH04 2.0	P20-De08664
BH04 3.0	P20-De08668
BH04 4.75	P20-De08675
BH04 5.75	P20-De08679

Kind regards,

Leah Petrie

Environmental ScientistBSc Environmental Science and

Conservation Biology

Level 3/25 Prowse St, West Perth WA 6005

P: (08) 6162 8980 M: 0473 674 761

E: leah.p@westenv.com.au

Callyn Citsson & Guratone # 762 781

The information contained in this email, including any attachments, may contain confidential, commercially sensitive or restricted inform If you are not the intended recipient, any use, disclosure or copying of this information is unauthorised.

If you have received this email in error, please notify the sender immediately by return email and then delete it from your system.

Please consider the environment before printing this email.

Western Environmental Pty Ltd Level 3, 25 Prowse Street West Perth WA 6005

NATA Accredited Accreditation Number 1261 Site Number 23736

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Leah Petrie

Report 762781-S

Project name

Project ID 20.227

Received Date Dec 10, 2020

Client Sample ID			BH03_0.25	BH03_1.0	BH03_6.0	BH04_0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De21869	P20-De21870	P20-De21871	P20-De21872
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
SPOCAS Suite (Minus ANC- WA)		-1				
pH-KCL	0.1	pH Units	9.1	9.1	5.9	9.1
pH-OX	0.1	pH Units	7.7	7.2	5.3	7.5
Acid trail - Titratable Actual Acidity	2	mol H+/t	< 2	< 2	< 2	< 2
Acid trail - Titratable Peroxide Acidity	2	mol H+/t	< 2	< 2	< 2	< 2
Acid trail - Titratable Sulfidic Acidity	2	mol H+/t	< 2	< 2	< 2	< 2
sulfidic - TAA equiv. S% pyrite	0.003	% pyrite S	< 0.003	< 0.003	< 0.003	< 0.003
sulfidic - TPA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	< 0.02
sulfidic - TSA equiv. S% pyrite	0.02	% pyrite S	< 0.02	< 0.02	< 0.02	< 0.02
Sulfur - KCI Extractable	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Sulfur - Peroxide	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Sulfur - Peroxide Oxidisable Sulfur	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
acidity - Peroxide Oxidisable Sulfur	10	mol H+/t	< 10	< 10	< 10	< 10
HCI Extractable Sulfur Correction Factor	1	factor	2.0	2.0	2.0	2.0
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Calcium - KCI Extractable	0.02	% Ca	0.18	0.11	< 0.02	0.12
Calcium - Peroxide	0.02	% Ca	2.4	0.14	< 0.02	0.27
Acid Reacted Calcium	0.02	% Ca	2.2	0.03	< 0.02	0.15
acidity - Acid Reacted Calcium	10	mol H+/t	1100	16	< 10	75
sulfidic - Acid Reacted Ca equiv. S% pyrite	0.02	% S	1.8	0.03	< 0.02	0.12
Magnesium - KCI Extractable	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
Magnesium - Peroxide	0.02	% Mg	0.05	< 0.02	< 0.02	< 0.02
Acid Reacted Magnesium	0.02	% Mg	0.05	< 0.02	< 0.02	< 0.02
acidity - Acid Reacted Magnesium	10	mol H+/t	38	< 10	< 10	< 10
sulfidic - Acid Reacted Mg equiv. S% pyrite	0.02	% S	0.06	< 0.02	< 0.02	< 0.02
Acid Neutralising Capacity (ANCE)	0.02	% CaCO3	5.8	0.31	n/a	0.58
Acid Neutralising Capacity - Acidity units (a-ANCE)	10	mol H+/t	1200	62	n/a	120
Acid Neutralising Capacity - equivalent S% pyrite(s-ANCE)	0.02	% S	1.9	0.10	n/a	0.18
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
SPOCAS - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
SPOCAS - Net Acidity (Acidity Units)	10	mol H+/t	< 10	< 10	< 10	< 10
SPOCAS - Liming rate	1	kg CaCO3/t	< 1	< 1	< 1	< 1
SPOCAS WA (- ANC) - Net Acidity (S% pyrite units)	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH03_0.25 Soil P20-De21869 Nov 30, 2020	BH03_1.0 Soil P20-De21870 Nov 30, 2020	BH03_6.0 Soil P20-De21871 Nov 30, 2020	BH04_0.5 Soil P20-De21872 Nov 30, 2020
Test/Reference	LOR	Unit				
SPOCAS Suite (Minus ANC- WA)						
SPOCAS WA (- ANC) - Net Acidity (Acidity Units)	2	mol H+/t	8.0	< 2	< 2	< 2
SPOCAS WA (- ANC) - Liming rate	1	kg CaCO3/t	1.0	< 1	< 1	< 1
Extraneous Material						
<2mm Fraction	0.005	g	30	38	62	36
>2mm Fraction	0.005	g	7.4	< 0.005	< 0.005	< 0.005
Analysed Material	0.1	%	80	100	100	100
Extraneous Material	0.1	%	20	< 0.1	< 0.1	< 0.1
% Moisture	1	%	7.0	2.7	17	2.6

Client Sample ID			BH04_2.0	BH04_3.0	BH04_4.75	BH04_5.75
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			P20-De21873	P20-De21874	P20-De21875	P20-De21876
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
SPOCAS Suite (Minus ANC- WA)						
pH-KCL	0.1	pH Units	5.7	5.0	5.6	5.5
pH-OX	0.1	pH Units	4.3	2.7	4.0	3.7
Acid trail - Titratable Actual Acidity	2	mol H+/t	4.0	10	2.0	4.0
Acid trail - Titratable Peroxide Acidity	2	mol H+/t	< 2	84	8.0	13
Acid trail - Titratable Sulfidic Acidity	2	mol H+/t	< 2	73	6.0	9.0
sulfidic - TAA equiv. S% pyrite	0.003	% pyrite S	0.010	0.020	< 0.003	0.010
sulfidic - TPA equiv. S% pyrite	0.02	% pyrite S	< 0.02	0.13	< 0.02	0.02
sulfidic - TSA equiv. S% pyrite	0.02	% pyrite S	< 0.02	0.12	< 0.02	< 0.02
Sulfur - KCl Extractable	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Sulfur - Peroxide	0.02	% S	< 0.02	0.14	< 0.02	0.02
Sulfur - Peroxide Oxidisable Sulfur	0.02	% S	< 0.02	0.12	< 0.02	< 0.02
acidity - Peroxide Oxidisable Sulfur	10	mol H+/t	< 10	77	< 10	12
HCI Extractable Sulfur Correction Factor	1	factor	2.0	2.0	2.0	2.0
HCI Extractable Sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur	0.02	% S	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - acidity units	10	mol H+/t	n/a	n/a	n/a	n/a
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	n/a	n/a	n/a	n/a
Calcium - KCI Extractable	0.02	% Ca	< 0.02	< 0.02	< 0.02	< 0.02
Calcium - Peroxide	0.02	% Ca	0.02	< 0.02	< 0.02	< 0.02
Acid Reacted Calcium	0.02	% Ca	< 0.02	< 0.02	< 0.02	< 0.02
acidity - Acid Reacted Calcium	10	mol H+/t	< 10	< 10	< 10	< 10
sulfidic - Acid Reacted Ca equiv. S% pyrite	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Magnesium - KCI Extractable	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
Magnesium - Peroxide	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
Acid Reacted Magnesium	0.02	% Mg	< 0.02	< 0.02	< 0.02	< 0.02
acidity - Acid Reacted Magnesium	10	mol H+/t	< 10	< 10	< 10	< 10
sulfidic - Acid Reacted Mg equiv. S% pyrite	0.02	% S	< 0.02	< 0.02	< 0.02	< 0.02
Acid Neutralising Capacity (ANCE)	0.02	% CaCO3	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - Acidity units (a-ANCE)	10	mol H+/t	n/a	n/a	n/a	n/a
Acid Neutralising Capacity - equivalent S% pyrite(s-ANCE)	0.02	% S	n/a	n/a	n/a	n/a
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5

Client Sample ID Sample Matrix		BH04_2. Soil		BH04_3.0 Soil	BH04_4.75 Soil	BH04_5.75 Soil
Eurofins Sample No.			P20-De21873	P20-De21874	P20-De21875	P20-De21876
Date Sampled			Nov 30, 2020	Nov 30, 2020	Nov 30, 2020	Nov 30, 2020
Test/Reference	LOR	Unit				
SPOCAS Suite (Minus ANC- WA)						
SPOCAS - Net Acidity (Sulfur Units)	0.02	% S	< 0.02	0.14	< 0.02	0.03
SPOCAS - Net Acidity (Acidity Units)	10	mol H+/t	11	88	< 10	16
SPOCAS - Liming rate	1	kg CaCO3/t	1.0	7.0	1.0	1.0
SPOCAS WA (- ANC) - Net Acidity (S% pyrite units)	0.02	% S	0.02	0.14	0.02	0.03
SPOCAS WA (- ANC) - Net Acidity (Acidity Units)	2	mol H+/t	11	88	9.5	16
SPOCAS WA (- ANC) - Liming rate	1	kg CaCO3/t	1.0	7.0	1.0	1.0
Extraneous Material						
<2mm Fraction	0.005	g	47	52	45	46
>2mm Fraction	0.005	g	< 0.005	< 0.005	< 0.005	< 0.005
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
% Moisture	1	%	13	13	16	15

Report Number: 762781-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
SPOCAS Suite (Minus ANC- WA)			
SPOCAS Suite (Minus ANC- WA)	Brisbane	Dec 14, 2020	6 Week
- Method: LTM-GEN-7050			
Extraneous Material	Brisbane	Dec 10, 2020	6 Week
- Method: LTM-GEN-7050/7070			
% Moisture	Perth	Dec 10, 2020	14 Days

⁻ Method: LTM-GEN-7080 Moisture

Report Number: 762781-S

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Western Environmental Pty Ltd

Level 3, 25 Prowse Street West Perth

WA 6005

Project Name:

Address:

Company Name:

Project ID: 20.227

 Order No.:
 20.227
 Received:
 Dec 10, 2020 11:33 AM

 Report #:
 762781
 Due:
 Dec 15, 2020

 Phone:
 08 6162 8980
 Priority:
 3 Day

 Fax:
 Contact Name:
 Leah Petrie

Eurofins Analytical Services Manager: Rhys Thomas

		Sa	mple Detail			SPOCAS Suite (Minus ANC- WA)	Moisture Set			
	Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217 Sprisbane Laboratory - NATA Site # 20794 X									
Brisbane Laboratory - NATA Site # 20794 X										
			36				Х			
				1	1					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH03_0.25	Nov 30, 2020		Soil	P20-De21869	Х	Χ			
2	BH03_1.0	Nov 30, 2020		Soil	P20-De21870	Х	Х			
3	BH03_6.0	Nov 30, 2020		Soil	P20-De21871	Х	Х			
4	BH04_0.5	Nov 30, 2020		Soil	P20-De21872	Х	Х			
5										
6	BH04_3.0	Nov 30, 2020		Soil	P20-De21874	Х	Х			
7	BH04_4.75	Nov 30, 2020		Soil	P20-De21875	Х	Х			
8	BH04_5.75	Nov 30, 2020		Soil	P20-De21876	Х	Х			
Test	Counts					8	8			

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
LCS - % Recovery									
SPOCAS Suite (Minus ANC- WA)									
pH-KCL			%	98			80-120	Pass	
Acid trail - Titratable Actual Acidity			%	103			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits		Qualifying Code
Duplicate					1			ı	
SPOCAS Suite (Minus ANC- WA)				Result 1	Result 2	RPD			
pH-KCL	P20-De21869	CP	pH Units	9.1	9.2	<1	30%	Pass	
pH-OX	P20-De21869	CP	pH Units	7.7	7.7	<1	30%	Pass	
Acid trail - Titratable Actual Acidity	P20-De21869	CP	mol H+/t	< 2	< 2	<1	30%	Pass	
Acid trail - Titratable Peroxide Acidity	P20-De21869	СР	mol H+/t	< 2	< 2	<1	30%	Pass	
Acid trail - Titratable Sulfidic Acidity	P20-De21869	СР	mol H+/t	< 2	< 2	<1	30%	Pass	
sulfidic - TAA equiv. S% pyrite	P20-De21869	СР	% pyrite S	< 0.003	< 0.003	<1	30%	Pass	
sulfidic - TPA equiv. S% pyrite	P20-De21869	СР	% pyrite S	< 0.02	< 0.02	<1	30%	Pass	
sulfidic - TSA equiv. S% pyrite	P20-De21869	CP	% pyrite S	< 0.02	< 0.02	<1	30%	Pass	
Sulfur - KCI Extractable	P20-De21869	CP	% S	< 0.02	< 0.02	<1	30%	Pass	
Sulfur - Peroxide	P20-De21869	СР	% S	< 0.02	< 0.02	<1	30%	Pass	
Sulfur - Peroxide Oxidisable Sulfur	P20-De21869	СР	% S	< 0.02	< 0.02	<1	30%	Pass	
acidity - Peroxide Oxidisable Sulfur	P20-De21869	СР	mol H+/t	< 10	< 10	<1	30%	Pass	
HCI Extractable Sulfur	P20-De21869	СР	% S	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur	P20-De21869	СР	% S	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur - acidity units	P20-De21869	СР	mol H+/t	n/a	n/a	n/a	30%	Pass	
Net Acid soluble sulfur - equivalent S% pyrite	P20-De21869	СР	% S	n/a	n/a	n/a	30%	Pass	
Calcium - KCl Extractable	P20-De21869	СР	% Ca	0.18	0.18	1.0	30%	Pass	
Calcium - Peroxide	P20-De21869	СР	% Ca	2.4	2.4	<1	30%	Pass	
Acid Reacted Calcium	P20-De21869	СР	% Ca	2.2	2.2	<1	30%	Pass	
acidity - Acid Reacted Calcium	P20-De21869	СР	mol H+/t	1100	1100	<1	30%	Pass	
sulfidic - Acid Reacted Ca equiv. S% pyrite	P20-De21869	СР	% S	1.8	1.8	<1	30%	Pass	
Magnesium - KCl Extractable	P20-De21869	СР	% Mg	< 0.02	< 0.02	<1	30%	Pass	
Magnesium - Peroxide	P20-De21869	СР	% Mg	0.05	0.05	1.0	30%	Pass	
Acid Reacted Magnesium	P20-De21869	CP	% Mg	0.05	0.05	1.0	30%	Pass	
acidity - Acid Reacted Magnesium	P20-De21869	СР	mol H+/t	38	37	1.0	30%	Pass	
sulfidic - Acid Reacted Mg equiv. S% pyrite	P20-De21869	СР	% S	0.06	0.06	1.0	30%	Pass	
Acid Neutralising Capacity (ANCE)	P20-De21869	CP	% CaCO3	5.8	5.8	<1	30%	Pass	
Acid Neutralising Capacity - Acidity units (a-ANCE)	P20-De21869	CP	mol H+/t	1200	1200	<1	30%	Pass	
ANC Fineness Factor	P20-De21869	CP	factor	1.5	1.5	<1	30%	Pass	
SPOCAS - Liming rate	P20-De21869	CP	kg CaCO3/t	< 1	< 1	<1	30%	Pass	
SPOCAS WA (- ANC) - Net Acidity (S% pyrite units)	P20-De21869	CP	% S	< 0.02	< 0.02	<1	30%	Pass	
SPOCAS WA (- ANC) - Net Acidity (Acidity Units)	P20-De21869	CP	mol H+/t	8.0	7.6	4.0	30%	Pass	
SPOCAS WA (- ANC) - Liming rate	P20-De21869	CP	kg CaCO3/t	1.0	1.0	4.0	30%	Pass	
Duplicate	. 20 2021009	, Ji	I ng GaGGG/t	1.0	1.0	7.0		1 1 433	
- upilouto				Result 1	Result 2	RPD			
% Moisture	P20-De21874	СР	%	13	14	6.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

N/A
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description

S02 Retained Acidity is Reported when the pHKCl is less than pH 4.5

Authorised By

Rhys Thomas Analytical Services Manager

Myles Clark Senior Analyst-SPOCAS (QLD)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 762781-S

Appendix E Groundwater Field Monitoring Logs

GROUNDWATER SAMPLING RECORD

Location ID:	BH03	
Date:	9.12	
Project No:	20-227.	
Project Title:	88 Mill Point Rd.	
Sampling Device:	YSI, pti, per, Dipper	
Field Scientist:	-zw3-	-

Well Information	1
Start/Finish time:	
Stickup of mm Casing (m):	
Total well depth (mTOC):	8-68
Depth to water (mTOC):	2.44
Depth to water (mBGL):	
Depth of Slotted interval (mTOC):	
Depth of Extraction (mTOC)*:	
Well Survey (TOC AHD)	
Groundwater Flow Direction:	

Time/Duration (mins)	Depth to Water (TOC)	Purge Vol (L)	Rate (L/min)	рН	EC (Sp) (µS/cm)	TDS (mg/L)	ORP (mV)	DO %	Temp (ºC)	Sal (ppt)	ПА	TTalk	Comment
Stablisation Criteria	Δ<-0.1m	-	<1L/min	±0.1	±5%	•	±10 mV	±10%	±0.5	ž		-	
Alternate Criteria					,								
(0	2-44		<(L/min	8-80	973		48-6	48.6	23-5	·			
3	Ħ		(1)	8.25	785		-4(-8	36.4	22-7				
6	įί		G	7.86	761		-31.9	326	22.6				
9	-τ(((7.84	760	-	-32-1	32.9	22.5		10	(4	
12	۲((4	7.78	760		-35-7	30.2	22-4				
		-											
Observations:	: weather, well/loca Safety Hazards	tion condition,	Sonn	y was	M								
Water quality: sa	ample, colour, turbio	dity, odour, sheen	Chen	J 51594	.Hy trib	id, no.	odour, 1	ro Sle	er.			÷	
Analysis: anal	Water quality: sample, colour, turbidity, odour, sheen Clery 5179 My hibid, no odour, no Sleen. Analysis: analytical suite, dup/trip/QC samples R15 Suffe, Discharge to secure BH3 AMMANULL.												
	Notes*		To facilitate lateral lowered to the mic Australian Height I	dpoint between the	action, tubing shoul water level and the	d be lowered to th bottom of the slot	ne mid-point of the s tted interval. mTOC:	lotted interval. In the depth in metres fro	ne case that the wate m Top of Casing; m&	er level is below th BGL: depth in metr	e top of the slotted res Below Ground Le	l interval, tubing should be evel; mAHD: level in terms of	WESTERN

GROUNDWATER SAMPLING RECORD

Location ID:	BH4
Date:	9.12.70
Project No:	70-727
Project Title:	88 Mill Bin) ad
Sampling Device:	451, pH, peri, Dipper
Field Scientist:	JWB

Well Information							
Start/Finish time:							
Stickup of mm Casing (m):	-						
Total well depth (mTOC):	8.79						
Depth to water (mTOC):	2.03						
Depth to water (mBGL):							
Depth of Slotted interval (mTOC):							
Depth of Extraction (mTOC)*:							
Well Survey (TOC AHD)							
Groundwater Flow Direction:							

	ne/Duration (mins)	Depth to Water (TOC)	Purge Vol (L)	Rate (L/min)	На	EC (Sp) (μS/cm)	TDS (mg/L) 0	RP (mV)	DO %	Temp (°C)	Sal (ppt)	TTA	TTalk	Comment
	tablisation Criteria	Δ<-0.1m	-	<1L/min	±0.1	±5%	-	±10 mV	±10%	±0.5				
Alter	rnate Criteria													
0	0	2.03		214min	8.12	62)	4-	25-6	58.6	25-1				
3	3			1/	9.01	606		45-4	489	23.5	•			
6	6			t/	8.04	608	- (55.3	46.7	23.4			<u></u>	
9	9			11	7-97	617	- (61.3	84.3	23.4		22	16	
2	12									\				

	Observations: weather, well/location condition, Safety Hazards		Sunnahot											
Wa	ater quality: sample, colour, turbidity, odour, sheen		cleur, Slightly tribid, no adour. RIS Svile BH4, DUPO1											
	Analysis: analytical suite, dup/trip/QC samples R15 507 Le B1-14 , DOPO 1													
		Notes*		To facilitate lateral ingress during extraction, tubing should be lowered to the mid-point of the slotted interval. In the case that the water level is below the top of the slotted interval, tubing should be lowered to the midpoint between the water level and the bottom of the slotted interval. mTOC: depth in metres from Top of Casing; mBGL: depth in metres Below Ground Level; mAHD: level in terms of Australian Height Datum.									of WESTERN ENVIRONMENTAL	

